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Abstract: Many spatial decision support systems suffer from user adoption issues in practice due to
lack of trust, technical expertise, and resources. Automated machine learning has recently allowed
non-experts to explore and apply machine learning models in the industry without requiring abun-
dant expert knowledge and resources. This paper reviews recent literature from 136 papers, and
proposes a general framework for integrating spatial decision support systems with automated ma-
chine learning to lower major user adoption barriers. Challenges of data quality, model interpretabil-
ity, and practical usefulness were discussed as general considerations for system implementation.
Research opportunities related to spatially explicit models in AutoML, and resource-aware, collabora-
tive/connected, and human-centered systems were also discussed to address these challenges. This
paper argues that integrating spatial decision support systems with automated machine learning
can not only encourage user adoption, but also mutually benefit research in both fields — bridging
human-related and technical advancements for fostering future developments in spatial decision
support systems and automated machine learning.

Keywords: Spatial; Decision Support; Machine Learning; Automation; Framework; System; SDSS;
AutoML; GIS

1. Introduction

Advances in crowdsourcing [1], open data initiatives [2], and open source standards
[3] have made spatial data more publicly accessible. Spatial Decision Support Systems
(SDSS) store, manage, and process spatial and non-spatial data for important decisions,
such as selecting business locations, placing traffic infrastructure, and implementing public
health policies [4]. However, many SDSS are not adopted by decision makers due to lack
of trust, technical expertise, and resources [5,6]. Recently, Automated Machine Learning
(AutoML) received attention from the research community and media. AutoML integrates
automation and Machine Learning (ML) by generating models, with little human assistance,
that perform well under certain requirements and computational budgets [7]. This reduces
the effort and technical expertise required to process and model data, which accounts
for a majority of the time spent on data analysis [8]. As leading technology companies
released AutoML products in 2017 to 2018 [9–11], ML models became more widely used by
non-experts and less expensive to implement. With the recent increase of accessibility to
AutoML, resources for implementing and maintaining SDSS can be reduced — improving
SDSS adoption by decision makers.

This paper provides a systematic review of AutoML and SDSS integration, which seeks
to answer three research questions: (1) What problems can both SDSS and AutoML solve
according to recent research? (2) How can AutoML be integrated into SDSS? and (3) What
are the challenges and opportunities of SDSS with AutoML? Although there are existing
review papers on AutoML and SDSS separately [4,12? ], review papers that focused on
the integration of both AutoML and SDSS were not found in literature from initial search
on the topics of AutoML and SDSS together. This paper produces the following three
research contributions to answer these questions: (1) A systematic review that investigates
recent methods, results, applications, and potential problems in SDSS and AutoML (2)
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A framework based on recent literature for implementing AutoML in SDSS and (3) A
summary of key research opportunities and challenges of SDSS with AutoML.

2. Methods

This paper used a two-step process to answer three research questions described in
the introduction (Figure 1). The process involved gathering relevant AutoML and SDSS
research literature, then summarizing, analyzing, and discussing the gathered literature to
answer the three research questions.

2.1. Step One: Literature Search

The first step involved a search of recent AutoML and SDSS literature. Peer reviewed
journal articles were keyword searched (titles only) in 382 research databases (e.g. Scopus,
arxiv, Web of Science, etc) using Summon 2.0 between January 1, 2019 to September 24,
2022. These articles were then manually filtered by inspecting the title and abstracts for
AutoML/SDSS relevant and literature review related articles only. Since many recent
literature review articles covered developments in AutoML [12? –15] and SDSS [4,16–19]
within the past 5 years, articles within two years were used to avoid outdated information
and to focus on the most recent research. The manually filtered articles (17 AutoML, 18
SDSS) were used to also discover 101 additional supplementary references for both AutoML
and SDSS topics using a snowball search strategy [20].

2.2. Step Two: Review and Discussion

The second step involved answering the research questions using the articles and
relevant references gathered from the first step. Similar problems solvable by AutoML and
SDSS were identified and summarized to answer research question one: What problems can
both SDSS and AutoML solve according to recent research? A general framework for SDSS with
AutoML was developed to answer research question two: How can AutoML be integrated
into SDSS? Similarities in the methodology sections from the review papers in step one,
and relevant references, were examined to identify AutoML and SDSS components. The
AutoML and SDSS components were then connected based on general AutoML/SDSS
approaches from the review papers/relevant references, and identified spatial problems
from answering research question one. Finally, opportunities and challenges from the
review papers and relevant references in step one were identified and discussed to answer
research question three: What are the challenges and opportunities of SDSS with AutoML?
Challenges and opportunities were found by comparing similarities and differences among
the results, discussion, limitations, and other related sections/references.

