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Abstract: Detailed flow distributions in vascular systems are the key to identifying hemodynamic 

risk factors for the development and progression of vascular diseases. Although computational fluid 

dynamics (CFD) has been widely used in bioengineering research on hemodynamics predictions, 

not only are high-fidelity CFD simulations time-consuming and computing-expensive, but also not 

friendly to clinical applications due to the difficulty of comprehensive numerical calculations. 

Machine learning (ML) algorithums to estimate the flow field in vascular systems based on the 

angiographic images of the blood flow using existed diagnostic tools are emerging as a new 

pathway to facilitate the mapping of hemodynamics. In present work, the dye injection in a water 

flow was simulated as an analogy of the contrast perfusion in blood flow using CFD. In the 

simulation, the light passes through the flow field and generates projective images, as an analogy 

of  X-ray imaging. The simulations provide both the ground truth velocity field and the projective 

images of the flow with dye patterns. A rough velocity field was estimated using the optical flow 

method (OFM) based on projective images. ML algorithums are then trained using the ground truth 

CFD data and the OFM velocity estimation as the input. Finally, the interpretable (logistic 

regression) and deep (neural networks, convolutional neural networks, long short term memory) 

machine learning models are validated by using parallel in vitro experiments on the same flow 

setup. The validation results showed that the employed ML model significantly reduced the error 

rate from 53.5% to 2.5% in average for the v-velocity estimation. 

Keywords: machine learning (ML); convolutional neural networks (CNN); computational fluid 

dynamics (CFD); optical flow method (OFM); dye perfusion 

 

1. Introduction 

In developed countries, the leading causes of mortality and morbidity are diseases in 

the vascular system [1]. In recent years, blood flow/shear stress has gained a lot of interest 

as a complementary explanation for plaque formation [2,3], aneurysm initiation, growth, 

and rupture [4]. The role of blood flow in the development of atherosclerosis is based on 

the observation that vascular inflammation and plaques are distributed near side branches 

or arterials stenosis, where blood flow is non-uniform, and at the lesser curvature of bends 

where the blood flow rate is relatively low [5,6]. The effect of blood flow on the vessel wall 

is through shearing and stressing forces, which influences the behavior of endothelial 

cells, including morphological adaptations and physiological changes. 

The methods for estimation of wall shear stress (WSS) can be performed by acquiring 

three-dimensional (3D) reconstruction of vessel volume using either invasive modalities 

such as intravascular ultrasound and invasive coronary angiography, or less-invasive 

techniques, including computed tomography angiography and cardiac magnetic 

resonance angiography with the application of numerical methods to calculate flow 

within the reconstructed arterial model for solving fluid dynamics [7,8]. The numerical 

methods are known as computational fluid dynamics (CFD) techniques. 3D 
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reconstruction of the patient-specific vascular models with subsequent CFD simulations 

is being increasingly used to predict the nature of blood flow in the human vascular 

system [9-11].  

The merit of CFD lies in its efficiency and relatively low cost in the fully detailed flow 

simulation and in developing or optimizing fluid mechanical devices or system designs 

[12]. The governing equations of fluid dynamics, called the Navier-Stokes equations, can 

be computed to obtain the detailed flow field and pressure distribution. In order to 

simulate natural vascular blood flow, a domain of interest must be defined, and boundary 

conditions need to be specified. The isolation and generation of boundary conditions are 

among the most significant challenges in the integration of CFD for assessing the 

physiologic significance of artery disease [13]. However, (i) the reconstruction of the 

vascular model using the medical images, (ii) the accuracy of the reconstructed geometry, 

and further (iii) the computation resources required for computation still create barriers 

to the wide application of this methodology for clinical use. 

