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Abstract

Mechanistic models have been used for centuries to describe complex interconnected processes, includ-
ing biological ones. As the scope of these models has widened, so have their computational
demands. This complexity can limit their suitability when running many simulations or when real-time
results are required. Surrogate machine learning models can be used to approximate the behaviour of
complex mech-anistic models, and once built, their computational demands are several orders of
magnitude lower. This paper provides an overview of the relevant literature, both from an
applicability and a theoretical per-spective. For the latter, the paper focuses on the design and training
of the underlying machine learning models. Application-wise, we show how machine learning
surrogates have been used to approximate dif-ferent mechanistic models. We present a perspective on
how these approaches can be applied to models representing biological processes with potential
industrial applications (e.g., metabolism and whole-cell modelling) and show why surrogate machine
learning models may hold the key to making the simulation of complex biological models possible using
a typical desktop computer.
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1 Introduction

Mathematical mechanistic models have been used for centuries to understand and represent the natural
laws that shape the world around us. Initially, the focus was on modelling specific phenomena and
the mechanics underpinning them. Later, the direction shifted to combining and improving models such
that
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they could better represent more complex and inter-connected processes (Fuller et al., 2020; Caputo et al.,
2019). As these mathematical models mimic reality more closely, they also become increasingly complex.
This brings a number of challenges, among which their computational demand is one of the most pressing
ones. Simulations of complex mechanistic models can take hours or days to run, making them unfeasible
for real-time decision-making or sensitivity analysis. This can make users reluctant to utilise them, despite
their predictive power.

Here, we show how the high computational demand of some mechanistic models can be alleviated by
using machine learning (ML) surrogates as a proxy. ML surrogates, also known as emulators or metamod-
els, are simple models that approximate the behaviour of a mechanistic one. The process of training and
using an ML surrogate is shown in Figure 1. To create a surrogate, it is necessary to decide what output
needs to be predicted and which inputs of the mechanistic model will be varied. Based on this, several
simulations of the mechanistic model can then be run to create input-output pairs for training the ML
model. In terms of the computational demand, the speed of the training phase relies on the ML model
used and the number of iterations needed to obtain satisfactory accuracy. Once trained, a surrogate can
be used in all future simulations, since getting ML predictions is typically faster compared to simulating
the original mechanistic model.

Model 
output

y=m̂(X)

Machine learning model (m̂)

Input data 
(Xinit)

Mathematical/mechanistic 
model (m)

(Parameters and/or 
initial conditions)
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Input data 
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Figure 1: Schematic representation for training and using an ML-based surrogate model. The mechanistic
model is simulated (the top process connected by red arrows) to obtain the input-output pairs that are
used to train the ML surrogate. This training stage (the middle process connected by orange arrows) is an
average process in terms of speed. Its complexity will depend on the ML algorithm used, the complexity of
the data pre-processing steps and the training iterations needed to obtain a satisfactory accuracy. Once this
is achieved, the ML model can be used for all future predictions, effectively approximating the mechanistic
model while running several orders of magnitude faster. This final (fast) process is represented by the
green arrows at the bottom of the figure.
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The improvement in computational speed that ML surrogate models achieve is particularly useful when
predictions are needed in real-time (Liang et al., 2018a; Dabiri et al., 2019; Stolfi and Castiglione, 2021)
or when large numbers of simulations have to be run, for instance, to explore a model’s parameter space
(Davies et al., 2019; Noè et al., 2019). It is important to acknowledge that simplified models can also
lead to further improvements of the original ones. For example, different types of surrogate models have
been used in the literature to analyse the uncertainty in the structure and the predictions of mechanistic
models (Doherty and Christensen, 2011; Matott and Rabideau, 2008). Also, while building the surrogate,
it is possible to gain further understanding of the model’s relationship between inputs, parameters and
outputs, discovering for example insensitive parameters (Young and Ratto, 2011).

