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Abstract: The Impact Chain framework for risk assessment has proven to be a robust and ef-
fective methodology. It is very useful to set up the conceptual framework associated to a given risk 
and allows accommodating naturally the different components that shape that risk. However, 
the operationalization of the impact chain may not be straightforward, in particular due to the in-
herent uncertainties associated to the selected indicators and the assigned weights. In this paper, 
we introduce an extension to the Impact Chain framework that allows to consider uncertainties 
in the different components of the risk assessment. In the framework of the UNCHAIN project, a 
web-based tool has been developed to ease the task of implementing that methodology. The 
tool has been applied to a case study on the loss of tourist attractiveness due to heat stress 
conditions on the Balearic island, Spain, to illustrate how uncertainties in different components of 
the impact chain can affect the robustness of the final risk assessment. Also, the tool provides an es-
timate of the sensitivity of the final risk to each component, which can be used to guide risk mit-
igation strategies. Finally, a proposal for the validation of the risk assessment is presented. 

Keywords: Uncertainty; Climate risk assessment; Impact chain; Climate change; Risk; Tourism 
risk; Heat index 
 

Introduction 
Natural disasters related to extreme climate conditions are one of the main threats 

that human society faces nowadays and are expected to be more frequent in the next 
decades due to global warming (Seneviratne et al., 2022). Indeed, the effects of a chang-
ing climate are currently emerging in different parts of the world. One example is the 
devastating early heat wave that hit the North West of India and Southern parts of Paki-
stan during March and April 2022, which was the hottest in India since records began 
122 years ago (Zachariah et al., 2022). In addition, extremely dry condition both in India 
and Pakistan favored local heating from the land surface. This situation reduced India’s 
wheat production, limiting the global wheat stocks. In the future, climate-related im-
pacts may be exacerbated as they are shaped not only by changes in the climate state, 
but also by many societal factors like a growing population, the socioeconomic devel-
opment or a rising demand for food, water and energy underlying physical and social 
vulnerability, and societal responses themselves (Ara Begum et al., 2022). 

Accordingly, climate risk assessment at local to national and regional levels has be-
come an important tool for the development and implementation of adaptation strate-
gies to support decision-making that limit the consequences of climate-related impacts 
on the natural and socioeconomic dimensions. Climate risk assessment includes identi-
fying the frequency and intensity of climate hazards (droughts, floods, heat waves, etc.), 
but also evaluating the level of impact on the socio-economic system and the natural 
ecosystems (Ara Begum et al., 2022; Reisinger et al., 2020). This, in turn, depends on the 
exposed elements and how vulnerable they are (Leis and Kienberger, 2020; Mastrandrea 
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et al., 2010; Toimil et al., 2017). In this regard, the concept of impact chains (IC; Fritzsche 
et al., 2014) has emerged as an important analytical tool that helps to understand, sys-
temize and prioritize the factors driving climate-risk. ICs are conceptual models describ-
ing climate impacts as cause-effect relationships within a socio-ecological system (Aal-
land Korsbrekke, 2020), focusing on identifying and describing important links between 
the different components of climate related risks.  

To quantify the level of risk imposed by a certain physical disturbance on a natural 
or socioeconomic system, the three components of risk defined in the ICs framework 
(i.e., hazard, exposure and vulnerability; Reisinger et al., 2020), are combined in climate 
risk models (Kropf et al., 2022). In these types of models, indicators for the hazard (i.e. 
climate stressor), the exposed elements (e.g., population, infrastructure, buildings, eco-
systems etc.), and the vulnerability components are defined. These indicators are then 
aggregated using different approaches, from simple weighted arithmetic/geometric 
methods (Fritzsche et al., 2014) to more complex impact functions that estimate the level 
of damage (Aznar-Siguan and Bresch, 2019) and the potential risk. One important fea-
ture of climate risk models is that they may enable quantitative data (e.g., evidence of 
observed and modeled evolution of the climate system) to be combined with qualitative 
information (e.g., expert judgment), thus, providing an integrated climate-risk assess-
ment across multiple lines of evidence (O’Neill et al., 2017). However, the different na-
ture of the input data complicates the quantification of the final risk. Particularly, obtain-
ing robust verification data for the exposure and vulnerability components can be quite 
challenging (Kropf et al., 2022), since these elements are sometimes identified from sub-
jective methods (Zommers et al., 2020). 

Moreover, dealing with uncertainties in the selection, quantification and weighting 
(i.e., the relative importance among the three components of risk) of the input indicators 
is still central in the debate on climate change risk due to the inherently complex nature 
of climate-related phenomenon. Particularly, assessing the risk under future climate 
change conditions involves dealing with different sources of uncertainties, including 
those from climate model projections, in addition to future changes in demographics, 
human development, economy, lifestyle and policies (O’Neill et al., 2017). The way un-
certainties related to climate-risk analysis are traditionally handled in the climate science 
field is too strongly associated with statistical measures of the magnitude and frequency 
of the hazard (Aven, 2020), while the concept of uncertainty should be also applied to 
the exposure and vulnerability to any given hazards (Reisinger et al., 64 2020). 