On the other hand, in vivo quantifying hemodynamics during the diagnostic imaging 

process has drawn interest in recent years. To determine hemodynamic characteristics, a 

high spatial resolution of the blood flow velocity distribution is needed, especially for 

quantifying the WSS. Medical professionals and researchers have used digital subtraction 

angiography (DSA) for estimating the blood flow velocity distribution using intensity-

based algorithms, such as the optical flow method (OFM) [14-18]. From the DSA images, 

the movement of the contrast pattern is calculated, representing the movement of the local 

blood flow. However, the accuracy suffers due to the method in which these images are 

acquired [19]. DSA images involve x-rays that transmit through the patient and produce 

a contrast projection onto the scintillator plane. The intensity variation is based on how 

much X-ray energy passes through the nonuniform medium, which results from varying 

attenuation through muscle, bone, soft tissue, blood, and contrast agent [20]. DSA images 

are generally acquired by transmitting light through a 3D domain and projected onto a 

2D image. Without isolating a 2D plane within the flow, the images are essentially 

integrated representations of the entire flow field. Therefore, an error is introduced into 

the calculations, especially when the measurements are inferred as measurements at the 

center plane of the domain [8]. 

Kawaji et al.[21], calculated blood velocity by determining displacement over 

consecutive images with a known elapsed time between frames. The uncertainty in the 

velocity profiles begin to increase when the end point becomes unclear, but for simple 

flows the relative error can be as low as 2.5% [21]. In our earlier work, Yang and Johnson 

[19] have conducted research with dye visualization specific to pulsatile flow through a 

tube, where OFM underestimated the center plane velocity by 16%-24% in the central 

region and by about 29%-43% in the outer region compared to PIV. To increase the 

accuracy of calculating the velocity distribution, this research proposes the use of machine 

learning to correct velocity measurements from OFM. 

Instead of using DSA images directly, we used Cradle CFD Software (Cradle Co., 

Ltd., Japan),  to simulate dye propagating through water, where the results were then 

used to generate a projection-based image similar to DSA. The pixel intensity was 

determined through a discretized form of the light attenuation equation or Beer-Lambert 

Law [22]. Since DSA images can subtract visible structures prior to contrast injection, such 

as bone and tissue, the simulation of dye in water is analogous to DSA images. Here the 

dye injection simulates the perfusion of iodine-contrast agent, and water simulates the 

blood flow. We recognize that water is a Newtonian fluid whereas blood is non-

Newtonian; however, this research is interested in the feasibility of machine learning (ML) 

algorithms to correct OFM results from projection-based images such as DSA. Choosing 

CFD to simulate the dye perfusion in water over experimental dye projection images is to 

easily obtain an accurate 3D velocity field for training the ML algorithms and allows error 

analysis of the OFM and predicted values. Additionally the simulation images avoid 

errors associated with experimental imaging process. Therefore, the error associated with 

the OFM estimation would be a result of the 3D compression effect onto a 2D image. A 
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three-step ML framework for flow field estimation is established as shown in Figure 1: 1) 

Simulate dye perfusion in a water flow, generate projective images, as well as provide the 

flow velocity estimation from OFM and the groundtruch velocity from CFD; 2) train ML 

models using the CFD and OFM data; and 3) validate the ML models using parallel in 

vitro experiments.  

 

Figure 1. Flow chart of the machine learning framework for velocity estimation on the dye 

perfusion. 

2. Materials and Methods 

2.1. CFD Simulated Data 

Cradle SC/Tetra 2021 (Software Cradle Co., Ltd., Japan) was used to simulate the dye 

injection into a laminar water flow to obtain the accurate 3D velocity field and obviate 

experimental uncertainties related to pixel intensity. The accurate velocity field from CFD 

serves as the ground truth for the supervised training of the ML model. The simulation 

was conducted within a 1 × 1 in square cross-sectional tube with a length of 1-inch with 

the dye inlet located in the center. To minimize computational costs, only a fourth of the 

domain was simulated therefore the simulation dimensions were 0.5 × 0.5 in by 1 in. For 

our experiments, water was used in the simulation, which reduces the continuity and 

momentum equations with the assumption of incompressible and Newtonian fluid. To 

capture the dye diffusion throughout the domain, the species equation was enabled. The 

governing equations can be written in tensor form as: 
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where �� represents the water/dye velocity, � is the density of water and dye which were 

identical to the measurements in the experiments, � is pressure, � is viscosity, �� is gravity, 

