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Abstract: Increasingly measured data in the context of smart cities can be used to develop new and
innovative business models to increase efficiency and the value of life. A time-series classification
algorithm can support to automatize many different processes such as forecasting services. In order
to ensure data security and privacy, Federated Learning (FL) trains a global model collaboratively on
multiple clients. Having different data-distributions (dd) and data-quantities (dg) across participating
clients, neural networks suffer from slow convergence and overfitting [2]. Based on different dd, dg and
number of clients, we develop and evaluate different data-clustering strategies to update global model
weights in comparison to the state of the art [9]. We use public time-series data from [1], generate
various synthetic datasets considering dd, dq and train a Relational-Regularized Autoencoder (RAE)
for classification purposes. Our results show an improvement of model performance concerning
generalization.

Keywords: Federated Learning Strategies, Relational-Regularized Autoencoder, Time-Series Classifi-
cation

1. Introduction

The digitalization of industrial processes, marketing and controlling of energy fluxes as
well as health care is accompanied by high-frequency data generation on edge devices. This
data contains a lot of information about processes that could be optimized and automated.
Since there exists a lack of data-privacy and -security as well as a communication latency
when operating in the cloud, many companies prefer edge-computing. This governance
often means that each company or device has access to a relatively small amount of data,
leading to overfitting while applying machine learning models to solve some specific prob-
lems. As many applications benefit from sharing their knowledge, FL helps to circumvent
this conflict by training locally and aggregating model weights on a central server in a loop.
FL has already been applied to predict load and renewable energy profiles as well as electric
vehicle charge demand in a smart grid [6], [14], [11], [12]. Digital twins are incorporated
into edge networks to fill the gap between physical systems and digital spaces as well as to
improve communication efficiency [8]. Electric vehicles consumption during various traffic
and environmental scenarios has been modelled in a co-simulation with a FL-framework
to model battery behaviour [7]. In future, various new devices like smart meters will be
installed locally generating large volume time-series data. Since there are no consistent
labels for unique time-series classes between these devices, this paper focuses on the un-
supervised time-series classification task to calculate strongest similarities and mutual
relations. This could later be used within a local energy system, recognizing time-series
relations automatically to optimize its generation in operating mode. In our approach,
a RAE (see section 2.6) is used to create time-series specific encodings considering their
means and variances (see sections 2.4 and 2.6). These encodings could be additionally used
to exchange the state of local energy consumption for incorporation into a swarm based
approach. Time-series correlation as well as entropy measures do not make sense here since
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time-series from devices located far apart possess completely different characteristics in the
same time interval. In case of heterogeneous data from different participants on the clients,
FL can lead to slow convergence and overfiting [2]. Based on the time-series classification
task, this paper presents a suitable approach (see section 2.5) to overcome these difficulties.

Related Work

The state of the art FL method uses iterative linear weight averaging, based on the
number of data-points on each client, to train deep neural networks [9] (see equation 6).
This approach shows robust results considering different dd and dg. Based on this initial
work, a lot of research has been done on the issue of heterogeneous data distributions across
clients. Federated Adaptive Weighting [18] compares local and global model gradients to
develop a non-linear mapping function for weight averaging based on client contribution.
This accelerates convergence while excluding non-participating clients. [20] propose the
earths mover’s distance to measure model weight divergence of different dd for weight
averaging on the central server. However this requires a small randomly chosen subset
from each client on the central server, which violates data-privacy. [15] use client updates to
perform active device selection, which speeds up convergence and minimizes the number
of communication rounds of federated training. Another option to accelerate convergence
is to exclude clients with irrelevant model updates [17]. Additionally the weight drift on
various clients can be controlled by using a stochastic averaging algorithm to reduce the
effect of different dd, improving global model performance at the cost of slower convergence
[5]. Besides learning only a single global model, there is additionally the option to learn
multiple models [10]. Here the nodes are clustered according to their various dd and those
with less correlation to their corresponding cluster members or with slow convergence are
excluded. This direct exclusion of some clients may be unacceptable in the case of time-
series classification tasks. Optimizing multiple models via FL using the multi-task learning
framework proposed by [13] only works for convex models like support vector machines.
Multiple model approaches are not applicable to our usecase since the objective is to learn
a global model that should be able to compare many time-series at once. This paper aims
to develop a simple alternative to the previously mentioned weight-averaging strategies
with respect to the time-series classification task. Assuming weights should be averaged
according to the various client dd and their relative position to each other (see figure 1),
cluster-variance-weighting (cow), client-centroid-weighting (ccw) and ensemble-weighting
(ew) are introduced in section 2.5. They are applied on the encodings learned by the RAE
(see section 2.6). To analyze these strategies, a scenario is defined in section 2.1. Pre- and
post-processing of the data is detailed in section 2.3 and 2.4. The evaluation procedure is
explained in section 2.7, followed by a discussion of the results in section 3.
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2. Materials and Methods
2.1. Data