Incorporating a systematic treatment of uncertainty into the climate risk analysis 
framework has become an important task to improve the quality of such analyses and 
provide useful results for risk management. This will assist policymakers to develop 
more informed adaptation measures considering the full range of uncertain aspects in-
herent to climate-risk analysis. However, the implementation in practice of the uncertain 
aspects of climate-risk assessments still faces some limitations. For instance, translating 
qualitative sources of information to a quantitative measure of uncertainty, and integrat-
ing them with hazard model-based output that can be incorporated into risk analysis is 
challenging (Adler and Hirsch Hadorn, 2014). Some attempts have been done in this 
sense, like the probabilistic impact risk model softwares packages 

CLIMADA (Aznar-Siguan and Bresch, 2019) or CAPRA (Cardona et al., 2012). 
However, although they are valuable tools that provide a way to consider a measure of 
uncertainty in the different components of risk, they tend to be designed to address a 
limited range of climate and other natural events (e.g., tropical cyclones, river flood or 
earthquakes). Therefore, their use is restricted to those specific cases, limiting its applica-
tion to a wider range of potential climate-related events. Furthermore, using these types 
of software may require some level of expertise, thus, limiting its implementation by 
some users. 
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One of the goals of the UNCHAIN project (“Unpacking climate impact chains”) 
funded by the AXIS-JPI EU funding mechanism (http://www.unchain.no/) is to develop 
and test a standardized analytical framework for addressing uncertainties involved in 
local decision-making on climate change adaptation. In this work, we contribute to this 
goal, proposing an extension to the Impact Chain framework that allows to consider un-
certainties in the different components of the risk assessment. The basic idea is to con-
sider that any component of the IC (indicators and weights) is defined not as a single 
value, but as a probability density function (PDF) that describes the uncertainty associ-
ated to that component. As a result, a probability density function for the final risk is ob-
tained. The methodology can also be used to assess the sensitivity of the risk to different 
factors, thus helping the policymakers in the development of adaptation strategies. In 
order to simplify the application of the method, a very simple, user-friendly interactive 
web application has been developed, the UNTIC (Unchain Tool for Impact Chain uncer-
tainties) tool, which can be easily adapted to any climate-related risk evaluation or even 
extended to other fields. Herein, we describe the methodology and the practical applica-
tion of the UNTIC tool to a case study on the loss of tourist attractiveness due to heat 
stress increase on the Balearic Island, Spain. 

2. Materials and Methods 
2.1. The Impact Chain formalism 

Following the IPCC AR5 (Burkett et al., 2014), in the context of climate-related im-
pacts, risk is defined as a combination of three interacting components: 1) climate-related 
hazards (including hazardous events and trends), 2) exposure in places and settings 
that could be adversely affected and 3) vulnerability of human and natural and socio-
economical systems. Then, it is not enough to identify climate hazards (i.e., floods, heat 
waves, water scarcity etc.) but also the grade of affection to the socioeconomic system 
of the region under evaluation. That is, to quantify the possible consequences depend-
ing on the exposure and vulnerability components (Mastrandrea et al., 2010; Toimil et 
al., 2017; Leis and Kienberger, 2020). This can be done following the approach proposed 
in the Vulnerability Sourcebook (Fritzsche et al., 2014) which is based on the concept of 
impact chain. The development of a climate-risk assessment under the IC approach in-
volves the combination of the hazard, exposure and vulnerability components via identi-
fying and describing connections between them. The interactions between these factors, 
are controlled by the different indicators that composed each of the IC components, that 
ultimately shape the final risk magnitude. 

Accordingly, in the IC approach, the risk is defined as: 

𝑅𝑅 = 𝑊𝑊𝐻𝐻  �𝑤𝑤𝑘𝑘𝐻𝐻𝑘𝑘  
𝑛𝑛

𝑘𝑘=1

+  𝑊𝑊𝑉𝑉�𝑤𝑤𝑗𝑗𝐸𝐸𝑗𝑗  
𝑛𝑛

𝑗𝑗=1

+ 𝑊𝑊𝑉𝑉�𝑤𝑤𝑖𝑖𝑉𝑉𝑖𝑖  
𝑛𝑛

𝑖𝑖=1

 (1) 

where H, E and V , are the components that describe the Hazard, Exposure and Vul-
nerability, respectively. 

The Ws refer to relative Weight/Normalization factor applied to transfer those 
three components to risk value, and w represents the weight of the indicators for each 
risk component. It must be noted that here we have assumed the typical choice where the 
three components are arithmetically combined, but the whole formalism presented be-
low can easily be translated to any type of combination. 