Biological processes such as gene expression (Ay and Arnosti, 2011; Rué and Garcia-Ojalvo, 2013),
metabolism (Gombert and Nielsen, 2000; Gu et al., 2019), signalling (Bray et al., 1998), cell growth (Shu
and Shuler, 1989), and the cell cycle (Goldbeter, 1991; Tyson, 1991) have been modelled mechanistically
for decades. It is possible to split biological mechanistic models into two paradigms. The first one classi-
fies them by scale (Motta and Pappalardo, 2013); considering the cell as the ‘unit’ for measurement, it is
possible to create models at the sub-cellular, cellular or macroscopic level. Sub-cellular models describe
the evolution of individual physical and biochemical states of a cell (Helms, 2018). Cellular-level mod-
els describe the interactions among different molecules and processes within cells, and macroscopic-level
models describe processes involved in groups of cells (Motta and Pappalardo, 2013). The second paradigm
classifies biological models based on the mathematical formalism that they use (Soheilypour and Mofrad,
2018). Biological processes are commonly modelled using Ordinary Differential Equations (ODEs) (Wong
et al., 2011; Lee et al., 2010; Yi et al., 2003), Partial Differential Equations (PDEs) (Cao et al., 2016;
Yi et al., 2007; Cootes et al., 1995), Agent-Based Modelling (An et al., 2017; Soheilypour and Mofrad,
2018), cellular automata (Ermentrout and Edelstein-Keshet, 1993; Xu et al., 2007), stoichiometric ma-
trices (Smolders et al., 1994; Taymaz-Nikerel et al., 2010), stochastic techniques (for example stochastic
differential equations, SDEs) (Lee et al., 2010), or rule-based methods (Hwang et al., 2009). Details of
each modelling approach are addressed by Motta and Pappalardo (2013) and Soheilypour and Mofrad
(2018).

The main aim of this review is to bridge the gap between computationally demanding mechanistic
models that describe biological systems at different cellular levels and the potential use of ML surrogates.
First, in section 2, we will review the performance of different ML-based surrogate models, while analysing
their advantages and disadvantages when applied to ODE, SDE and PDE-based mechanistic models (Lu
and Ricciuto, 2019; Lu et al., 2018; Gong et al., 2015). Then, in section 3, we will discuss the benefits of
using surrogate ML models in general, their limitations and the future avenues for improving these models
and making them more usable by scientists from different fields and communities. Finally, in section 4, we
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will present how ML surrogate models can be relevant to approximate mechanistic models in the context
of biotechnological industrial applications.

2 Machine learning as a surrogate in systems biology

ML-based surrogates were used to approximate mechanistic models of biological systems based on ODEs,
SDEs (Wang et al., 2019; Renardy et al., 2018) and PDEs (Davies et al., 2019; Noè et al., 2019; Longobardi
et al., 2020; Liu et al., 2019; Noè et al., 2016). These applications will be summarised below, focusing
on the methodology and results of each study. Table 1 presents a summary of the surrogate ML models
used for biological applications and their performance relative to the original mechanistic model they
approximate. An overview of relevant methodological studies that apply ML-based surrogate modelling to
mechanistic models from other engineering disciplines is presented in Table 2. The details of how these
results were obtained are explained in the following paragraphs of this section.

Original model description Surrogate algorithm Surrogate accuracy Improvement in
computational time

Reference

SDE model of the MYC/E2F pathway
(Wong et al., 2011; Lee et al., 2010).

LSTM R2 0.925-0.998 - (Wang et al.,
2019)

Heterotrimetric G-protein of budding
yeast (Yi et al., 2003).

Orthogonal polynomial basis
from the generalized polynomial
chaos (gPC).

MAE 2.5 x 10−2 20% reduction in CPU
time.

(Renardy et al.,
2018)

Pattern formation in E. coli (Cao et al.,
2016).

LSTM. R2 0.987-0.99 30,000 fold accelera-
tion.

(Wang et al.,
2019)

Pheromone-induced cell polarization
in Budding yeast (Yi et al., 2007).

Orthogonal polynomial basis
from the generalized polynomial
chaos.

MAE 0.14 180-fold reduction. (Renardy et al.,
2018)

Statistical model for aorta shapes
(Cootes et al., 1995; Heimann and
Meinzer, 2009; Liang et al., 2017).

PCA, Bidirectional neural net-
work, Feedforward neural net-
work.

Avg. MAE 0.533 mm 4 orders of magni-
tude.

(Liang et al.,
2018b)

Risk for ascending aortic aneurysm
(Liang et al., 2017).

PCA, Bidirectional neural net-
work, Feedforward neural net-
work.

Avg. MAE: 1.366 KPa 4 orders of magni-
tude.