� is the dye concentration which is identified a scalar value 1.0 in the dye injection inlet, 

� is the dye diffusion coefficient. The coefficient of diffusion was set at 10-9 m2/s as the 

typical value for dye is between 10-10 and 10-9 m2/s [23]. A set of unstructured tetrahedral 

meshes was generated using the assembled meshing package in Cradle SC/Tetra 2021. A 

mesh independent study for the quarter model was conducted, and the final mesh with 

elements of 16,850,005 was adopted for the current study. The mesh size near the wall and 

in the dye injection region was refined with y+ < 1, where y+ is the dimensionless wall 

distance. 

Four different transient simulations were created where the dye concentration and 

pattern were varied for each simulation. The first simulation injected dye at a constant 

rate of 0.005 m/s with a dye radius of 0.37 mm initially and gradually increased the radius 
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throughout time until the radius reached 2.0 mm, which is the same situation as the 

parallel experiment. Second simulation had intermittent dye injections where dye was 

injected for 0.1 secs then stopped for 0.25 secs, and this process would repeat continuously 

with a period of 0.35 secs. The diameter of the dye was held constant at 2.0 mm for the 

second simulation. For the third simulation, the dye was injected intermittently in the 

same pattern as the second simulation, except the dye concentration was no longer 

uniform at the inlet. The distribution of the dye concentration was represented with a 

cosine function where the dye concentration at the center was 1.0, and near a radius of 2.0 

mm the concentration was 0.54. The fourth simulation involved a uniform dye 

concentration in the radial direction but varied in a sinusoidal pattern with time. The dye 

distribution equations are expressed for the third and fourth simulation, respectively, as 

�(�) = �� cos(��)                                      (4) 

�(�) = cos �
��

�
��              (5) 

In equation (4), � represents the dye concentration, �� represents a constant 

concentration value of ��= 1.00, � is the angular frequency of � = 500 1/m. Equation (5) 

provides the transient cosine wave for the dye concentration, where 
��

�
 provides a time 

period of 1.5 seconds and � is the time in seconds. These four variations were carried out 

to represent the impact of different perfusion patterns of the dye on the estimated velocity 

accuracy. Results from the simulation were exported either every 0.2 seconds or 0.3 

seconds (in reference to the simulation time), and additional results were exported 0.02 

seconds after the 0.2 or 0.3 second interval. This short time step was necessary for OFM to 

calculate the velocity between two successive images, as the nature of the OFM algorithm 

requires the movement of the pattern to be less than 1 pixel to maintain a decent accuracy. 

Overall, the four cases provided 106 exported result files which would lead to 106 image 

files or 53 data files after being analyzed with OFM.  

Light passing through the domain was simulated to generate projective images. This 

was accomplished with the Beer-Lambert law [22] which describes the amount of light 

attenuated through a medium. By solving for the light intensity, I, out of the medium, the 

overall projection image can be created by dividing the domain into multiple cells and 

performing successive calculations of the intensity. Note the variable z represents the 

direction parallel to the light beam and perpendicular to the flow diretion, μ represents 

the attenuation coefficient, and �� is the initial intensity prior to passing through the 

element,  
��

��
= −��                                                                          (6)  

� = �� exp(−� △ �)                                                                 (7)  
For example, if a single row of elements aligned in the z-direction encounters an 

initial light source, the first element will decrease the intensity based on the element’s 

attenuation coefficient (which is directly related to the dye concentration). The output 

intensity through the first element will then be used as the initial intensity for the second 

element. This process is continued until the light ray passes through all of the elements. 

Therefore, the intensity can be written in a discretized form as shown below.  