The identification of the indicators for each of the components of risk (either quanti-
tative or qualitative), the normalization and the determination of the weights is not 
straightforward. It requires literature review, brainstorming process, compilation of his-
torical data regarding past events of the analyzed phenomenon, expert judgement, and 
the interaction with the different stakeholders involved in the field (Fritzsche et al., 2014). 
The latter is one of the most important tasks to link academia to practitioners and to 
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promote the adoption of the results by the final users and policymakers as they actively 
participate in the co-generation of knowledge. However, participatory approaches such 
as workshops and other, add uncertainties to the climate-risk assessment as they tend to 
be subjective methods. 

2.2. Addressing uncertainties in the Impact Chain framework 
Three main types of uncertainties of different nature that influence the results of the 

risk assessment can be considered. First, existing datasets are uncertain leading to un-
certain indicators. Second, the relative importance of each element of the IC (the weight) 
has a profound impact on the final risk. However, that is usually defined based on subjec-
tive expert knowledge, which is inherently subject to uncertainties. Finally, there is a 
third level of uncertainty when some key elements of the actual chain of impacts may 
not be included in the theoretical IC. This would lead to a biased estimate of the final 
risk, so the problem must be somehow bounded. All these types of uncertainties 
should be quantified and propagated to the final risk, so the risk is provided along with 
a level of confidence. Here, we propose a standardized probabilistic framework where 
the basic idea is to consider that any component of the IC (indicators and weights) is 
defined not as a single value, but as a probability density function. The PDF provides a 
full representation of all the possible values a quantity can have with their probability of 
occurrence. A sketch of the approach is presented in Figure 1. 

 

Figure 1. Sketch of the methodology proposed to accommodate uncertainties in the impact chain framework. 

In practice, to implement this approach some choices have to be made to define the 
PDF’s. For all those indicators from which enough information on the uncertainty could 
be retrieved, a frequent choice is to use a Gaussian function with an amplitude defined by 
the estimated uncertainties: 

   (2) 
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where p represents the probability of having an indicator or weight value, x0 is the 

central most likely value as provided by the databases or the experts opinions and σ is the 
range of uncertainty. The uncertainty associated to the indicators will be inferred from the 
characteristics of the databases (e.g., spread of climate model results). 

For those indicators from which a central value could not be identified or even from 
which there is no information, an homogeneous PDF can be used: 

p(x) = 1/(xmax − xmin, for xmin <= x <= xmax) (3) 

where xmax and xmin determine the maximum and minimum possible values. 
For instance, in the case of the hazard, the type-1 source of uncertainty (i.e., those re-

lated to the datasets used to define the different indicators) is typically determined by the 
probability of occurrence of a climatic driver. This can be measured from sample observa-
tions of the climate state or from physical model outputs. One example is the case of cli-
mate change projections, which are based on climate model simulations. Model out-
puts are inherently uncertain due to our incomplete knowledge about the climate system 
(Maher et al., 2019), including the internal variability (e.g., El Niño) and external varia-
tions in the forcing factors outside the climate system (e.g., solar activity or volcanoes). 
Furthermore, scenarios of global development describing societal futures and greenhouse 
gases emission are developed from assumptions of different socioeconomic develop-
ments and future societal conditions, which are made to span a range of possible fu-
tures of warming (O’Neill et al., 2017). The assessment of these types of uncertainties is 
usually done with the use of ensembles of simulations that provide a range of possible 
future scenarios of the climate state in a probabilistic framework (Taylor et al., 2012). In 
this case, the hazard indicator would be computed as the ensemble average while the un-
certainty would be computed from the ensemble spread (see Figure 2a.). In other cases, 
the number of inputs is not large enough to fit an analytical function (e.g., the results of a 
poll to a limited number of experts). In this case we propose to keep all the expert opin-
ions using a homogeneous PDF with the limits defined by the range of values obtained 
in the poll (see Figure 2b). 
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Figure 2. (a) example of the fitting of a gaussian function to the outputs of an ensemble of climate models providing the heat index in 
the Balearic Islands. (b) example of the fitting of a homogeneous pdf to the outputs of a poll to experts about the quality of 

information for tourists. 

Furthermore, it is possible that for some indicators there is no clear information 
about the associated uncertainty. An example could be when the information is retrieved 
from databases that do not specify the methodology followed or a measure for the reliabil-
ity of the data. A possible alternative would be to use the temporal variability of the indi-
cator as a measure of the uncertainty associated to the mean value provided. 

It is important to remark that this formalism naturally accommodates the gaps of 
knowledge. It has to be noted that the IC is a conceptual framework that does not require 
all the information to exist. Thus, if no information is found for any of the indicators de-
fined in the IC, they can simply be set to a value of 0.5 with a range of uncertainty of ± 
0.5 following a homogeneous PDF. This would be equivalent to assume that the indica-
tor may have any value between 0 and 1. This will propagate through the risk computa-
tion and enlarge the final uncertainty. If that missing information was from an indicator 
with little weight, the consequences will be negligible. Conversely, if that piece of infor-
mation corresponded to something that experts considered was important, and thus 
had a strong weight, will result in a large uncertainty in the final risk. 