(Liang et al.,
2018a)

Stress analysis of arterial walls under
atherosclerosis (Madani et al., 2019).

Feedforward neural network. Test error 9.86% - (Madani et al.,
2019)

Normal left ventricle (Dabiri et al.,
2018; Baillargeon et al., 2015; Sack
et al., 2018).

XGBoost or Cubist. MAE for volume 1.495, MAE for
pressure 1.544

2-3 orders of magni-
tude.

(Dabiri et al.,
2019)

Human left ventricle model (Davies
et al., 2019; Wang et al., 2013; Gao
et al., 2015).

Gaussian process. MSE 0.0001 3 orders of magni-
tude.

(Davies et al.,
2019)

Human left ventricle (Wang et al.,
2013; Gao et al., 2014).

K-Nearest Neighbour, XGBoost,
Multilayer Perceptron.

R2 0.999 (for the XGBoost and
Multilayer Perceptron).

3-4 orders of magni-
tude.

(Cai et al.,
2021)

Physiology models: Small and Hum-
Mod (Hester et al., 2011).

SVM regression. Average error for Small:
0.05±2.47 and for HumMod:
-0.3 +/- 3.94.

6 orders of magni-
tude.

(Pruett and
Hester, 2016)

Table 1: Summary of the performance and methodologies of the ML surrogates of the systems biology models
described in Section 2. The accuracy of the models is reported in terms of Mean Average Error (MAE), Mean
Squared Error (MSE), coefficient of determination (R2) and average error.

2.1 ML surrogates of ODE and SDE systems

Dynamical systems that evolve only in one dimension are usually modelled using ODEs or SDEs. ML surro-
gates were successfully applied to approximate systems biology models based on both types of techniques.
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Original model description Surrogate algorithm Surrogate accuracy Improvement in
computational
time

Reference

Simplified land model in the Energy
Exascale Earth System Model (Lu and
Ricciuto, 2019)

Singular value decomposi-
tion and neural network

MSE loss: 0.02 3-4 orders of mag-
nitude

(Lu and Ricci-
uto, 2019)

Stochastic analysis of time-dependent
PDEs solved using Monte Carlo
method (Nikolopoulos et al., 2022)

Convolutional autoencoder
and feed forward neural net-
work

MSE loss: 0.03 81 times (Nikolopoulos
et al., 2022)

Table 2: Summary of the performance and methodologies of the ML surrogate models that describe engi-
neering processes with methodologies that can be extended to surrogates of biological models. Accuracy
is reported as Mean Squared Error (MSE).

For example, Renardy et al. (2018) built a surrogate based on an orthogonal polynomial basis from the
generalised polynomial chaos (gPC) using the least square approximation for the heterotrimeric G-protein
cycle of budding yeast. Once trained, the surrogate was used to compare its outputs to experimental data,
with results showing high consistency between the two, a mean absolute error (MAE) of 2.5 ∗ 10−2, as
well as a 20% reduction in CPU time. The authors noted that this speed-up in computational time might
not be high enough to balance the time invested in building the surrogate, suggesting that it is important
to approximate a priori the expected improvements in computational time that a surrogate might bring.

Wang et al. (2019) used a surrogate model based on a Long Short-Term Memory (LSTM) deep neural
network to replicate the behaviour of an SDEs model describing the MYC transduction pathways with
E2F regulator (MYC/E2F) in cell-cycle progression. Apart from the high accuracy of the surrogate model
and the improvement in computational time (Table 1), this analysis shows how surrogate ML models
can be used to replicate stochastic systems. Although different runs of the mechanistic model using the
same parameters will produce different concentration levels for each molecule, the distribution of these
concentrations is deterministic for a sufficiently large number of runs. This suggests that each combination
of parameters leads to a unique distribution for each molecule, corresponding to the spatial output of the
SDE model, which can be predicted by the surrogate neural network.