3. Results

A total of 136 SDSS and AutoML articles were found for review. 18 SDSS and 17
AutoML articles were used as primary sources to review recent important advancements,
while 63 SDSS articles, 21 AutoML, and 17 AutoML/SDSS articles (articles having both
AutoML and SDSS as topics) were found using these primary sources to serve as sup-
plementary sources for reviewing foundational literature earlier than 2022. The number
of articles per year are steady between 1990 and 2018 (supplementary selection for most
notable publications), before sharply rising after 2018 (primary selection for more recent
articles) (Figure 2). Articles with both AutoML and SDSS topics were quite recent and
seen only after 2020. Main keywords were focused on the topics of data, spatial/planning
systems, machine learning, and models/analysis (Figure 3). Notable articles based on the
number of citations are seen in Figures 4 and 5. Notable primary SDSS articles had over 15
citations:

• Spatial Decision Support Systems: Three decades on [4]
• Reporting on the Performance and Usability of Planning Support Systems—Towards a Com-

mon Understanding [21]
• Advances of Four Machine Learning Methods for Spatial Data Handling: a Review [22]
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SDSS Manual Filter

Criteria 1: Mentions SDSS or
decision support approaches in
the title or abstract 

Criteria 2: Is a review or survey
focused article

Primary SDSS Articles: 18

Summon 2.0 
382 Databases

STEP ONE: LITERATURE SEARCH

AutoML Article Search

Keywords: automl OR
"automated machine learning"
OR "auto machine learning" 

Date: Jan 1 2020 - Sep 24 2022 

Restrictions: Keywords in Title
Only and Journals Articles Only 

Initial AutoML Articles: 312

SDSS Article Search

Keywords: "planning support"
OR "spatial decision support" 

Date: Jan 1 2020 - Sep 24 2022 

Restrictions: Keywords in Title
Only and Journals Articles Only 

Initial SDSS Articles: 115

AutoML Manual Filter

Criteria 1: Mentions automation
of ML or modelling processes in
the title or abstract 

Criteria 2: Is a review or survey
focused article

Primary AutoML Articles: 17

ANSWER RESEARCH QUESTION 2

Question: How can AutoML generally be
integrated into SDSS?

Approach: Identify general AutoML/SDSS
components and approaches from
methodology sections in articles and related
references, then connect components based
on identified spatial problems from
answering Research Question 1

STEP TWO: REVIEW / DISCUSSION

ANSWER RESEARCH QUESTION 1

Question: What problems can both SDSS
and AutoML solve according to recent
research?

Approach: Identify and summarize similar
problems from introduction, results,
discussion, applications, and related
sections/references

Snowball Search

Approach: Find key
topics/references from primary
articles to discover relevant
supplementary articles

Supplementary Articles: 101

ANSWER RESEARCH QUESTION 3

Question: What are the challenges and
opportunities of SDSS with AutoML?

Approach: Identify and compare
advantages and disadvantages in results,
discussion, limitations, and related
sections/references

               Final Articles

Primary AutoML: 17
Primary SDSS: 18 
Supplementary:  101

Total Articles: 136

Figure 1. Two step process to answer research questions.

• Strengthening Participation Using Interactive Planning Support Systems: A Systematic
Review [17]

Notable primary AutoML articles had over 25 citations:

• Automated machine learning: Review of the state-of-the-art and opportunities for healthcare
[23]

• AutoML: A survey of the state-of-the-art [12]
• Benchmark and Survey of Automated Machine Learning Frameworks [24]

Notable supplementary SDSS articles had over 500 citations:

• Interpretation of the Correlation Coefficient: A Basic Review [25]
• Kriging: a method of interpolation for geographical information systems [26]

Notable supplementary AutoML articles had over 1000 citations:

• Random Forests [27]
• What is a support vector machine? [28]
• K-means clustering: A half-century synthesis [29]

Notable supplementary articles with both AutoML and SDSS topics had much less citations
due to recency and had over 5 citations:

• Reconstruction of GRACE Total Water Storage Through Automated Machine Learning [30]
• Estimation of root zone soil moisture from ground and remotely sensed soil information with

multisensor data fusion and automated machine learning [31]
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• Machine Learning to Estimate Surface Roughness from Satellite Images [32]
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Figure 3. Word cloud of top 100 words in 136 SDSS and AutoML article abstract and titles.

4. Literature Review
4.1. Spatial Decision Support Systems (SDSS)

The term SDSS was used since 1985 to describe software designed to support decision
making by enabling users to analyze structured or semi-structured spatial problems for
potential solutions [33]. Modern SDSS shifted from solution-centric software to human-
centric frameworks that incorporated features and ideas from Geographic Information
Systems (GIS) [34] and Planning Support Systems (PSS) [35]. SDSS are frameworks that
incorporate a collection of tools designed to inform decision making involving spatially
related problems, generally comprised of three components [4,16,17,21,36]: (1) spatial data
(2) spatial information and (3) knowledge.

The spatial data component manages and processes data as input for the spatial
information component, which transforms the data into information (e.g. modelling,
visualization) by organizing and presenting it for decision making needs [19,37,38]. Notable
approaches used in the spatial information component include Multiple Criteria Decision
Analysis (MCDA) [39], hot spot analysis [40], spatial regression [41], Cellular Automata
(CA) [42], Agent Based Modelling (ABM) [43], and Particle Swarm Optimization (PSO) [44].
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Figure 5. Top 10 most cited supplementary AutoML (n=21), SDSS (n=63), and AutoML/SDSS (n=17)
articles.