Finally, it is also worth mentioning that qualitative information can also be natu-
rally included in this approach. It would be enough to discretize the expert’s judgement 
to a limited number of classes and to assign a numerical value to each class with a corre-
sponding uncertainty. For instance, if the experts have to assign a low, mid or high value 
to a certain indicator, this can be transformed to 0.16, 0.5 and 0.84 with a homogeneous 
uncertainty of ± 0.16. 

Regarding the level-2 uncertainties, those associated to the weights, the same ap-
proach can be followed if they are based on expert judgement. In our case we propose to 
use the Analytical Hierarchal Protocol (AHP; Saaty, 1990) although other approaches are 
also valid as far as a range of uncertainty is provided for all the weights used in the IC. 
AHP is widely used in the risk assessment (e.g., Hsu et al., 2017; Tascón-González et al., 
2020) and aims at deriving ratio scales from paired comparisons. It allows converting 
subjective opinions to a numeric scale that can be used in the risk assessment process. To 
do so, a pairwise comparison of either the risk components or between indicators in each 
group is presented to the expert. The former provides an estimate of the overall weight, 
while the latter indicates the weights among indicators of each type. For each pairwise 
comparison, the expert selects the option he/she considers to be more important, using a 
numeric scale. Then, the results are organized in a matrix and the weights are obtained by 
computing the normalized principal eigenvector (Saaty, 1990). As this is repeated for 
several experts an ensemble of values is obtained for each weight. Thus, the average is 
used as the final weight and the spread as the uncertainty. If the number of experts is 
large, an analytical function (e.g., a gaussian function) can be fitted. If not, an homogene-
ous PDF should be preferred, as mentioned above. 

Once all the indicators and weights are defined, they are combined using Equation 1 
with the functional form chosen for the IC (e.g., linear combination, conditional combina-
tions, etc...). In order to propagate the uncertainties to the final risk we use a classical Mon-
te-Carlo technique. Namely, each indicator and weight is transformed from a single value 
to a range of values randomly sampled from a distribution described by the chosen PDF. 
All those values are used to compute a large number of risk estimates. As a result a PDF 
for the final risk estimate is obtained (see Figure 1b). 

Another important aspect of the risk assessments is to evaluate the sensitivity of the fi-
nal risk to the single indicators. This can help to guide the adaptation strategies by focus-
ing on those indicators that have the largest impact on the final risk, so a reduction of them 
would lead to a meaningful reduction of the final risk. To illustrate this, we can assume a lin-
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ear form for the IC and neglect by the moment the uncertainties in the weights or the indi-
cators as in Equation 1. The sensitivity to the indicator I(S(I)) can be formulated as: 

 
(4) 

In other words, the relative change of the final risk with respect to a change in the 
indicator I can be estimated as the product between the weight of the indicator w and the 
weight of the aggregated component W . By multiplying S(I) by the expected change in a 
given indicator ∆I one can obtain what would be the change in the final risk: 

 
(5) 

This has been shown for a relatively simple linear case without uncertainties. In our 
case, the sensitivity is numerically computed using the Monte Carlo approach and thus the 
associated uncertainty is also provided. Moreover, more complex functional forms for the 
risk can be easily considered when computing the sensitivity. 

2.3. A web-based tool 
In the framework of the UNCHAIN project, a web-based application has been devel-

oped to simplify the application of the methodology described above, the UNTIC tool, 
hosted in: untic.pythonanywhere.com. The UNTIC tool has been designed as a very sim-
ple and user-friendly interface, in which the final user is only required to fill in an excel 
spreadsheet with the information of Equation 1 (i.e., the overall weights, the weights for the 
indicators within any risk component, and the value of the indicators with their associat-
ed uncertainty). The Python code generates the PDF for each element in the risk analysis 
based on a Monte Carlo approach and provides numerical and graphical outputs. Figure 3 
shows a schematic representation of the UNTIC structure. The box on the left-hand (Figure 
3a) side represents the input spreadsheet, in which the user is asked to provide the value 
(V), the uncertainty measure (U) and the shape of the probability distribution (S) for each 
element of Equation 1, and for each location or timeframe in which the assessment is con-
ducted. The UNTIC tool reads in this information and randomly generates the sam-
ples based on the user-defined S to be used in the MonteCarlo simulation. Then, the 
final risk is estimated using the functional form chosen for the risk (e.g., Equation 1) 
while uncertainties are propagated to provide the risk in a probabilistic framework. The 
output (Bottom box; Figure 3c) is represented by a set of PDFs, including the distribution of 
the hazard, exposure and vulnerability components, as well as the aggregated risk with 
their associated uncertainty measure. An excel file is also provided with the values of the 
mean and standard deviation of each component. Also, the sensitivity of the risk to 
changes in each single indicator is also provided (i.e., the minimum and maximum risk 
values that would be obtained if the indicator ranged from 0 to 1). 
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Figure 3. Schematic representation of the UNTIC tool. The left box illustrates the required input fields that are provided in the 
spreadsheet. The UNTIC tool provides numerical and graphical outputs for the three components of risk and the final risk 

estimation. 