2.2 ML surrogates of PDE systems

Complex dynamical systems that evolve in two or more dimensions are often modelled using PDEs. Tra-
ditionally, these models are solved numerically using Finite Element Analysis (FEA) methods (Segerlind,
1991). In this section, we will review the applicability of ML surrogates to mathematical models described
by PDEs for molecular biology processes (Wang et al., 2019; Renardy et al., 2018) and biomedical systems
(Noè et al., 2019; Davies et al., 2019; Cai et al., 2021; Di Achille et al., 2018; Longobardi et al., 2020; Noè
et al., 2016).
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2.2.1 Applications in molecular biology

In molecular biology, surrogate models based on LSTM neural networks (Hochreiter and Schmidhuber,
1997; Wang et al., 2019) were built to predict pattern formation in E.coli programmed by a synthetic gene
circuit (Cao et al., 2016) represented as the spatial distribution of different molecules. The LSTM took as
input the parameters of the mechanistic model and was trained to predict two outputs: the logarithm of
the peak value of the profile of different molecules and their normalised profile. The authors reported a
30,000-fold computational acceleration (Wang et al., 2019), the LSTM being successfully used to identify
new patterns by screening 108 parameter sets in 12 days (compared to thousands of years which is how
long it would have taken for the PDE model to achieve this). To improve the robustness of the ML model,
the authors also proposed a reliability metric based on a voting system across different neural networks
trained in parallel. This was an important addition to surrogate modelling that can prove particularly
useful since in the cases when the surrogate is uncertain about a prediction, the mechanistic model can
be run.

Renardy et al. (2018) presented a technique based on polynomial surrogates using a Legendre poly-
nomial basis that was applied to a spatial model of pheromone-induced cell polarization of budding yeast.
Once the polynomial surrogate was fit, it was used to compute parameter sensitivities and perform rapid
Bayesian parameter inference. Using the surrogate, it was possible to run simulations that would take
approximately 200 years to run using the mechanistic model. Furthermore, the surrogate facilitated the
convergence for the distribution of 15 parameters in only a few hours using Bayesian inference.

2.2.2 Applications in organ modelling and physiology

Biomedical engineering is a field where surrogate models have been built extensively over the past decade,
with a particular focus on biophysical models of the heart. Modelling myocardial properties that can help
in making real-time clinical decisions could contribute to understanding and treating heart diseases (Gao
et al., 2017). Several mathematical models of the myocardium could be used for these aims. However,
most are restricted by their high computational demand. Several studies suggest that these limitations can
be addressed by implementing surrogate models based on different ML algorithms (Liang et al., 2018b,a;
Madani et al., 2019; Dabiri et al., 2019; Longobardi et al., 2020; Noè et al., 2019; Cai et al., 2021; Di Achille
et al., 2018; Noè et al., 2016).

For example, Liang et al. (2018b) built a ML surrogate of the FEA method to estimate the zero-pressure
geometry of the human thoracic aorta. The input (i.e. a pair of shapes) and output were first encoded
as a set of scalars using Principal Component Analysis (PCA). Then, the non-linear mapping between the
encoded input and output was performed using a feed-forward fully connected neural network. Lastly, the
output was decoded again using PCA. It was shown that ML surrogates could enable real-time applications
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of the model, with prediction time under one second and an average mean absolute error of 0.533 mm.
A similar approach was used by Liang et al. (2018a), the main difference being that here the model takes
one shape as input, whilst Liang et al. (2018b) used a pair of inputs for the ML pipeline.

Two deep learning approaches were tested to predict the point-wise distribution of stress on the arterial
walls under atherosclerosis in (Madani et al., 2019). The inputs of the surrogate model were parameters
describing the geometry and arterial pressure, and the outputs were point-wise stress distributions. The
performance of a feed-forward neural network was compared against that of a convolutional neural net-
work, with the first outperforming the second. Similarly to other studies (Dabiri et al., 2019; Longobardi
et al., 2020), the authors performed a features’ importance analysis by adjusting one input feature at a
time and studying the impact of these changes on the accuracy of the deep learning model. This approach
revealed expected correlations between arterial pressure and stress, but also less obvious ones such as the
fact that lipid pool information had more impact on maximum stress compared to calcium deposits. This
suggests that, besides their predictive power, ML surrogates can also unravel some dynamics of the system
that have not been studied previously.