�� = ���� exp�−�� △ ���                                                     (8) 

Example of a projective image is shown below in Figure 2, where the darker regions 

represent locations where dye has attenuated light. The image resolution is 161x306 pixels. 
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Figure 2. Projective images from case 4 which was generated from CFD results by using the Beer-

Lambert law to simulate light passing through the domain. 

Once projective images were generated, OFM was applied to each image pair to 

calculate velocity vectors at each pixel. The governing equation for OFM is an expression 

of a brightness constraint, which assumes the intensities are constant from one image to 

the next.  

�� + � ∙ ∇� + �� ∙ � = �∇��            (9) 
Here the intensity of pixel is represented by Q (a matrix for the entire image), the 

velocity vector is given by V, and D is the diffusion coefficient. Additional details can be 

found in our previous paper [19]. 

Along with the u- and v-velocity components, the intensity gradients in the x- and y-

directions were also calculated. Since OFM calculates movement based on pixel 

intensities, the gradients are of importance as it provides insight into which vectors were 

calculated based on low or high intensity gradients. The velocity calculated from OFM is 

regarded as the test data while the CFD velocities are regarded as the ground truth data 

for the ML model. The CFD velocities were extracted from the center plane of the 

simulation as the goal is to improve the OFM results to better represent the velocities in 

the middle plane of the domain. Once these files were created they were then used as the 

training data for the ML algorithm. 423,093 simulated data points representing the flow 

velocity were generated for the current modeling. 

2.2. Experimental Data for Validation   

The data discussed above is generated based on CFD results, however the future 

application for this work is to apply this method directly to in vivo images such as DSA. 

Direct application to DSA images is not feasible currently because no method can 

accurately describe the flow field for validations. Therefore, an in vitro experiment 

analogous to DSA was created to obtain real images for testing the current method against 

accurate measurements from particle image velocimetry (PIV). Additionally, this 

provides insight into whether the ML algorithm is able to correct velocity values that incur 

error from the in vitro experiment such as non-uniform light intensity throughout the 

image domain. The experiment consists of a square vertical tube test section (with the 

same dimension as the counterpart used in the CFD simulation) with a water reservoir 

and contraction region directly above, as presented in Figure 3. This contraction region 

leads water from the reservoir to the test section through a gradual cross-sectional change 

to mitigate the inducing of turbulence. Downstream of the test section is a flow control 

valve that controls the speed of the flow when coupled with a constant water height in 

the water reservoir. A pump feeds water into the reservoir where a partition wall, which 

is slightly shorter than the reservoir walls, allows water to spill over into the adjacent 

reservoir to maintain a constant water level. Dye is injected in the center of the square tube 

through the guidance of a centering device to maintain consistent positioning during the 
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injection process. Finally, a convex lens is positioned one focal length away from the LED 

bulb, where the lens’ position is between the bulb and the test section, so light rays can 

transmit parallel through the test section thus mitigating non-uniform light intensity on 

the image.  

 

Figure 3. Schematic of the in vitro experiment with the contraction section, dye centering apparatus, 

and partitioning wall to maintain constant water level. 

In the in vitro experiment, the water is analogous to blood in DSA images and the dye 

provides contrast similar to the contrast agent injected in blood vessels. Also, the LED 

light is comparable to the x-ray source since both transmit through the domain and project 

contrast agent perfusion onto a 2D plane. A LaVision PIV system consisted of a Nd: Yag 

laser with a wavelength of 532 nm with a maximum pulse energy of 300 mJ, and a 

programmanble timing unit (PTU), and a 14 bit CCD camera with a resolution of 1392 × 

1040 pixel (66 × 49 mm) was employed to conduct the PIV measurements. The laser was 

shaped into a laser sheet of 1 mm in the measurement region to illuminat the flow field. 