3. Example of Application 
In this section we illustrate the application of the above-mentioned concepts using a 

case study for the risk of loss of attractiveness by heat stress on the Balearic Island, Spain. 
The full description of the development of the IC is included in a companion paper 
(Agulles et al., “Risk of loss of tourism attractiveness in the Western Mediterranean 
under climate change”. this issue), thus, here we focus on detailing the process of deal-
ing with uncertainties in the final risk assessment and only a brief overview of the 
case study is presented. The results presented herein have been generated with the 
UNTIC tool; the input Excel spreadsheet can be accessed from un-
tic.pythonanywhere.com. 

The IC has been defined from expert knowledge through participatory activities with 
relevant stakeholders in the tourism sector in the Balearic Islands, involving people from 
academia, government and industry. This was a user and stakeholder-centric, process-
oriented and demand-driven approach, commonly referred to as ‘co-production of 
knowledge’, which has been recognized as a key factor to promote sustainable devel-
opment outcomes (Norström et al., 2020). 

The resulting IC contains the indicators for each of the three risk components 
that were identified by working interactively with the stakeholders mainly through 
online meetings due to the restrictions associated to the COVID pandemics. Once the IC 
was defined, the indicators were selected. Regarding the hazard, it is represented by the 
National Oceanic and Atmospheric Administration (NOAA) heat index (HI), which is a 
heat stress indicator used for issuing heat warnings. For the Exposure and Vulnerability 
components, a total of 5 and 9 indicators, respectively, are included in the IC (see Table 
1). 
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Table 1. List of indicators for the hazard, exposure and vulnerability components and their respective normalized values and 
corresponding uncertainty. The indicator values for the present conditions represent their average value over the 2000–2020 conditions, 

whereas for the future, the ssp245 and ssp585 scenarios are considered for the hazard indicators. The dash symbol indicates that no 
information is available for that indicator. 

 
 Present 

 (2000-2020) 

 ssp245 

 (2080–2100) 

 

 ssp585 

 (2080–2100) 

HAZARD 

Heat Index (HI) 0.30 ± 0.01 0.50 ± 0.02  0.80 ± 0.02 

EXPOSURE 

Age of tourist (>65years)   0.08 ± 0.01 0.08 ± 0.01 0.08 ± 0.01 

Purchasing power (Daily expenditure/pers) 0.50 ± 0.03 0.50 ± 0.03 0.50 ± 0.03 

Tourist profile (% of tourist arrival that are fami-

ly)   

0.25 ± 0.02 0.25 ± 0.02 0.25 ± 0.02 

Comfort level hotel (num hotels >= 3 stars)   0.25 ± 0.02 0.25 ± 0.02 0.25 ± 0.02 

Quality of beaches services (num blue flags / num 

beaches) 

 -   -   -  

VULNERABILITY 

Health system (life expectancy) 0.50 ± 0.04 0.50 ± 0.04 0.50 ± 0.04 

Quality of information for tourists 0.25 ± 0.01 0.25 ± 0.01 0.25 ± 0.01 

Long term planning (GDP per capita) 0.25 ± 0.03 0.25 ± 0.03 0.25 ± 0.03 

Offer of alternative activities (grade   of offer no 

beach %) 

0.50 ± 0.05 0.50 ± 0.05 0.50 ± 0.05 

Dependence of source markets (grade of   de-

pendence %) 

0.75 ± 0.05 0.75 ± 0.05 0.75 ± 0.05 

Overcrowding (tourists/residents) 1.00 ± 0.03 1.00 ± 0.03 1.00 ± 0.03 

AC measures (parks, shallows, air conditioning)  -   -   -  

Deseasonalization  -   -   -  

The data to quantify the HI under present and future conditions have been obtained 
from global climate model runs in the framework of the 6th phased of the Coupled 
Model Intercomparison Project (CMIP6; Eyring et al., 2016). Data have been retrieved 
from Schwingshackl et al. (2021) for the present climate and projections for the end of the 
century under two Shared Socioeconomic Pathways (SSP245 and SSP585; Riahi et al., 
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2017). The hazard indicator for present and future has been obtained as the model en-
semble average and the uncertainty as the ensemble spread (Figure 4). 