This information acts as input for the knowledge component, which enables users to interact
with and explore the information to produce knowledge [18,45–48]. Knowledge is used to
support decisions or to help improve the data or information components [4,21]. Notable
approaches for knowledge generation include participatory planning [17], citizen science
[45], and geocollaboration [49]. Although the spatial data and information components
focus on spatial data, they may also include supplementary non-spatial data. Each SDSS
component contains several subcomponents representing more specific component features
and functionality. General SDSS components, subcomponents, and their interactions are
seen in Figure 6.
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Despite many studies in SDSS [4], challenges exist involving low user adoption
[5,48,50] (e.g. awareness across disciplines, lack of practitioner acceptance/trust, expensive
resources/training), evidence of usefulness [16,47] (e.g. proving practical utility/success
for practitioners, added value vs resources needed), adaptation [19] (e.g. balance between
domain-specificity and generalizability, application to similar contexts/problems), collabo-
ration [36] (e.g. communication between non-technical and technical actors, translation of
decision making needs to models/tools), and interpretability [6] (e.g. excessive/complex
information for non-technical users, transparency of processes/inputs/outputs). Discus-
sion around the gaps between research and practice of SDSS have remained an important
topic with many studies encouraging the early involvement and collaboration between
decision makers, stakeholders, and the community [5,36,51]. Over time, SDSS research,
largely focused on applications, case studies, and reviews, has started to increased after
2004 and remained steady between 2010 and 2020 with a recent growth in studies related
to urban science/analytics, smart cities/urban planning, and digital twins [52].

SPATIAL DATA

Collection Storage

Access Documentation

Processing ...

SPATIAL INFORMATION

Monitoring Modelling

Visualization Reporting

Interface ...

KNOWLEDGE

Communication Collaboration

Exploration ...

Subcomponent Input/Output
Component ... Other Subcomponents Potential Input/Output

DECISIONS

Figure 6. Spatial Decision Support System (SDSS) components.

4.2. Automated Machine Learning (AutoML)

AutoML can be described as the automation of machine learning, a combination
of two terms: (1) automation (Auto), to independently act, function, or operate without
human intervention [53] and (2) Machine Learning (ML), a field of Artificial Intelligence
(AI) focused on computer algorithms that can improve through experience [54]. Current
AutoML approaches commonly involve optimizing components in the ML process (e.g.
extraction/creation of features, tuning/creation of models) given constraints (e.g. reaching
desired performances or time limits) [? ]. These optimization approaches use metrics (e.g.
accuracy, error) that determine the quality of the output components (e.g. features, models).
Notable models include linear/logistic regression [55,56], Naïve Bayes (NB) [57], Decision
Trees (DT) [58], Random Forests [27], k-means clustering [29], Support Vector Machines
(SVM) [28], Neural Networks (NN) [59], and Genetic Algorithms (GA) [60]. A generic
AutoML approach is seen in Figure 7.

Although AutoML has made AutoML more accessible to non-experts [7,61], there are
issues in data dependency [12,23] (e.g. low data quality, unavailable data, data misuse), time
and efficiency [15,62] (e.g. performance vs acceptable running times, dataset sizes, search
space comprehensiveness), updates/reusability [63? –65] (e.g. update existing model with
new data, performance consistency, reproducible solutions), and interpretability [12,66,67]
(e.g. why models perform better/worse or take certain actions). Closing the gap between
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domain experts/practitioners and ML specialists has recently been a topic of interest as
ML processes are increasingly automated, and applied to solve practical problems in the
industry [68]. Much of AutoML research has been focused on supervised learning, but
recent research has diverged to tackle a larger range of ML problems such as unsupervised
learning, time-series forecasting, and anamoly detection [69,70].

Input Output Algorithm Iterate Until Constraint Met
X     Features 
QX   Feature Quality

Y     Models 
QY   Model Quality

FEATURE OPTIMIZATION

Optimization 
Algorithm

Optimized 
Features

X, QX

Data

MODEL OPTIMIZATION

Optimization 
Algorithm

Optimized 
Models

Y, QY

Models

Parameters

Figure 7. Generic Automated Machine Learning (AutoML) approach.

4.3. Spatial Problems in SDSS and ML

Spatial problems, commonly studied in SDSS, were not prevalent in AutoML research
before 2020, where many studies focused on general problems, such as prediction and
optimization, without considering spatial effects. However, ML applications to spatial prob-
lems are more common [71,72], and are recently being integrated into SDSS [19,73]. This
section identifies spatial problems that have been studied by SDSS and/or ML approaches
to supplement the much smaller number of studies focused on both SDSS and AutoML.
Since AutoML automates ML processes, it is relevant to review studies that use ML to solve
spatial problems. A summary of spatial problems in SDSS and reviewed applications and
approaches is shown in Table 1.

Table 1. Reviewed spatial problems and approaches in SDSS.