A real-valued energy time-series dataset with a quarter-hourly resolution is extracted
from [1]. It contains 22 classes of several German grid operators and European countries
within a period of time between 2 and 6 years. Each time-series is split into annual intervals
to generate multiple sequences per class. This leads to a larger sample set for evaluation
statistics. The number of time-series class labels (tscl) are as follows:

Biomass (30)

Brown coal (18)
Export (126)

Fossil gas (30)

Grid load (30)

Hard coal (30)
Hydropower (30)
Import (126)

Nuclear energy (18)
Other conventional (25)
Other renewables (30)
Pump storage (30)
Photovoltaic (30)
Physical netto-export (26)
Power price (8)

Price (83)

Pump storage (30)
Quantity called (8)
Quantity held (10)
Residual load (30)
Wind offshore (12)
Wind onshore (30)
Working price (8)

The dd of various tscl can be analyzed by calculating d,..; which equals to the mean
standard deviation of its encodings (see equation 1, 5 and table 1):

dmean

where:

—
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L: number of indices per encoding
N: number of encodings of one fscl

Table 1: dyeqn of each tscl

_ 2
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)

tscl Variance Distribution label
Quantity called 0.0324 small
Residual load 0.0538 small
Physical netto-export 0.0652 small
Pump storage 0.0687 small
Power price 0.0704 small

Continued on next page
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Table 1: dyeqn of each tscl (Continued)

tscl Variance Distribution label
Photovoltaic 0.0706 small
Price 0.0775 small
Grid load 0.0815 medium
Import 0.0816 medium
Wind onshore 0.0874 medium
Fossil gas 0.0904 medium
Export 0.1073 medium
Hard Coal 0.1132 medium
Quantity held 0.1205 medium
Working price 0.125 medium
Wind offshore 0.1305 big
Other conventional 0.1331 big
Hydropower 0.1442 big
Other renewables 0.1538 big
Brown coal 0.1653 big
Biomass 0.1715 big
Nuclear energy 0.1923 big

2.2. Generating Synthetic Datasets

For evaluating different weighting-strategies (see section 2.5) of the trained models,
they are evaluated on 10 clients with diverse dd. In the following, a scenario is detailed
with regard to dd:

2.2.1. Evaluation Dataset

While a RAE is trained within a FL-framework, its evaluation concerning model
performance is essential after each FL-epoch. Therefore, 20% of randomly chosen time-
series of each class (see section 2.1) are extracted from the entire dataset according to various
dd. These multiple evaluation-datasets located on the central server help to control the
number of epochs or even abort the entire process.

2.2.2. Training Dataset

To divide time-series into and generate different dd, the central question is “what is
a highly distributed time-series”. This task is mostly solved by applying statistics or in
particular entropy measurements [4]. Unfortunately, these methods only consider the entire
distribution but not really the type of sub-sequence of a specific time-series. To Overcome
this shortcoming, the method described in section 2.3 and the RAE are used to generate
daily encodings of Min and Max. By calculating the mean (the mean sub-sequence) and
standard deviation (the distribution around the mean sub-sequence) of these encodings, the
time-series can be clustered according to their similarity and distribution. The clustering
works as follows:

Firstly, the RAE is trained on the entire dataset to generate representative encodings entys
(see section 2.4) of each annual time-series. Having an encodings matrix, k-means clustering
with k = 10 is used to assign each annual time-series to a specific cluster. Based on this pool
of different clusters, diverse synthetic client-datasets representing different distributions
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and number of datapoints are created for the FL setting (see table 2):

Table 2: FL setting concerning time-series cluster (number of annual time-series of cluster)
with various dd (lowest on C1 and highest on C10) on different clients

Client Number Time-Series Cluster (N Time-Series)
C1 1 (60)

C2 2,3 (56)

C3 2,3,4 (51)

C4 1,4,5,6(48)

C5 1,2,3,4,5(45)

C6 2,3,4,6,7,8(42)

Cc7 1,2,3,4,5,6,7 (35)

C8 1,2,4,5,6,7,8,9 (24)

C9 1,2,3,4,5,6,7,8,9 (18)
C10 1,2,3,4,5,6,7,8,9,10 (10)

2.3. Pre-Processing

Time-series are subject to various exogenous variables and possess different charac-
teristics concerning trend, seasonality and noise. Assuming a characteristic sub-sequence
beginning at a local minimum (Min) or maximum (Max), it might be possible to classify
distinct time-series. Therefore, Min and Max are chosen on a daily basis, producing a vector
with length of an entire day with 96 values for the classification task. The resulting sub-
sequences 7sub are then normalized using the monthly maximum of their corresponding
time-series X" month,max- Monthly normalization is chosen due to the monthly evaluation
(see section 2.7):

N
vl X sub )