For the exposure and vulnerability, the information to quantify the indicators is 
obtained from official statistics services at regional and national levels. These data are 
usually provided as yearly values, but we were unable to find details on the associated 
uncertainty. Therefore, the indicators were computed as the average for the period 
2000–2020 and the temporal standard deviation is considered as a measure of the uncer-
tainty associated to those values. It has to be noted that no future projections have been 
done for the exposure and vulnerability indicators (i.e., they are set constant in time) as 
far as the goal was to assess how changes in the hazards may impact the risk. this rep-
resents the risk if no adaptation measures were considered. Although this is an unrealis-
tic case, it will provide a first-order view of the risk for the tourism sector if no actions are 
considered to deal with the projected climate change hazards. 

The following step has been to normalize the indicators in order to make them 
comparable. In our case we have chosen a linear transformation where data below a pre-
defined minimum threshold correspond to a value of 0 and data above a pre-defined max-
imum threshold correspond to a maximum value of 1. For the values in the middle the 
following formula has been applied: 

N = (I–Imin)/(Imax − Imin) (6) 

where I is the original value of the indicator and Imin and Imax are the mini-
mum and maximum thresholds, which have been subjectively set by the experts. It 
must be noted that all indicators have been defined in a way that higher values imply 
higher risk. The values for the indicators along with their associated uncertainties are 
presented in Table 1. 

The computation of the weights has been done using the AHP. Table 2 contains the 
results of the AHP evaluated by one stakeholder participating in the process for the 
weighting of the exposure indicators as an example. The same procedure was applied to 
the vulnerability components, as well as to obtain the overall weight between risk com-
ponents. In this example, the tourist age emerges as the most important indicator of ex-
posure (45%) followed by the origin of the tourists (17%). The same procedure was ap-
plied to all the participating stakeholders. The final weight was obtained as the mean 
value of those results, while the spread in the values of the weights (i.e., the standard de-
viation) was used as a measure of the uncertainty (see Tables 3 and 4 for the resulting 
weights). 

Table 2. Matrix containing the AHP evaluation process to obtain the weights associated to the exposure components from the 
survey with a single stakeholder as an example. 

 
Pairwise comparison matrix (EXPOSURE) 
 
Indicator Touris

t age 
Purchasin
g power 

Touris
t 
profile 

Comfor
t level 

Beach 
service
s 

Normalized matrix Averag
e 

Tourist 
age 

1.00 5.00 5.00 2.00 5.00 0.4
8 

0.6
4 

0.5
0 

0.1
5 

0.4
9 

0.45 

Purchasin
g power 

0.20 1.00 3.00 1.00 2.00 0.1
0 

0.1
3 

0.3
0 

0.0
8 

0.2
0 

0.16 

Tourist 
profile 

0.20 0.33 1.00 2.00 2.00 0.1
0 

0.0
4 

0.1
0 

015 0.2
0 

0.12 

Comfort 0.50 1.00 0.50 1.00 0.14 0.2 0.1 0.0 0.0 0.0 0.10 
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level 4 3 5 8 1 
Origin of 
the tourist 

0.20 0.50 0.50 7.00 1.00 0.1
0 

0.0
6 

0.0
5 

0.5
4 

0.1
0 

0.17 

Total 2.10 7.83 10.00 13.00 10.14  1.00 

Table 3. Normalized weight of indicators for the hazard, exposure and vulnerability components obtained from the AHP procedure 
and their corresponding uncertainty. 

Indicator  
 Normalized wights 

HAZARD 

Heat Index (HI) 1.00 ± 0.01 

EXPOSURE 

Age of tourist (>65years)   0.24 ± 0.02 

Purchasing power (Daily expenditure/pers) 0.20 ± 0.07 

Tourist profile (% of tourist arrival that are fami-

ly)   

0.19 ± 0.05 

Comfort level hotel (num hotels >= 3 stars)   0.21 ± 0.03 

Quality of beaches services (num blue flags / num 

beaches) 

 0.16 ± 0.07 

VULNERABILITY 

Health system (life expectancy) 0.13   ± 0.05 

Quality of information for tourists 0.12   ± 0.02 

Long term planning (GDP per capita) 0.09   ± 0.06 

Offer of alternative activities (grade   of offer no 

beach %) 

0.12   ± 0.02 

Dependence of source markets (grade of   de-

pendence %) 

0.11   ± 0.04 

Overcrowding (tourists/residents) 0.15   ± 0.02 

AC measures (parks, shallows, air conditioning) 0.15   ± 0.03 

Deseasonalization 0.14   ± 0.02 

Table 4. Normalized values of the relative weights among the three risk components (i.e., hazard, ex-
posure and vulnerability) and their corresponding uncertainty, obtained from the AHP procedure. 