Cai et al. (2021) also used simulations of the LV diastolic filling with the aim of estimating model
parameters. Features were first projected into a lower dimensional space, and three different ML models
(K-nearest neighbour, XGBoost and a multilayer perceptron) were tested to assess how well they learn
the pressure-volume and pressure-strain relationships. The computational cost of simulations is reduced
by 3-4 orders of magnitude when using the ML surrogate. Davies et al. (2019) used two interpolation
methods and two loss functions to estimate the material properties of a healthy volunteer’s left ventricle
using only non-invasive data. Minimizing the loss between the biomechanical model’s output and the
emulator produced an estimate of the unknown parameters that have to be fitted. Two loss functions were
used: the Euclidean loss function which assumes that the outputs are independent, and the Mahalanobis
distance-based loss function which allows for correlation across outputs. The best results were achieved
by the emulation of the output of the biomechanical model using local Gaussian Process interpolation and
the Euclidean loss function. The reported mean square error (MSE) was 0.0001, and the computational
time was reduced by approximately three orders of magnitude, from weeks to a quarter of an hour.

Another proof-of-concept for the usability of surrogate modelling assessed the applicability of ML mod-
els to emulate two physiology mathematical models, Small and HumMod (Pruett and Hester, 2016; Hester
et al., 2011). Support Vector Machine (SVM) regression models were used to map the parameter samples
to the drop in mean arterial pressure. The accuracy of these surrogates was calculated with respect to
the drop in mean arterial pressure observed after running the original mathematical model. Further error
analysis showed that there was no significant difference between the performance of the MLmodel and the
mechanistic one. The authors also compared the time complexity of the two approaches and showed that
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the ML model could make predictions approximately six orders of magnitude faster than both dynamical
models.

Besides the improvements in computational demand, the studies presented in this section also address
other important modelling aspects such as building surrogates of stochastic models, implementing reliabil-
ity metrics (Wang et al., 2019), performing parameter sensitivity and inference (Renardy et al., 2018) and
analysing feature importance (Madani et al., 2019). Furthermore, since biological systems are often high
dimensional, dimensionality reduction is another important modelling aspect that has been combined with
surrogate-based ML models in studies describing both biological(Liang et al., 2018b,a; Cai et al., 2021)
and other engineering systems (Lu and Ricciuto, 2019; Nikolopoulos et al., 2022).

The studies above show that there is no consensus regarding the best ML algorithms to use. Based
on the results from Tables 1 and 2 we see that neural networks and decision tree-based methods perform
very well. However, they need a significant amount of data to be trained, meaning that more simulations
of the mechanistic model need to be run. On the other hand, algorithms such as Gaussian Processes have
the advantage of higher interpretability and the capacity to estimate the uncertainty in the predictions.
Therefore, choosing the right algorithm remains at the latitude of the user based on the problem to be
solved, data availability and the mechanistic model to be emulated. To help with such decisions, in Section
3 wewill review some technical aspects that can help the creators of ML-based surrogates to design optimal
models.

3 Building, training and using ML surrogates

Each of the studies presented in Section 2 has its own set of limitations. Some of these are domain-specific
and rely heavily on the knowledge of domain experts. For example, some methods cannot be used in a
clinical setting yet because they were only trained on myocardial models coming from a patient with spe-
cific characteristics, and hence they do not include inter-patient variability. Other limitations and design
matters are more general, being common across surrogate models, regardless of their application area.
These technical aspects addressing the design and training of machine learning surrogates are discussed
below.

3.1 Active learning

Given that surrogates are built to avoid running expensive simulations many times, it is important to
minimise the number of simulations needed to train the ML model while keeping them as informative
as possible. In active learning, a model can choose the data that it will learn from next, based on the
information it gained from previous training examples. A summary of the process combining surrogate
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modelling and active learning is explained in Figure 2. Active learning has been applied together with
surrogate models in a few engineering studies, where the original mechanistic models were based on PDEs
(Pestourie et al., 2020; Lye et al., 2021). Pestourie et al. (2020) built a neural network-based surrogate for
the PDE model representing the Maxwell equations for composite materials, and used an active learning
algorithm that selects new training points from the parameter space where the estimated model error was
higher. This error was recalculated after the training set was updated with new data obtained by running
the simulations using the mechanistic model. The active learning approach was compared to a baseline,
where the training set was randomly sampled from the mechanistic model’s parameter space. The active
learning surrogate matched the numerical integration result more closely, using one order of magnitude
less training data compared to the surrogate trained on randomly sampled points.