Spatial
Problem

Applications Spatial
Methods

ML
Methods

Estimation Land use classification
Disease risk calculation
Disaster risk prediction

MCDA
Spatial Regression

SVM
RF
NN

Optimization Facility selection
Delivery routing
Infrastructure placement
Traffic control

MCDA
PSO

GA

Clustering Crime hotspots
Agricult./disease zoning
Social media analysis
Travel analysis

LISA
Hotspot analysis
SaTScan

K-means
DBSCAN

Simulation Traffic control simulation
Wildfire simulation
Landuse simulation

Cellular Automata
ABM
Custom models

RL

Insight Risk factor identification
Interactive exploration
Data/model interpretation

Spat. Regression
Webmapping
Interactive models

Feat. selection
Feat. importance
Pipeline explore
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4.3.1. Spatial Estimation

Spatial estimation problems involve the calculation of unknown values at different
locations, which encompasses spatial interpolation [74], prediction [75], and overlay [76].
These problems are solved to create surfaces from samples (e.g. kriging [26]), predict future
values at different locations, and calculate values based on location. Recent examples
include disease risk calculation [77], disaster risk prediction [78], and land use indicator
creation [79] using MCDA approaches, spatial regression (e.g. Geographically Weighted
Regression (GWR) [80]), and ML (e.g. SVM, RF, NN). Spatial estimation solutions are often
evaluated with error (e.g. Root Mean Square Error (RMSE), true negatives, Sum of Square
Error (SSE)) and accuracy (e.g. F1 score, Area Under the ROC Curve (AUC), sensitivity,
specificity) metrics that compare estimated values to true values from real world data [81].
Challenges in spatial estimation problems involve need for larger amounts of ground-truth
data, and consideration of additional factors/variables/scales [75].

4.3.2. Spatial Optimization

Spatial optimization involves spatial placement [82] and routing [83] of entities. Solv-
ing spatial optimization problems help determine more optimal placement of important
facilities and infrastructure (e.g. site selection or facility location problem [84]), and efficient
transportation paths (e.g. vehicle routing [85] and travelling salesman problems [86]).
Recent examples include hospital facility selection [87], energy infrastructure placement
[88], delivery routing [89], and automatic traffic control [90] using GA, MCDA, and PSO. In
addition to error and accuracy metrics, spatial optimization solutions are evaluated with
multicriterion [91] (e.g. weighted sums, sensitivity analysis) and multi-objective [92] (e.g.
spread, hypervolume, convergence) metrics that consider important indicators from data,
expert input, and search space comprehensiveness. Challenges in spatial optimization
problems involve temporal effects, multiple objectives, and computing efficiency [84,93].

4.3.3. Spatial Clustering

Spatial clustering involves grouping entities in space (e.g. Local Indicators of Spatial
Association (LISA) [94], hot spot analysis, Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) [95]) and time (e.g. spatiotemporal clustering [96], SaTScan [97],
K-means [29]), where entities inside groups are similar and entities outside different groups
are dissimilar [98]. These groups are used to identify interesting areas (e.g. zones with
high crime [99] or natural resource potential [100]) and timespans (e.g. areas of disease
transmission during specific times [101]). More recent applications involve clustering high
volume and velocity spatiotemporal data (e.g. social media, crowdsourcing) [102,103].
Spatial clustering solutions are evaluated with statistical [104] (e.g. likelihood ratio, auto-
correlation, significance) and similarity [105] (e.g. euclidean distance, pearson correlation)
metrics. Spatial clustering challenges include irregularly shaped clusters, high dimen-
sional data, spatial relations/weights selection, resolution, object interactions, and visual
vs quantitative evaluation [96,106,107].

4.3.4. Spatial Simulation

Spatial simulation refers to imitations of real-world or hypothetical phenomena in
space and time [108]. Spatial simulation enables analyses in cases where data is difficult
to obtain (e.g. finer spatial/temporal resolutions, hypothetical/future phenomena) [43].
Approaches involve domain-specific models (e.g. crop yield models [109], hydrodynamic
fluid models [110]), CA, and ABM. Recent examples include Reinforcement Learning
(RL), ABM, and CA for simulating traffic light control [111], wildfire spread [112], and
sustainable urban growth [113]. Spatial simulation solutions are evaluated with domain-
specific (e.g. total traffic delay [111], total crop yield [109], landscape composition/ patch
sizes [114]) metrics that are used to guide empirical observations. Challenges in spatial
simulation include model validation, excessive complexity, disorganization, reproducibility,
computing resources, and lack of theoretical basis [115].
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4.3.5. Spatial Insight

Spatial insight problems focus on interpreting and visualizing spatial data and model
outputs, typically involving spatial regression [116], interactive interfaces [117], and maps
[118]. Incorporating spatial insight features in SDSS help data and models produce knowl-
edge useful for decision making (e.g. graphical interface to interactively view and manipu-
late spatial data and models [119], web maps displaying spatial data or model results [120],
coefficients representing variable effects in models [121]). Recent examples include spatial
regression for identifying factors for reducing pollution [122], web GIS to interactively
generate watershed models [123], and interactive visualization tools for exploring and
analyzing AutoML pipelines [124]. Spatial insight solutions are evaluated with variable-
based (e.g. feature importance [125], coefficients[25]), interpretability [126] (e.g. cognitive
indicators, explanation indicators), and empirical approaches [127] (e.g. usability testing,
controlled user surveys, user insight observation) to examine the effectiveness of interac-
tive/visualization tools for producing useful insight. Spatial insight challenges involve
measuring usefulness, selecting/justifying appropriate presentation methods, handling big
data/complexity, and personalization vs generalizability [127–129].