Component 
Normalized weights 
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HAZARD 
0.13 ± 0.11 

 

EXPOSURE 
0.52 ± 0.11 

 

VULNERABILITY 
0.34 ± 0.09 

 
The estimation of the final risk is done by the combination of the normalized indi-

cator values with the weights of each of the risk components following Equation 1 . The 
uncertainty in the final risk estimation is analyzed by means of performing a Monte Carlo-
based simulation with 1000 samples. Figure 5 illustrates the resulting histograms for the 
risk estimation distribution, as well as for each component for present conditions and 
two future scenarios. As expected, the hazard increases in the future, specially un-
der scenario SPS585. The exposure has a mean value of 0.27 and vulnerability of 0.48. 
Note that the largestsource of uncertainty is represented by the vulnerability compo-
nent (last column in Figure 5). The final risk ranges from 0.34 under present conditions 
to 0.37 and 0.41 in the future under scenarios SPS245 and SPS585, respectively. Despite 
the large increase in the hazard the final risk estimate is not affected as the hazard weight 
is relatively small (see Table 4). 

 

Figure 5. Probability distribution function for the risk estimate, the hazard, exposure and vulnerability components under present 
conditions (top), SSP245 scenario (middle) and SSP585 scenario (bottom). The mean and the standard deviation are indicated in the 

inset. 

The sensitivity of the final risk to each individual indicator as well as for the aggregat-
ed hazard, exposure and vulnerability has also been assessed (Figure 6). It can be seen that 
variations in the aggregated exposure would translate into large variations of the final 
risk while variations in the hazard produce the smallest contribution to the risk. This is 
an expected results as it reflects the weight of each component (Table 4). 
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Figure 6. Sensitivity of the final risk under future scenario SSP585 to different values of each indicator and the aggregated indicators. 
The vertical red line indicates the computed risk while the bars denote the range of risk values that could be obtained for the whole 

range of values of a given indicator 

The sensitivity analysis also highlights that some indicators could not be used to 
reduce the risk, as they are already contributing little to it (e.g., I. Expo #1, the lower 
end is close to the red line in Figure 6). Conversely, the same indicators could signifi-
cantly increase the final risk if they were increased. Also, it is interesting to notice that if a 
risk reduction is aimed at through a reduction of the exposure, for instance, that would 
require a reduction in several indicators. In other words, acting on a single aspect of 
tourist typology would not be enough to reduce the final risk. 

Discussion 
In this study, we propose a flexible framework for incorporating uncertainties into 

climate risk analysis under a probabilistic approach. By considering that any component 
of the IC (indicators and weights) can be described through a probability density func-
tion, uncertainties are easily propagated through the risk computation. Our approach to 
do this propagation is to use a Monte Carlo method to randomly simulate N 

number samples based on the prescribed probability distribution function. This 
has been shown to be a good approximation of the true distribution (Johansen, 2010) 
and provides a probability density function for the final risk. In the test case used to illus-
trate the functioning of the method, we use a relatively simple function to combine the 
weights and the indicators and two types of PDF (e.g. gaussian and homogeneous). How-
ever, any functional form for the combination of indicators or any definition of the 
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PDFs could be easily implemented. Moreover, the inclusion of qualitative indicators can 
also simply be done by assigning a numerical value to each qualitative value (e.g. low, 
mid or high) along with a range of homogeneous uncertainties. 

The UNTIC tool can be employed to assess any type of climate-related risk, from local 
to regional scales, or even be extended to other fields as long as the three components 
of risk (i.e., hazard, exposure and vulnerability) can be characterized. The tool has also 
been designed as a very simple web-based application written in Python, where users are 
not required to learn or master any specific software. Thus, the UNTIC tool can be imple-
mented by a wide community of users. The latter will potentially contribute to improve the 
way climate risk is communicated to the general public and to policymakers, and, ulti-
mately, to contribute to the development of more informed adaptation strategies. 

In addition to its flexibility and ease of use, one of the main strengths of our pro-
posed approach is that gaps of knowledge in some of the aspects of the IC are also natu-
rally incorporated in the assessment. The IC approach is often view as a conceptual de-
scription of a system and does not necessarily require that all the components can be 
quantified. For instance, experts may consider that hotel services may affect the tourist 
perception of attractiveness, but that is difficult to quantify. In previous assessments, those 
indicators that could not be quantified were discarded, so strongly jeopardizing the rele-
vance of the assessment. Now, that unquantified indicator can be incorporated by simp-
ly assigning a very large uncertainty to it. This would propagates to the final risk in-
creasing its uncertainty. As an example, in Figure 7 we show the results of the IC under 
three cases. The first one is assigning values to all the components of the IC (reference); 
in the second one 4 out of 14 indicators have been considered as unknown (low uncer-
tainty); and in the third one 8 out of 14 indicators have been considered as unknown 
(high uncertainty). It can be seen, that increasing the knowledge gaps makes the aggre-
gated components to be more uncertain. The exposure uncertainty shifts from 0.03 in 
the reference case to 0.12 and 0.15 in the second and third case, respectively. The same 
happens with the vulnerability. Consequently, the final risk distribution becomes wider 
as more gaps of knowledge are included, going from a standard deviation of 0.04, to 
0.07 and 0.09 in the second and third cases, respectively. 