ACTIVE LEARNING

SURROGATE MODELLING

Input data
(X, y)

Output data
(ypred)

Error (y-ypred)

Machine learning

Explore the error and the 
unlabeled data to select the 

most informative data to label 
next (X’)

Run the simulations using the 
mechanistic model to obtain the 

labels for X’

Input-output 
pairs (X’, y’)

Initial input 
data

(Xinit, yinit)

Figure 2: Schematic representation of how active learning and ML surrogates can work together. Initially,
a ML model is trained on a set of data generated by some initial simulations of a mechanistic model (Xinit,
yinit), which are equivalent to (X, y) for this initial step. The MLmodel is used to make predictions (ypred).
The estimated error between the prediction of the mechanistic model (y) and that of the ML model (ypred)
is used to select a subset from all the possible input data that hasn’t been used to make predictions using
the mechanistic model in the past (X’). The mechanistic model is run using X’ as input to obtain a new
set of input-output pairs (X, y), equivalent to the newly generated (X ′, y′), that when included in the ML
process are expected to reduce the estimated error (y − ypred).

Lye et al. (2021) used deep learning surrogates and active learning to solve the constrained optimi-
sation problem of three systems: optimal control problem for a nonlinear ODE, parameter identification
for the heat equation, and shape optimisation of airfoils subject to the Euler equations. The algorithm
presented is called Iterative Surrogate Model Optimization (ISMO), where a deep neural network queries
a standard optimisation algorithm, quasi-Newton approximation, to provide training examples that will
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minimise its error. The ISMO algorithm outperformed the purely deep neural network surrogate in terms
of error decay and robustness to parameter change and the standard optimisation algorithm for aerody-
namic shape optimisation by more than an order of magnitude (Lye et al., 2021). Balaprakash et al. (2013)
presented strategies for building surrogate models with active learning using iterative parallel computa-
tions on single-core, multi-core and multi-node architectures. Understanding how this can be done can
further speed up the modelling process.

3.2 Designing the ML model

ML-based surrogates could outperform the mechanistic model that was used to train them when tested
against experimental observations. This effect can be further enhanced if simulated data is combined with
experimental one to train the ML-based surrogate. To the best of our knowledge, this has not been done
before. However, augmenting experimental data with a simulated one coming from a mechanistic model
was done by Costello and Martin (2018), and in the training phase, this had a positive impact on the
model’s performance.

Another constraint comes from the fact that often the surrogate might not be able to make predictions
for all the outputs of a high-dimensional mechanistic model. However, depending on the size of these
outputs, it is possible to train multi-output models, which use the same input variables to predict several
outputs. The feasibility of this approach depends on the dimensionality of the mechanistic model. Xu et al.
(2019) reviewed different methods and challenges regarding multi-output ML approaches. The survey
focused on assessing the algorithms based on volume, velocity, variety and veracity, all being important
characteristics of models of biological systems. Another approach to address the high dimensionality
of mechanistic models’ outputs has been to apply dimensionality reduction techniques to them (Lu and
Ricciuto, 2019; Nikolopoulos et al., 2022; Cai et al., 2021).

Since most of the mechanistic models presented here describe the dynamics of systems, it is expected
that an increasing number of future models will be based on time-series data. With the rise of computer
power and deep learning techniques, there has been a lot of progress in the field of time-series analysis
and prediction. Several reviews have been published recently to outline the state of the art when it comes
to time-series forecasting algorithms (Tealab, 2018; Torres et al., 2021; Deb et al., 2017) and time-series
classification algorithms (Bagnall et al., 2017; Ruiz et al., 2021; Fawaz et al., 2019), some with the aim
to make them interpretable (Assaf and Schumann, 2019; Selvaraju et al., 2017; Nguyen et al., 2020).

3.3 Model usability

To train the ML surrogates, the user needs to be able to run the mechanistic model and train an ML model.
Depending on the usability of the original model, its complexity and the user’s knowledge regarding ML,
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this could take more time than running the computationally expensive mechanistic model (Renardy et al.,
2018). This suggests that it would be highly beneficial to include a reproducibility metric as part of
surrogate modelling studies. For the initial training of the surrogate model to be as efficient as possible,
the mechanistic models should be easy to use when it comes to running the simulations for creating the
input-output pairs needed for the surrogate. We believe this should already be the case formost models, but
we want to emphasize the need for clear instructions on how simulations should be run under different
conditions. Furthermore, the training of the ML model should be accessible to non-experts. Once the
training data is available, this is already possible using tools such as AutoML (Guyon et al., 2019) or TPOT
(Olson et al., 2016a,b; Le et al., 2020).