The PTU synchronized the laser and the camera to obtain the particle images with a time 

delay of 33 ms between images. The flow was seeded with fluorescent red polyethylene 

microspheres with a diameter rangine from 10 to 45 ��. The fluorescent emission light 

from the partile has a wavelength of 610 nm. A long pass filter with a cut-off wavelength 

of 600 nm was mounted on the camera length to filter out the laser light and only leave 

the emission light passing through. This fluorescent imaing can effectively remove the 

light reflection noise from the wall. DaVis 8.0 was used to process the images to obtain 

1000 instantaneous velocity distributions with a frame rate of 30 Hz. A multi-pass cross 

correlation analysis was conducted in DaVis 8.0 with a 32 × 32 pixel interrogation region 

with 50% overlap, then a second pass with an 8 × 8 pixel window size with 50% overlap. 

The final velocity vector resolution is 5.2 vectors/mm. The uncertainty in the velocity 

measurements is estimated to be about 1% of the magnitude. A total of 5,071 flow velocity 

points for OFM velocity and PIV velocity were generated for evaluation of current ML 

algorithms. 

The CFD simulation of the velocity distribution is compared with the PIV 

measurements in the middle cut plane, as presented in Figure. 4. The overall difference in 

the velocity distribution between the CFD simulation and the PIV measurement is less 

than 5% of the velocity magnitude, which essentially validated the accuracy of the current 

simulation results. 
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(a) 

 
(b) 

Figure 4. Velocity distribution comparision in the middle plane of the tube: (a) CFD simulation; (b) 

PIV experiment. 

2.3. Machine Learning Models 

The following sections detail predicting the accurate velocity field with supervised 

neural network training. Three deep machine learning models with varying numbers of 

parameters and depths were tested. Regression is a predictive modeling task that involves 

predicting a numerical output given some input. It is different from classification tasks 

that involve predicting a class label. Typically, a regression task involves predicting a 

single numeric value. Although, some tasks require predicting more than one numeric 

value. These tasks are referred to as multiple-output regression or multi-output regression 

for short. In multi-output regression, two or more outputs are required for each input 

sample, and the outputs are required simultaneously. The assumption is that the outputs 

are a function of the inputs, and u- and v-components of the velocity are correlated. Since 

OFM calculates a velocity vector for every point in the image, even when the dye is not 

present (pseudo vectors were calculated in regions without dye), specific regions with the 

presence of dye were selected for the training and test data. The images generated were 

8-bit grayscale images where pixel intensity values are assigned between 0 and 255. The 

presence of dye in a pixel location decreases the intensity value for that location. Based on 

observation, pixel values of 80 or less (after considering the image noise) represent regions 

where dye is dominant and thus represent data points used in the training data or test 

data sets. This criterion was applied to all of the OFM output results, and each valid data 

point compiles into a single file. Multiple data points correspond with the same XY-

coordinates as a result of multiple time instances containing dye at that point. Therefore 

all of the duplicates except one are used for training, and the other duplicate was used in 

the test set. For instance, if the coordinate point (x, y) = (0.001, 0.0253) is near the dye inlet, 

then there were multiple OFM data sets that contain dye at that coordinate point. 

Assuming 10 duplicates, one data point was selected randomly for the test set while the 

remaining 9 points were compiled into the training data. This random selection provided 

unbiased data for the test set to determine if the ML algorithm was able to predict values 

accurately. 

2.3.1. LASSO Regression Model 

A multivariate (multi-input, multi-output) regression model with the L1 penalty was 

designed, commonly known as LASSO [24]. We selected this model since it achieves 

sparsity in the estimated model by setting the regression coefficients for features to zero 

for those features that don’t affect the output or target values. We treat this ML model as 

our baseline model. 

2.3.2. Multi Layer Perceptron Model 

A multilayer perceptron (MLP) model is defined for the multi-output regression task 

defined in the previous section. Each sample has 4 inputs and 2 outputs, therefore, the 

network requires an input layer that expects 4 inputs in the first hidden layer and 2 nodes 

in the output layer. The ReLU activation function was used in the hidden layer which has 
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32 nodes, chosen after some trial and error. The model was fitted using two loss functions 

and the Adam version of stochastic gradient descent. 