 

Figure 7. Sensitivity of the final risk under future scenario SSP585 to different level of incomplete knowledge of the indictors 
defined in the Impact Chain. The “reference” case (top row panel) illustrates the case when values are assigned to all the indicators 

for the three components. In the ”low uncertainty” case (middle row panels) 4 out of 14 indicators have been considered as 
unknown, whereas the ”high uncertainty” case (bottom row panels) 8 out of 14 indicators have been considered as unknown. 
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The sensitivity analysis included in the UNTIC tool can help to design adaptation 
measures and to foster better-informed decision making. Herein, we have evaluated the 
risk of losing tourist attractiveness due to global warming setting the exposure and 
vulnerability indicators constant. I.e., no future change or investment in the touristic 
sector to cope with climate change impacts are considered. However, let us suppose 
that a high investment is projected to improve the air conditioning measures or to ex-
pand the offer of alternatives tourism activities focus on reducing the dependance on sun 
and beach tourism. These types of measures would reduce the value of some exposure 
and vulnerability indicators, which in turn, may reduce the estimate of the final risk. 
The opposite case in which no investments are planned, leading to worsen the condi-
tions of some of the indicators, such as overcrowding or safety levels could be also 
evaluated. The sensitivity analysis provides a quantification of up to what extent those ac-
tions woul affectthe final risk. Some of the indicators may have little room for improve-
ment (e.g. lower bound close to the red line in Figure 6) or have a little impact in the final 
risk. In those cases it would not be worth dedicating much efforts on reducing them. 

A word of caution is also needed regarding a shortcoming that all risk assess-
ments have: the strong dependency of the final risk on the definition of weights (i.e., 
the importance that is given to a certain indicator). We have proposed a way to reduce 
the subjectivity of the weight selection by applying the AHP. However, we acknowledge 
that this is not the final solution as it may be subject to biases. For instance experts may 
underestimate the importance of a climate hazard (e.g., quasi-permanent heat waves) that 
are not that frequent in present climate. 

Additionally, there is the third-level of uncertainty, mentioned in section 2.2, which is 
related to incomplete impact chains. That is, experts may have not identified some aspects 
that may play a role in the actual risk. Therefore, a calibration/validation process should 
be carried out to ensure the relevance of the assessment. Unfortunately this is not easy at 
all. A possible option would be to analyze analogue situations in time or space to infer a 
pseudo-risk that can be compared to the computed risk. To do that, a measure of a cost 
(C) should be defined. In our example this can be the degree of satisfaction the tourists 
have after their stay in a given location. Then, long time series of C can be analyzed com-
paring them with the hazard levels at that time (e.g. in our case the heat stress suffered 
by the tourists). After this, a measure of the probability of changes in C due to a certain 
hazard can be computed and compared to the estimated risk. The same could be done by 
comparing different locations where the corresponding IC is the same. 

In our case study this calibration step was not possible since the historical record 
does not contain the required information or it is not homogenized. However, that is not 
the case for other climate-related risks, where historical data certainly contains infor-
mation on this relationship. For instance, let us suppose one is analyzing the potential 
risk to agricultural production of droughts. Even if this type of climatic event is ex-
pected to be more frequent and intense in the future (Seneviratne et al., 2022), there is 
evidence of agricultural losses induced by extreme drought condition in different parts of 
the world. The historical data can be used to constrain the hazard-exposure-vulnerability 
relationships and to calibrate the final risk. Such “calibrated risk” can be used to com-
municate climate change knowledge to the final users, which is still one of the main limi-
tations to effectively translate risk analysis into decision making (Vaughan and Dessai, 
382 2014). 

Conclusions 
In this study, an extension of the impact chain framework for risk assessments 

(Fritzsche et al., 2014) has been developed in order to accommodate uncertainties in a 
natural way. In particular, the hazard, exposure and vulnerability indicators and their 
corresponding weights are not described by scalar quantities but by probability density 
functions. These PDFs can be defined as analytical functions (e.g., gaussian or homo-
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geneous) with parameters representing the uncertainties associated to a given quanti-
ty. These uncertainties can be quantified from the datasets used to retrieve the indi-
cators (e.g., climate model ensemble spread) or from expert knowledge. Through this 
approach, gaps of knowledge in some aspects of the impact chain definition can be easily 
considered in the assessment. This allows to quantify how those gaps affect the reliability 
of the estimated risk. 

In the framework of the UNCHAIN project, UNTIC, a web-based tool has been de-
veloped to ease the task of implementing the proposed methodology. The tool has been 
applied to a study case to illustrate how the uncertainties in different components of the 
impact chain can affect the robustness of the final risk assessment. Also, the tool provides 
an estimate of the sensitivity of the final risk to each component, which can be used to 
guide risk adaptation or mitigation strategies. 
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