4.4. SDSS with AutoML

Research related to SDSS with AutoML recently begun to emerge after the year 2020.
AutoML methods were applied to a variety of applications in the areas of agriculture
(e.g. crop prediction [130–132], crop classification [133]), environmental science (e.g. en-
vironmental impact assessment [134], waterlogging risk estimation [135], water storage
estimation [30], water potential mapping [136], meteorological forecasting [137], ocean be-
haviour prediction [138]), geology (e.g. oil well placement [139], soil roughness estimation
[32], soil moisture estimation [31], landslide risk estimation [140,141]), transportation (e.g.
road health inspection [142]), and public health (e.g. violence rate prediction [143]). The
majority of studies use a fusion of geospatial data sources with satellite imagery, sensors,
and surveys being the most common and sociodemographic data being the least common.
A summary of SDSS with AutoML approaches and applications is shown in Table 2.

The reviewed AutoML methods were grouped into four generalized approaches: (1)
Ensembling, (2) Bayesian, (3) Neural Nets, and (4) Evolutionary. The most prominent
AutoML approach was ensembling, which involves the combination of multiple algo-
rithms to achieve better performance than individual algorithms [144]. This is followed by
Bayesian approaches that are based on the Bayes theorem and utilizing past observations
to guide future predictions [62,145]. Neural net approaches involve the optimization of
neural network architecture to build deep learning models that achieve high performance
[146]. Lastly, evolutionary approaches use algorithms that mimic natural selection based
techniques on a population of models, such as mutation, reproduction, and selection to
find optimal evolved models that achieve better performance [147].

Among the reviewed AutoML methods and software, notable ones include Auto-
Sklearn, Tree-based Pipeline Optimization Tool (TPOT), H2O, Autogluon, Neural Ar-
chitecture Search (NAS), and Alpha3DM. Auto-Sklearn uses a combination of Bayesian
optimization, meta-learning, and ensemble construction to perform hyperparameter tuning
and algorithm selection [148]. TPOT uses genetic programming to optimize and generate
tree-based ML pipelines [149]. H2O uses random search and stacked ensembles to produce
a final model that evaluates a diversity of candidate models, which, in some situations, are
better than Bayesian optimization or genetic algorithm based approaches [150]. Autogluon
distills ensembled models into individual models, by using a data augmentation strategy
based on Gibss sampling, to produce final models that are faster and, in some cases, more
accurate than training individual models by themselves or ensembled models [151]. NAS
automates the construction of neural network architectures to build deep learning models
with different search strategies, spaces and performance estimation techniques, which
can be applied to Bayesian Nets and Long Short Term Memory (LSTM) networks [146].
AlphaD3M uses meta reinforcement learning with self play by modelling meta-data, tasks,
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and ML pipelines as state in a deep learning model, which allows AlphaD3M to be faster
than AutoML approaches such as Auto-Sklearn and TPOT while being explainable with
transparent ML pipeline edit operations [152].

Table 2. Reviewed SDSS with AutoML approaches and applications (n=17).

AutoML
Approach

AutoML
Method/Software

Data SDSS Applications

Ensembling
(n=6)

H2O
Extra trees class.

Satellite imagery
UAV imagery
Sensors
Surveys
Sociodemographic
Simulations

Crop prediction
Violence rate prediction
Total water storage est.
Landslide risk est.
Soil estimation

Bayesian
(n=4)

Bayesian Opt.
Auto-Sklearn
Bayesian Nets
MATLAB fitrauto

Satellite imagery
UAV imagery
Sensors
Surveys

Crop prediction/classify
Soil estimation
Env. impact assessment

Neural Nets
(n=3)

NAS
Deep Learning
LSTM

Satellite imagery
Vehicle imagery

Meteorological forecasting
Road health inspection

Evolutionary
(n=2)

Fedot
TPOT

Sensors
Surveys

Oil well placement
Waterlogging risk est.

Other
(n=2)

Autogluon
AutonML
AlphaD3M

Sociodemographic
Satellite imagery
Surveys

Violence rate prediction
Water potential mapping

5. Discussion
5.1. SDSS with AutoML Framework

Recent research in SDSS has incorporated ML algorithms and other models, which can
be automated by AutoML, to solve spatial problems for transforming spatial data to spatial
information. Applying the generic AutoML concept in Figure 7 to the SDSS components
in Figure 6, AutoML can be integrated into SDSS by framing these spatial problems as
optimization problems. Given spatial problem x, potential solutions S, and metric Q
(measuring how well solutions solve the spatial problem), AutoML can auto-approximate
near optimal solutions S̃ for x based on metric Q within pre-defined constraints (e.g. time
limits, desired performance). For example, a spatial estimation problem x could be to
classify whether pixels at different coordinates are urban or rural land use. Metric Q can be
a measure of how many pixels were predicted correctly based on groundtruth samples of
urban/rural land use pixels, while potential solutions S can be a set of appropriate models
(e.g. kriging, DT, NN) that can predict urban/rural landuse pixels. The near optimal
solution S̃ is the most accurate model from S based on Q, using an optimization algorithm
(e.g. GA, PSO) under constraints (e.g. max iterations/runtime). In MCDA, the potential
solutions S can also be different weighing schemes. A framework to integrate AutoML into
SDSS is seen in Figure 8, where AutoML automatically processes spatial data into spatial
information by solving various spatial problems. In general, this framework requires three
key considerations:

1. Spatial Problems: What are the spatial problem(s) to solve given the context and
actors in decision making?

2. Metrics: What metrics are appropriate for evaluating and measuring the defined
spatial problem(s)?
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3. Potential Solutions: With the given spatial problem(s) and metric(s), what are the
potential solutions to solve the spatial problem(s)?

SPATIAL DATA AUTOML

METRICS (Q)

Accuracy Error

Statistical Domain-specific

Interpretability ...

POTENTIAL SOLUTIONS (S)

Spatial Regression Spatial Clustering

Machine Learning Cellular Automata

Multicriteria Analysis ...

SPATIAL PROBLEMS (x)

Estimation Optimization

Clustering Simulation

Insight

SPATIAL INFORMATION

OPTIMAL SOLUTION (S)
~

... Other AutoML
Subcomponents Input/OutputAutoML

Subcomponent
SDSS
Component

AutoML
Component

Figure 8. General SDSS with AutoML Framework.

5.1.1. Key Consideration 1: Spatial Problems

Given the context and actors in decision making, spatial problems need to be defined
to reflect decisions being evaluated [153]. Initially, determining the types of decisions being
evaluated may help in defining the behaviour of decisions. The main types of decisions
according to [154] are:

• Independent: decisions made by a decision maker with full responsibility and author-
ity

• Sequential Interdependent: decisions made partially by a decision maker and par-
tially by another party

• Pooled Interdependent: decisions made from negotiation and interaction among
decision makers

Then three main steps related to the process of decision making as described by [155] can
further aid in defining spatial problems:

1. Intelligence: Examination of spatial data to identify spatial problems that require
decisions and have the opportunity for change

2. Design: Determining possible and alternative decisions and developing approaches
to evaluate and understand the decisions

3. Choice: Selecting from the range of possible and alternative decisions after evaluating
and understanding each decision

After considering the type of decisions, the possible decisions, and approaches to select-
ing/evaluating the possible decisions, the spatial problem may be better defined as one or
more (but not limited to) of the following general spatial problems as reviewed in Section
4.3:

• Spatial Estimation: calculation of unknown values in space (e.g. prediction, overlay)
• Spatial Optimization: optimization of entities in space (e.g. placement, routing)
• Spatial Clustering: organization of entities in space (e.g. grouping, categorization,

zoning)
• Spatial Simulation: simulation of phenomena in space (e.g. physics, theoretical

simulations)
• Spatial Insight: interpretation and exploration of phenomena and entities in space

(e.g. interactive maps, visualizations, plots)

Decisions can be simple or complex depending on the change desired from the decision
and the evaluation approach designed. A simple decision may only require defining a
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single spatial problem. For example, the identification of crime hotspots for police patrols
can be defined as a spatial clustering problem. A more complex single decision may
require defining one or a combination of different spatial problems. For example, analyzing
the effects of health interventions may require the identification of intervention areas (a
spatial clustering problem) and simulating the effects of each alternative intervention on
the intervention areas (a spatial simulation problem). The considerations in this section
are meant to be a starting point to help structure decisions as spatial problems, but not as
a definitive guide to do so as every context, actor, and decision making process can vary
drastically and there is not a solution for every situation [153].

5.1.2. Key Consideration 2: Metrics

After defining spatial problems to solve, the metrics used to measure and evaluate
potential solutions to each spatial problem need to be determined. It is important to
consider the task needed to solve the defined spatial problems. For ML and statistics, the
following tasks are common amongst studies [81,156,157]:

• Regression: estimation or prediction of continuous target values given other factors
(e.g. calculating landslide risk, predicting number of traffic collisions)

• Classification: identification of discrete target values (groups or categories) given
other factors (e.g. predicting landuse types, identifying building types)

• Clustering: organization of entities into groups or categories based on characteristics
(e.g. identifying crime zones, disease areas)

Considering the tasks for solving spatial problems aids in identifying the metrics required
to evaluate each spatial problem. Each metric has a particular purpose and is suited
for measuring the performance of particular tasks. For example, RMSE and correlation
coefficients metrics are used to evaluate regression tasks, while accuracy and F1 scores
are used to evaluate classification tasks. As an example metrics for the mentioned tasks
above are provided in Table 3. [81] presents a more comphrehensive collection of regression
and classification metrics, while [105], [158], and [159] provide more detailed overviews of
different clustering metrics.

Table 3. Example metrics for spatial problems and tasks.