2.3.3. Convolutional Neural Networks (CNN) for Multi-Output Regression 

CNNs have proven great capability of learning important features from images at 

the pixel level in order to make useful predictions for both classification and regression 

problems [25]. Another advantage of this approach, compared to conventional fully-

connected layer networks, lies in the fact that convolutions provide weight-sharing and 

sparse connectivity. These properties enable more efficient memory usage to learn the 

necessary information needed to create a surrogate model. The surrogate model then 

reconstructs an approximation of the entire velocity field from a given set of boundary 

conditions. Standard CNN has several convolutional layers followed by fully-connected 

layers (layers where each hidden node is connected to every hidden node in the preceding 

and subsequent layer), ending with a classification softmax layer (that generates the final 

classification output). Adapting a classification CNN architecture to regression consists in 

removing the softmax layer and replacing it with a fully connected regression layer with 

linear or sigmoid activation. Linear activation means that the transfer function is a straight 

line. Thus the activation is proportional to the input and not confined to a specific range. 

Three convolutional layers were added with ReLU activation and a max pool layer after 

the first convolutional layer. 

2.3.4. Long Short-term Memory Model 

Long short-term memory (LSTM) is a type of Recurrent Neural Network (RNN), i.e. 

a multi-layer NN. The LSTM architecture was originally introduced by Hochreiter and 

Schmidhuber [26] with the purpose of overcoming the vanishing or exploding gradients 

problem. In a network of n hidden layers, n derivatives are multiplied together. If the 

derivatives are large then the gradient will increase exponentially as we propagate down 

the model until they eventually explode, known as the problem of exploding gradient. 

Alternatively, if the derivatives are small then the gradient will decrease exponentially as 

we propagate through the model until it eventually vanishes, known as the vanishing 

gradient problem. LSTM allows flowgates, i.e., the input gate, the forget gate, the control 

gate, and the output gate, as shown in Figure. 4. In Figure 4, the input gate, the forget gate, 

the control gate, and the output gate are denoted by ��, ��, ��, and �� , respectively. The 

details of these four gates are enlightened below.  

 

Figure 5. Structure of our Long-short-term memory (LSTM) cell at time t. 

The input gate, forget gate and control gate are expressed as:  

�� = �(�� ∗ [ℎ���, ��] + ��)                                                        (10) 
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�� = ���� ∗ [ℎ���, ��] + ���                                                       (11) 

 
                                     ��� = tanh(�� ∗ [ℎ���, ��] + ��)           (12) 
 

 �� = �� ∗ ���� + �� ∗ ���                                                   (13)          
The input gate decides which information can be transferred from the earlier cell to 

the current cell as shown in equation (10). The forget gate is defined by equation (11), and 

it is used to store the information from the input of previous memory or otherwise. The 

control gate controls the update of the cell and it is defined in equation (13). To update the 

hidden layer (ℎ���) and update the output, finally the output gate is used which is given 

by the following equation (14):  

 
�� = �(�� ∗ [ℎ���, ��] + ��) 

ℎ� = �� ∗ tanh(��)                                                       (14) 
In the above equations, �� is the input, � represents the corresponding weight matrix 

of input, �� is the corresponding bias of input, ���� is the previous block memory, ��  

represents the current block memory, ���  as shown in equation (12) is the vector of new 

candidate values updated with the tanh layer, ℎ��� represents the previous block output, 

ℎ� represents the current block output. Furthermore, tanh is the hyperbolic tangent 

function that is used to scale the values in the range of -1 to 1, and � is the sigmoid 

activation function, which gives the output between 0 and 1. We designed a sequential 

model containing LSTM layers with ReLU activations, a dense output layer,  and an Adam 

optimizer with two regression loss functions. We set the input dimension in the first layer 

and the output dimension in the last layer of the model followed by a regression layer. 