The other important aspect that needs to be addressed when we discuss usability and reproducibility
is how easy it is to deploy the already built surrogate, to re-train it or to slightly modify its scope. We
believe that as surrogate modelling begins to be widely used and becomes part of experimental or clinical
pipelines, it is important to think about its tunability. To address this, it is important that the code used
to build the surrogates is publicly available, well structured and the ML pipeline is presented clearly.

It is also important to consider why surrogate ML models are able to predict the dynamics and state
of different systems. This is particularly interesting since in the past 50 years the research community has
focused on building mechanistic models rather than ML-based models. We believe that it is expected for
the ML surrogates to work when approximating a deterministic non-linear mechanistic model, especially
when given sufficient training data. The modern machine/deep learning algorithms running on modern
computers are able to learn the non-linear dependencies between all different kinds of input-output pairs,
including images, text (Goodfellow et al., 2016) and other unstructured data (Feldman et al., 2007).
Therefore, there should not be reasons why they fail when predicting input-output pairs of mechanistic
models.

Different design approaches may be considered when the mechanistic models to be emulated are not
fully deterministic. Surrogate models have been used to approximate stochastic mechanistic models, and
it has been shown that if sufficient simulations are run, the distribution of the output of these models is
approximately deterministic (Wang et al., 2019). Another approach for building surrogates of stochastic
models is to include the random seed which was used for the simulations as an input when training the
ML model (Angione et al., 2022).

3.4 Interpretability

Surrogate ML models can also help explain some unstudied dynamics of dynamical system (Madani et al.,
2019; Dabiri et al., 2019; Longobardi et al., 2020). With the recent progress in the area of explainable
artificial intelligence, once predictions are made, it becomes possible to interpret for example whether all
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input data impacts the prediction (Arrieta et al., 2020). Furthermore, it is possible to understand which
features influence the prediction the most and quantify this impact. For example, whether an increase in
the value of one feature changes the prediction and in the case of regression models whether the prediction
is generally increased or decreased. Such methods could outline some behaviours of the system that were
not previously known, especially when experimental data are used to train as well. In general, to make
sure the results are robust, it can be helpful to apply different explainability methods and compare their
results.

Sections 2 and 3 have described the way surrogate machine learning models have been used in the
literature and how the design and usability of such models can be enhanced. Using the information
acquired from these sections, we propose future avenues for applying surrogate machine learning models
to industrially relevant biotechnology modelling.

4 Further applications of ML-based surrogates in biotechnology

Given the potential of metabolic and whole cell models in designing novel renewable biofuels (Beller et al.,
2015; Chubukov et al., 2016) and drugs (Ajikumar et al., 2010), as well as their versatility for minimal
genome design (Wang and Maranas, 2018; Rees-Garbutt et al., 2020), we further present our vision re-
garding the applicability of surrogate modelling for these types of mechanistic models. Metabolism is
among the most complex processes taking place in a cell. Genome-scale metabolic models include all
the known information about the metabolism of an organism, such as genes, enzymes, reactions and
metabolites (Passi et al., 2022). These models can be used not only to predict metabolic fluxes but also
to understand genotype-phenotype interactions. In addition, they can have a significant impact on un-
derstanding strain development for the production of bio-based materials and chemicals, drug targeting,
predictions of enzyme function and modelling interactions among different cells (Gu et al., 2019). Given
the system-level complexity of these techniques, the models often end up containing thousands of genes,
metabolites and reactions that interact with each other. This entails a great computational demand, with
some models running for up to 7 hours, especially when a protein expression network is included (Yang
et al., 2019). Metabolic kinetic models are even more computationally expensive since they predict the
temporal behaviour of the process and they combine multi-omics data sets with reaction network models
(Islam et al., 2021). This computational problem is amplified when complex organisms are modelled or
several simulations have to be run.

