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Abstract: Dilation of contractions on Hilbert space and Banach space is classical. Recently, dilations
theory has been put in the setting of sets, vector spaces, p-adic Hilbert spaces and modules. In this paper,
we derive important dilation results for self-adjoint morphisms on indefinite inner product modules over
*_rings of characteristic 2. More precisely, we prove indefinite inner product versions of Halmos dilation,
Egervary N-dilation and Sz.-Nagy dilation.
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1. INTRODUCTION

In 1950, Halmos made a deep insight into structure theory of operators on Hilbert space by exhibiting
any contraction as a part of a unitary. In 1953, Sz.-Nagy showed that Halmos result can be extended
to powers of contractions using a unitary operator. In 1963, T. Ando [5] showed that there is a version
of Sz.-Nagy dilation for commuting contractions. Combined with spectral theory and theory of (several)
complex variables, today, dilation theory of contractions is a rapidly evolving area of research and for
a comprehensive look, we refer . Started in 1970’s, dilations of
contractions acting on Lebesgue spaces and Banach spaces followed Hilbert space developments
18/250,58).

In 2021, by identifying essential mechanisms of dilation theory, Bhat, De and Rakshit [8] obtained sur-
prising results in the set theory context and vector spaces. In 2022, further study in the context of vector
spaces was carried by Krishna and Johnson . We note that another vector space variant is also studied
by Han, Larson, Liu and Liu [23]. Recently Krishna introduced the notion of magic contractions and
derived Sz.-Nagy dilation for p-adic Hilbert spaces and modules .

In this paper, we derive indefinite inner product module versions of Halmos dilation (Theorem ,
Egervary N-dilation (Theorem , Sz.-Nagy dilation (Theorem . Our article is highly motivated
from the paper of Halmos [22], Egervary [16], Schaffer [36], Sz.-Nagy [39], Bhat, De and Rakshit [8],
Krishna and Johnson [26] and Krishna [25].

2. INDEFINITE HALMOS, EGERVARY AND SZ.-NAGY DILATIONS

We are going to use the following notions. A ring R with an automorphism * which is either identity or

of order 2 is called as an *-ring. Throughout the paper we assume that characteristic of ring is 2.

Definition 2.1. [@/ Let V be a module over R. We say that V is an indefinite inner product module (we

write IIPM) if there is a map (called as indefinite inner product) {-,-) : V x V — R satisfying following.
1
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(i) If x € V is such that (x,y) =0 for ally € V, then z = 0.
(i) (2,y) = (y,2)" for all 2,y € V.
(il) (ax+y,z) =alz,z) + (y,2) for alla € R, for all z,y,z € V.

Let V be a IIPM and T : V — V be a morphism. We say that T is adjointable if there is a morphism,
denoted by T* : V — V such that (T'z,y) = (x,T*y), Vz,y € V. Note that (i) in Definition says that
adjoint, if exists, is unique. An adjointable morphism U is said to be a unitary if UU* = U*U = Iy,
the identity operator on V. An adjointable morphism P is said to be projection if P2 = P* = P. An
adjointable morphism 7' is said to be an isometry if 7*7T = I,,. An adjointable morphism 7 is said to be
self-adjoint if T* = T'. We denote the identity operator on V by Iy.

Our first result is the indefinite Halmos dilation.

Theorem 2.2. (Indefinite Halmos dilation) Let V be a IIPM over a *-ring of characteristic 2 and
T:V =V be a self-adjoint morphism. Then the morphism

U T Iy+T
S \+T T

T="PUly, T"=PRPU"y,

is unitary on V @ V. In other words,

where Py, : V@V 3 (z,y) — x € V.

Proof. A direct calculation says that

Vo= T Ly+T
" \np+T T

is the inverse and adjoint of U. (]

Our second result is the indefinite Egervary N-dilation.

Theorem 2.3. (Indefinite Egervary N-dilation) Let V be a IIPM over a *-ring of characteristic 2
and T : V — V be a self-adjoint morphism. Let N be a natural number. Then the morphism

T 0 0 0 0 Iy+T
Iy+T 0 0 0 0 T
0 Iy 0 0 0 0
0 0 Iy 0 0 0
U=
0 o o0 -~ 0 O 0
Iy O 0
0 Iy 0 (N+1)x (N+1)
s unitary on ea{j:fv and
(1) " = PyU*|y, Vk=1,...,N, (T")*=P,(U")*y, Vk=1,...,N,

where Py : &NV 3 (o) M 2y €V,
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Proof. A direct calculation of power of U gives Equation . To complete the proof, now we need show

that U is unitary. Define

T ILy+T 0 0 0 0
0 0 Iy 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
V= .
0 0 0 0 Iy O
0 0 0 0 Iy
Iy+T T 00 0/ yiivin
Then UV = VU = Ign+1y, and U* = V. O

Note that the Equation (1) holds only upto N and not for N 4 1 and higher natural numbers. In the
following theorem, given a IIPM V, @32 _ __V is the IIPM defined by

a0V i={{zn}02 o, Tn €V,Vn € Z,x,, # 0 only for finitely many n’s}

equipped with inner product

oo

{anliZ oo o) = D @)y ool (Undn oo € 72 oV

n—=—oo

Our third result is the indefinite Sz.-Nagy dilation.