Task Metrics

Regression Error, Correlation Coefficient, MSE, MAE, RMSE

Classfication Accuracy, Precision, Recall, Sensitivity, Specificity, F1 Score,
AUC, ROC

Clustering Euclidean Distance, Rand Index, Entropy, Purity,
Silhouette Coefficient, Dunn’s Index, Calinski-Harabasz
Index, Homogeneity

The choice of metrics should fit not only the defined spatial problem, but the behaviour
and characteristics of the spatial data used. It is important to note that each metric has
its own advantages and caveats [81,92,158]. For example, accuracy metrics are biased
when the data contains unbalanced classes (e.g. 90% of the data is class A and only 10% is
class B). This causes classification models to be high performing if a large majority of the
output from classification contains the dominant class. In this case, the F1 Score is a more
appropriate metric to account for class imbalances.

5.1.3. Key Consideration 3: Potential Solutions

When the spatial problems and associated metrics are defined, potential solutions to
match these problems and metrics can be determined. The spatial problems and metrics
create a structured goal for AutoML approaches to reach, where the potential solutions
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are often possible models or algorithms for AutoML methods to select from. The potential
solutions need to accept input spatial data relevant to the defined spatial problems, while
allowing the chosen metrics to measure outputs in a manner that is comparable across
different potential solutions. Thus, a few considerations for potential solutions include
[104,160,161]:

• Data Size: how large or small the data are
• Interpretability: whether the potential solutions need to be interpreted or simply

produce outputs to be used (e.g. identifying important variables versus prediction
performance)

• Resource Constraints: time, computation, and expertise constraints (e.g. runtime of
models, training to interpret results)

• Update Frequency: how often potential solutions need to be re-evaluated (e.g. new
input data, new model/algorithm adjustments)

Similar to choosing metrics, the potential solutions generally have their own caveats
and advantages [162]. For example, the performance of neural networks are reliant on
the design of the neural architecture [146], while unsupervised models tend to perform
better on larger datasets [161]. However, the difference between determining potential
solutions and metrics is that, given the appropriate metric and adequate computing power,
a comphrehensive search space can be defined and the choice of potential solutions become
more flexible [163]. In more complex cases, potential solutions may also be allowed to be
combined to form new potential solutions [164].

5.2. Implementation Challenges
5.2.1. Data Quality

SDSS and AutoML rely on data for producing models to generate useful information.
Data quality is an important factor in modelling as it determines whether the data are
appropriate for SDSS purposes or AutoML modelling. Data contains noise [12] (e.g. errors,
incompleteness), varying level of detail [165] (e.g. aggregate, scale), and risks [166] (e.g.
misuse, ethics). As about 60% of the time is spent on data preparation [8], the challenge is
to distribute resources to ensure that the data used is diverse (e.g. inclusive, transparent),
representative (e.g. adequate coverage and detail), and reliable (e.g. minimal errors) for the
intended purposes over time [23].

5.2.2. Model Interpretability

Predictions or actions from models are eventually explained to non-technical users in
decision making (e.g. clients, society), which improves trust, transparency, and fairness
[67]. Many reviewed AutoML studies measure model performance, but often do not
focus on interpretability — why models perform better/worse or take certain actions
[12,23]. Models in reviewed SDSS studies consider interpretability, but are often too
complex for decision makers to use or communicate to stakeholders [21]. Improving
interpretability leads to higher user adoption due to trust and useful knowledge from better
communication. Another challenge is to balance available resources, model performance,
and model interpretability to particular spatial problems.

5.2.3. Evidence of Usefulness

Evidence of usefulness is often not focused on in the reviewed SDSS and AutoML
studies. Without measures/examinations of usefulness, it is difficult to prove the added
value of SDSS or AutoML in practice. This lead to issues such as difficulty differentiating
SDSS implementations [6], low SDSS user adoption [16], inconsistent AutoML performance
[? ], and non-reusable AutoML models [64]. An important challenge is to design methods
to measure practical success by examining the utility of SDSS/AutoML implementations
to real world decisions — evaluating not only performance, but how SDSS with AutoML
directly affect decision making.
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5.3. Research Opportunities

This section discusses research opportunities to address challenges in Section 5.2,
where each opportunity covers one or more of the challenges (Figure 9).

Implementation 
Challenge

Research 
Opportunity

Human-centered System Design

Collaborative & Connected Systems

Resource-aware Approaches

Spatial
AutoML

DATA QUALITY

EVIDENCE OF
USEFULNESS

MODEL
INTERPRETABILITY

Figure 9. SDSS with AutoML Research Opportunities and Implementation Challenges.

5.3.1. Spatial AutoML

Many common AutoML approaches in the reviewed studies do not consider spatial
data patterns when dealing with spatial problems. If spatial patterns exist in the data (e.g.
clustering and dispersion in space), then the assumption that observations are independent
of each other is violated and the data has spatial dependency [167]. Spatial strategies (e.g.
spatial sampling [168], localized models [169]) can be integrated into AutoML approaches
for potential performance or efficiency gains, while spatial parameter problems (e.g. select-
ing neighbours or distance bands [170]) can fit in many AutoML optimization methods.
One research opportunity involves incorporating spatially explicit approaches in AutoML
for SDSS to improve modelling performance/efficiency and reduce arbitrary parameter
selection without strongly affecting interpretability [22].