Often, metabolic models are used as part of a Design Build Test Learn (DBTL) pipeline (Nielsen and
Keasling, 2016), corresponding to multiple combinations of inputs (Figure 3). This frequently involves
a significant number of trial and error experiments, suggesting that ML surrogates of metabolic models
would be particularly useful for such cases. For example, the ML surrogates can be trained on the initial

12

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 September 2022                   doi:10.20944/preprints202209.0455.v1

https://doi.org/10.20944/preprints202209.0455.v1


DESIGN

LEARN TEST

BUILD

Whole cell model

Metabolic model

Surrogate

Pathway modification

Genetic engineering

Experiments

Sequencing

Analysis of 
resultsEditing of 

surrogate

Editing of model

Figure 3: An example of the design-build-test-learn (DBTL) pipeline, where the metabolic or whole cell
models can be replaced by surrogate models.

state of the input variables of the mechanistic model and/or the parameters of the model, with the target
variable being the desired phenotype to be predicted (a specific titer, rate, yield, or product). Once the
training phase is completed, the surrogate can be used to approximate the original metabolic model. One
of the challenges that may occur when implementing this framework is caused by the high dimensionality
of metabolic models. This suggests that if the initial conditions are used as input for the ML model, it
will be necessary to run several simulations to cover most of the variables’ space. According to Kuo and
Sloan (2005) and Lawson et al. (2021), at least 4-5 times as many simulations as the number of variables
are needed to avoid the curse of dimensionality. In the cases when this is possible, it can also lead to the
discovery of interesting dynamics of the system since an explainable MLmodel can showwhich parameters
and variables are influencing the phenotype the most. However, in other cases, running a high number of
mechanistic simulations might defeat the purpose of building a surrogate model. For such situations it is
possible to reduce the dimension of the input by applying different dimensionality reduction techniques
(Espadoto et al., 2019), or by keeping only the variables that are known to influence the desired phenotype
(Stolfi and Castiglione, 2021).

Whole-cell models are mathematical models that include and link all the well-annotated genes and
processes of a cell. Two such models have been published to date, one for Mycoplasma genitalium (Karr
et al., 2012), another one for Escherichia coli (Macklin et al., 2020), and more are underway (Karr, 2019).
The completeness of these models makes them particularly powerful since, when used in a DBTL pipeline,
they facilitate the study and design of interactions among different cellular processes (i.e., something that
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a metabolic model alone cannot achieve). Similarly to metabolic models, whole-cell models have already
been used for in-silico minimal genome design (Rees-Garbutt et al., 2020), and we anticipate that they
will change the paradigm for metabolic engineering and development of microbial chassis (Marucci et al.,
2020). These models add some extra levels of complexity to the genome-scale metabolic models, and
therefore are even more computationally expensive (Macklin et al., 2014), with a simulation time of 20
minutes - 24 hours per cell (on a desktop computer). This makes applications that involve multiple cells
growing over multiple generations prohibitively expensive due to their high computational time.

ML surrogate models can represent a strategy to address this challenge. For example, the input to the
ML model can be defined as a subset of the initial conditions and parameters of the model, and the output
as the phenotype to be predicted. This can be a continuous variable such as the growth rate of a cell, the
production, titer, or yield of different metabolites, or binary indicating for example whether a cell divides
or not. In the case of metabolic models, for example, whole-cell models can have thousands of candidate
variables that can be used as input to the ML model. As mentioned before, these can be reduced using
dimensionality reduction techniques (Espadoto et al., 2019) or prior knowledge about the process under
investigation (Stolfi and Castiglione, 2021).

5 Conclusion

There is a growing number of studies in the literature showing how ML surrogates can be used to emulate
mechanistic models of biological processes, both at the molecular and macroscopic levels. These show
that, besides the performance of the surrogate models in terms of accuracy against numerical integration
and improvement in computational speed, it is also beneficial to consider other design aspects. First, it
is important to assess whether the mechanistic model is complex enough to invest the time in building
a surrogate (Renardy et al., 2018). The design of the protocol for obtaining the training data of the
ML surrogate should consider aspects such as stochasticity and whether active learning could bring any
additional value (Wang et al., 2019; Angione et al., 2022; Pestourie et al., 2020; Lye et al., 2021). Other
aspects such as dimensionality reduction of the inputs and/or outputs of the ML surrogate (Liang et al.,
2018a,b; Cai et al., 2021; Lu and Ricciuto, 2019; Nikolopoulos et al., 2022), and parameter sensitivity
analysis (Renardy et al., 2018) can help to optimise the performance of the model, but also to unravel
some information about the dynamics of the system.
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