2.4. Loss Functions 

Conventional regression loss functions are metrics-inspired losses, namely the Mean 

Absolute Error (MAE), and Mean Squared Error (MSE), defined as  

 

��� =
�

�
∑ |�� − ��|�

���      (14)  

��� =
�

�
∑ (�� − ��)��

���                     (15)  

where predicted (resp. ground truth) values are denoted ��  (resp. ��). We report both the 

loss functions, as advocated in [27, 28]. The metrics to evaluate the results are Mean 

Absolute Error (MAE). We repeated 10-fold cross-validation with 10 folds and three 

repeats training the model with Adam optimizer. Models are implemented with Keras 

and PyTorch on NVIDIA Tesla T4 GPU. 

3. Results and Discussion 

In this section, the models discussed in providing efficient approximations of flow 

velocity were evaluated. In experiments, four regression models and two loss functions, 

the Mean Absolute Error (MAE), and the Mean Squared Error (MSE) were compared. 

Table 1 shows an average mean absolute error value across 10 runs of experiments. Hyper-

parameter optimization using gridsearch with a ten-cross-validation technique is applied 

to optimize the number of hidden layers, hidden neurons, and the batch size. The number 

of hidden layers is optimized ranging from 1 to 4 and the number of hidden neurons is 

optimized ranging from 4 to 20 with an increment of 2. The batch sizes used in parameter 

tuning are 32, 64, and 128. After applying hyper-parameter optimization, the best hyper-

parameters are obtained, there is one hidden layer with 10 hidden neurons, and the batch 

size is 32. A dropout rate of 0.02 is applied to avoid overfitting after the first hidden layer. 

Each of the MLP, CNN, and LSTM architectures were run for 100, 500, 1000, and 2000 

epochs. The best results were obtained with 100 epochs for MLP with an execution time 

of 4 mins per 10 epochs and 500 epochs for both CNN and LSTM, as with a higher number 

of epochs, the average performance got worse.  
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Table 1. Performance of regression models in terms of mean absolute error (mae) for two different 

loss functions: MSE, MAE. 

 LASSO MLP CNN LSTM 

Validation with simulated test data 

MAE 2e-4† 2e-4∗ 4e-4∗ 4e-4∗ 

MSE 3e-8† 5e-8∗ 7e-8† 8e-8∗ 

Validation with in vitro experimental data 

MAE 3e-3† 5e-4∗ 6e-4† 6e-4∗ 

MSE 5e-7† 4e-8∗ 5e-8∗ 8e-8† 

∗ indicates p-value < 0.01, † indicates p-value < 0.05 

Multiple regression algorithms were adopted to provide models capable of 

predicting the velocity field. The deep learning models (MLP, CNN, and LSTM) 

outperformed the baseline LASSO model. The hypothesis that the relationship between 

the 2D projection images and the initial and final velocity components can be represented 

as a multivariate regression problem with improved accuracy has been demonstrated in 

Table 1. Significant differences across the three deep learning models were not observed. 

All of the reported models were statistically significant with a p-value of <0.01 or 0.05. 

However, the MLP model was computationally less expensive and hence, a quantitative 

analysis of the results in comparison with the baseline OFM and with the standard CFD 

approach is presented in Figure 6 and Figure 7 for comparisons of both u- and v-

components velocity contours. The velocity distribution (both u-component and v-

component) can be used to analyze flow characteristics such as the wall shear stress, which 

is a key parameter in the study of the pathophysiology of vascular disease. 

 

Figure 6. U-contours of the CFD ground truth (left), OFM (middle), and predicted (right) results. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 September 2022                   doi:10.20944/preprints202209.0460.v1

https://doi.org/10.20944/preprints202209.0460.v1


 

 

Figure 7. V-contours of the CFD ground truth (left), OFM (middle), and predicted (right) results. 

As shown in Figure 6, the OFM results overestimated the u-component velocity in 

the central region of the domain, especially downstream, but OFM underestimated the 

flow between y = 0.005m and y = 0.01m. Despite these discrepancies in the u-contours 

between OFM and CFD, the predicted values were able to match the CFD values between 

y = 0.005m and 0.01m as well as further downstream. There is a discernible difference 

between the predicted and CFD at the dye inlet, where the predicted values overestimate 

near the centerline, which can be attributed by the overestimation from the OFM data. 