5.3.2. Resource-aware Approaches

As SDSS and AutoML use various modelling and visualization approaches, the re-
sources available (e.g. amount/quality of data, server processing power, data/domain
experts) determine whether an implementation is feasible and practical for its intended
purposes. In AutoML, the design of the search space (e.g. range of models/parameters)
and optimization stopping criteria (e.g. iteration limits, reaching desired performance) are
dependent on time tolerance, data available, and computing power [15]. Similarly, SDSS
are dependent on hardware and software resources, but also include human resources (e.g.
software developers, decision makers, consultants) that communicate and collaborate to de-
sign system features and purposes [36]. Another opportunity is to develop resource-aware
implementation approaches for SDSS with AutoML by balancing the available resources
and the desired results (e.g. data quality, model interpretability/performance).
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5.3.3. Collaborative and Connected Systems

Many SDSS are difficult to reuse due to being developed for specific domain purposes
[16], while AutoML models are difficult to reproduce due to varying search spaces and
optimization approaches [12]. Reusability/reproducibility problems hinder collaboration
and communication as SDSS implementations and AutoML models do not follow stan-
dards for comparability (e.g. benchmarks, performance, features) and transferability (e.g.
reuse for similar problems/different geographic area) [6,24,65,171]. Standardization of
SDSS implementations and AutoML models enable SDSS with AutoML to be more easily
compared/applied across various spatial problems [4], and shared across studies and
organizations [36]. These standards enable different SDSS with AutoML implementations
to be connected, which improves data and research transparency, availability, and interop-
erability (e.g. web platforms [172], programming interfaces [173], open data [38]). A third
opportunity involves developing interoperable standards to connect SDSS with AutoML
implementations in a network for sharing data/information/knowledge to reduce redun-
dancy and repetition, while improving useability and collaboration between stakeholders,
decision makers, and other actors.

5.3.4. Human-centered System Design

Usability and interpretability are often overlooked with SDSS and AutoML research
focusing on performance. When inputs and outputs are complex, barriers to translating
information for useful decision making knowledge hinder non-technical users (e.g. deci-
sion makers, stakeholders, policy makers) [174]. However, a tradeoff between simplicity
and accuracy exists, where improving the ease of use and transparency while minimizing
complexity is desired [36,175]. SDSS with AutoML also need to balance domain-specificity
(e.g. custom solutions tailored to a particular spatial problem) and adaptability (e.g. flexible
solutions applicable to a variety of spatial problems) [16]. A final opportunity is to strive
towards human-centered system design principles and co-design for SDSS with AutoML,
where careful considerations are made regarding user and spatial problem characteris-
tics, complexities, and interactions to enhance user adoption, experience, and practical
usefulness.

6. Conclusion

This paper examined recent research for SDSS with AutoML, which can lower technical
barriers and resource consumption to improve accessibility and adoption of SDSS for
decision makers. A general framework for SDSS with AutoML was proposed by identifying
and connecting general SDSS and AutoML components from select research papers, where
SDSS automatically processes data into information by solving spatial problems. Challenges
were discussed regarding data quality, model interpretability, and evidence of usefulness.
When implementing SDSS with AutoML, there is a distribution of available resources
to maintain data with adequate quality/quantity for decision making purposes, while
ensuring models and systems are interpretable, comparable, and perform well in practice.
Several research opportunities were also discussed to address these challenges. One
opportunity involves incorporating spatially explicit models, commonly used by SDSS, in
AutoML research to help optimize, standardize, and compare models used in SDSS. Other
opportunities involve developing standards, approaches, and principles for resource-aware,
collaborative/connected, and human-centered systems. These developments support the
goal of SDSS with AutoML, which is to aid decision making involving collaboration among
various actors and different resource settings. As human-related (e.g. interpretability,
usability, usefulness) and technical (e.g. reproducibility, reusability, comparability) issues
arise in recent SDSS and AutoML research, integrating SDSS with AutoML incorporates
technical aspects of AutoML (e.g. standardized pipelines/metrics) in SDSS research, while
also incorporating human-related considerations of SDSS (e.g. solution complexity, scenario
evaluation) in AutoML research. SDSS with AutoML not only helps improve SDSS user
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adoption, but mutually benefits SDSS and AutoML research by fostering approaches that
consider both human-related and technical issues.
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ABM Agent Based Modelling

AI Artificial Intelligence

AUC Area Under the ROC Curve

AutoML Automated Machine Learning

CA Cellular Automata

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DT Decision Trees

GA Genetic Algorithms

GIS Geographic Information Systems

GWR Geographically Weighted Regression

LISA Local Indicators of Spatial Association

LSTM Long Short Term Memory

MAE Mean Absolute Error

MCDA Multiple Criteria Decision Analysis

ML Machine Learning

MSE Mean Squared Error

NAS Neural Architecture Search

NB Naïve Bayes

NN Neural Networks

PSO Particle Swarm Optimization

PSS Planning Support Systems

RL Reinforcement Learning

RMSE Root Mean Square Error

SDSS Spatial Decision Support Systems

SSE Sum of Square Error

SVM Support Vector Machines

TPOT Tree-based Pipeline Optimization Tool
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