Theorem 2.4. (Indefinite Sz.-Nagy dilation) Let V be a IIPM over a *-ring of characteristic 2 and
T:V —V be a self-adjoint morphism. Let U = (Un m)—co<n,m<oco b€ the morphism defined on 5> _ V

given by the infinite matriz defined as follows:

uoo =1, wyp=L+T, uao=~L+T, u11:=T,

)

Unnt1 =1y, Vn€Z,n#0,1, unm:=0 otherwise,

i.e.,
I, 0 0 0 0 0
0 Iy 0 0 0 0
_ 0 0 Ip+T 0 0
- 0 0 L+T 0 0
0 0 0 0 I, 0
0 0 0 0 0 Iy

00 X 00

where T is in the (0,0) position (which is boxed), is unitary on &5 _ V and

(2) T" = P,U"y, VneN, (T9)"=Py(U")"y, VneN,

where Py : @22V 3 (x,)22 —xo € V.

n=—oo n=—oo


https://doi.org/10.20944/preprints202209.0438.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 September 2022 doi:10.20944/preprints202209.0438.v1

Proof. We get Equation by calculation of powers of U. The matrix V = (Vn,m)—co<n,m<oo defined

by
vo,0 =T, wvo—1:=Iy+T, vig=L+T, v,-1:=T,
Upn—t1 =1y, VYn€Zn#0,1, v,n,:=0 otherwise,
ie.,
Iy 0 0 0 0 0
0 Iy 0 0 0 0
v 0 0 Iy+T 0 0
B 0 0 T IL+T 0 0
0 0 0 0 Iy 0
0 0 0 0 0 Iy
: o0 X 00
where T is in the (0.0) position (which is boxed), satisfies UV = VU = Igec v and U* = V. O
We note that explicit sequential form of U is
U(Q?n)zozfoo = ( X9, X1, (Iv + T),TO + T&El,‘ Txo + (Iv + T).’L‘l ‘, T, T2, . .. )

where Txg + (Iy + T)x; is in the 0 position (which is boxed) and U* is

U (#n)nZ—oo

= ( .. ,!’E,?,,LIJ,Q,‘ (IV + T)il,',l + Tz ‘7 Tr_, + (Iv + T){E(),.’El, .. ),

where (Iy +T)z_1+Txg is in the 0 position (which is boxed). We next wish to derive indefinite isometric

Sz.-Nagy dilation.

Theorem 2.5. (Indefinite isometric Sz.-Nagy dilation) Let V be a IIPM over a *-ring of charac-
teristic 2 and T : V — V be a self-adjoint morphism. Let U = (Un m)o<n,m<co e the morphism defined

on B2,V given by the infinite matriz defined as follows:

ugo =T, usp:=Iy+T, Uptip=1Iv, Yn2>2, Upm:=0 otherwise,

i.e.,
0 0 0 0 0
+T 0 0 0 0 0
0 Iy 0 0 0 0
U= 0 0 Iy 0 0 0
0 0 0 L 0 0
0 0 0 0 Iy 0

00 X 00

where T is in the (0,0) position (which is boxed), is isometry on &2,V and
(3) " = PvUnh;, Vn € N, (T*)n = P\)(U*)nh/, Vn € N,

where Py 1 @720V 3 (2,)0%, — To € V.
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Proof. 1t suffices to note the adjoint of U is

I,b+T 0 0 0 0

0 0 Iy 0 0 0

0 0 0 Iy 0 O

U — 0 0O 0 0 Iy 0
0 0 0 0 0 Iy

0 0 0 0 0 O

o0 X 00
where T is in the (0,0) position (which is boxed). O

We now formulate following problems.

Problem 2.6.

(i) Whether there is an indefinite Ando dilation? If yes, whether one can dilate commut-
ing three, four, ... commuting self-adjoint morphisms to commuting unitaries?
(ii) Whether there is (a kind of ) uniqueness of indefinite Halmos dilation?
(iii) Whether there is a indefinite intertwining-lifting theorem (commutant lifting theo-

rem)?
3. CONCLUSIONS

(1) In 1950, Halmos showed that every contraction on a Hilbert space can be lifted to a unitary [22].

(2) In 1953, Sz.-Nagy derived his dilation theorem [39].

(3) In 1955, Schaffer gave simple proof of Sz.-Nagy dilation result [36].

(4) In 1963, Ando showed that Sz.-Nagy dilation holds for two commuting contractions [5].

(5) In 1973, Stroescu studied dilations of contractions on Banach spaces [38].

(6) In 2021, Bhat, De and Rakshit introduced set theoretic and vector space approach to dilation

theory [8]. Later, Krishna and Johnson continued this study in 2022 [26].

(7) In 2022, Krishna derived Halmos, Egervary and Sz.-Nagy dilation results for magic contractions
on p-adic Hilbert spaces and modules [25].

(8) In this paper, we derived Halmos, Egervary and Sz.-Nagy dilation results for indefinite inner

product modules over *-rings of characteristic 2.
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