Discrepancies of the v-component velocity contours between OFM and CFD are 

illustrated in Figure 7, where OFM consistently underestimates the velocity especially 

downstream from y = 0.017m. However, the predicted values show similar contour 

patterns as the CFD contour for most of the regions except near the inlet. The predicted 

inlet has more of a “V-shape” whereas the CFD contour has more of a “U-shape” within 

the lower speed region due to the mixing effect between the dye and water.  

Furthermore, the velocity profiles at various locations of the flow field were extracted 

for comparison as shown in Figure 8. Near the inlet, at y = 1.66 mm, the v-component 

velocity profile for the MLP predictions has trouble to match the CFD results near x = ±0.7 

mm to x = ±1.5 mm, where the MLP predictions have “V-shape” in the contour as 

discussed earlier. Further downstream at y = 6.64 mm, the predicted velocity profile 

resembles the ground-truth velocity profile well with little discrepancies. These 

quantitative comparisons of the velocity profiles can be further examined with error 

analysis in Figure 9 showing a significant reduction in the  percentage of error with respect 

to the ground truth (CFD) for the v-component velocity. Error associated with the 

predicted values reach as high as 13%, near the inlet, and as low as 2% around y = 0.008 

m. It is interesting to observe that the error in OFM is lower at the inlet and increases 

further downstream, whereas the opposite is true for MLP predictions. The MLP 

predictions presented larger errors near the inlet as a result of larger variations in the OFM 

velocities caused by low intensity gradients near the inlet on the image. As the dye moving 

downstream, the MLP predictions can match the ground truth well. The averaged V-error 

of about 53.5% in the velocity estimation with OFM has been significantly reduced to 2.5% 

in average by the current MLP predicitons. The current pilot study is focusing on 

prediction of the velocity distributions. Future studies related to the wall shear stress 

predicitons would focus on the local velocity gradient accuracies, especially near the wall. 

The current ML model development focused on the 2D velocity map prediction, which 

limits its use for the complicated 3D flow environment, such as the blood flow in an 

aneurysm. Another limit is the current model can only predict the velocity, but another 

important flow information, pressure in the flow field, cannot be predicted. We plan to 

encode the Navier-Stokes equation into the modeling as recently proposed by Raissi et al 

[29], as well as extend the current model to predict the 3D flow feature in the future study. 
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Figure 8. Velocity Vector fields comparison of the in-silico results at various Y locations: (a) Y = 

0.00083 m; (b) Y = 0.00166 m; (c) Y = 0.00332 m; (d) Y = 0.00498 m; (e) Y = 0.00664 m; (f) Y = 0.00830 

m; (g) Y = 0.00996 m; (h) Y = 0.01162 m; (i) Y = 0.01328 m. 
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Figure 9. Percentage error of OFM estimation and MLP predicted results for v-component velocity 

with respect to the ground truth data at various Y-locations. 

4. Conclusions 

In this study, the flow velocity estimation as a multi-output regression problem was 

performed. The performance of four machine learning models using simulated images as 

well as in vitro experimental images were evaluated. Results showed that the performance 

of all the neural network architectures (MLP, CNN, and LSTM) is comparable. However, 

the MLP model is significantly less computationally intensive as compared to the deep 

learning counterparts. The LSTM model has the longest computation time and the best 

performance compared to CNN and MLP. Both MLP and LSTM models can be used to 

automate the flow velocity estimation depending on the task and taking into account the 

cost for computation.  

The following summarizes the main contributions of this paper:  

1. We presented an analysis that ML algorithms are able to correct OFM results from 

projection-based images  significantly reducing the error rate.  

2. We extended the literature by considering the interaction of u- and v-components 

velocity with the intensity gradients on the image in both x- and y-directions.  

3. We released the data and code used in this work for reproducibility and further 

research in this direction. 

Supplementary Materials: Figure S1: title; Table S1: title; Video S1: title. 
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