X sub =

X month,max

2.4. Post-Processing

Applying the RAE on the pre-processed dataset generates a huge number of encodings.
To make these comparable to each other, each encoding has to be standardised by:

. _1ym .
encij — 3 Yo enci;

C. .=
ij 1
\/ﬁ Z?:O(ean,j - ﬂenc,j)z

®)

en

where:
n: total number of encodings
i: i-th encoding
j: index of the encoding
enc: sub-sequence encoding

Each time-series is then characterized by statistics of its Min and Max encodings. At
this point, the mean y1;; as well as the standard deviation oy j per time-series, year, Min
and Max (see section 2.3) are calculated:
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Figure 2. Minimum and maximum sequence of a single day

1Z 1&
mi= Y xij o= - (%) = pias ) (4)
i=0 i=0
where:

n: number of encodings of one time-series, year, Min or Max

To calculate similarities between different time-series according to the Euclidean distance,
the vectors of 7ts’mm, 7ts,max, 7ts’min and 7ts,mux are concatenated to include both
dimensions as well as its Min and Max characteristics:

— — —
ents = concatenat6< 1 tsmins . tsmaxs © tsmins 7ts,max) ©)

2.5. Federated Learning Strategies

In classical FL, the different client-model-weights (cmw) are averaged according to the
number of their datapoints [9] (see equation 6). This can be a good method for homogeneous
distributed data, but somewhat less for the heterogeneous case. For example, a model
trained on a client with a lot of similar data can result in overfitted and non optimal weights.
In contrast, training a model on a client with highly diverse data can result in better weights.
Thus the latter clients should contribute more when averaging all cmw to obtain the best
global-model-weights (gmw).

gmwtHl = — 7’,{ * cmwk (6)

where:
- gmw: global model weights
- ¢ number of clients
- a: number of datapoints per client
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2.5.1. Cluster variance weighting

The first weighting strategy applies k-means clustering on the encoding matrix of all
7;1417 on each client. The number of clusters may be variable, but is considered as constant
ne = 7. Assuming that dd correlates with the variance between the cluster-centers (cc), one
clients’ cow is defined as:

1 ne 1 l 1 I 5
cow=—Y |7 (ccij— <Y ccif) )
neim\ o I3

where:
- I: length of Eo
- cc: cluster centers

This distribution score cvw now enables cmw averaging according to the client distributions:

N
k+1 k k
gmw ™t = —Y " cowf « cmw; (8)
Mel i3
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Figure 3. Different client dd

2.5.2. Client centroid weighting

While the previous strategy only weights by the intra-client dd, it does not handle the
inter-client dd (see figure 1). Assuming each client’s data to be a single time-series, equation

5 becomes:
— — —
encg = concatenate( H et mins W ol maxs 761,,"1-", 7Cl,max) 9)
where:
- cl: client

Having a mean encoding of all clients which additionally does not fit the length of RAE-
encodings to reproduce it on the central server, each client can be weighted with respect to
the distance to its centroid:

(10)

where:
- ccw: client centroid weight

Resulting in gmw:
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Nl
k+1 _ k k
gmw " = P E ccw; * cmw; (11)
=1

2.5.3. Ensemble weighting

Since one single strategy is unlikely to perform the best, all previous strategies are
combined into an ew:

1 I gk cowk ccwk
e =Y (G + =+ =) o) (12)
Ml i3 Y a4 Lyl cowy )5 ccw;

gmwk+

2.6. Model

Conventional Autoencoders do not regularize the latent space which often leads to non-
plausible encodings. In consequence, the encodings are not comparable and are unusable
for unsupervised time-series classification. Therefor, this paper applies a RAE to overcome
this issue [19]. The RAE uses a siamese network architecture to regularize the encodings by
adding a special loss function loss,,; (see equation 13) with regularization factor « to the
reconstruction loss [0ssys. to calculate the total loss Loss (see equation 14).

lossye; = |A%nput - A%nc| (13)
Loss = 10SSyse + & % 1055, (14)
Xsub,1 Ainput = |xsub,1 - xsub,Zl Xsub,2
[ Layer 1 ] [ Layer 1 ]

X —
Aenc - |encsub,1 - encsub,2|

encsub,l < > encsub,z

X X
[ Layer 3 ] [ Layer 3 ]
} }

/x\sub,l /x\sub,l

Figure 4. Relational Autoencoder

2.7. Evaluation

Assuming a time-series can be summarized by a distribution of different sub-sequence
characteristics, their means 7ts’mm, Uts,max and standard deviations 7ts,min/ 7ts,max are
calculated for 3 consecutive months and concatenated to en_%ts (see section 2.4). In the next
step, the nearest neighbors of each entys are calculated using the Euclidean distance. Then
a precision score can be calculated by comparing the correct label to the label given by the
nearest neighbors of entys (see equation 15). Besides this raw classification score, the model
loss as well as its convergence time are evaluated.

1y
preCscore,tscl; = N Zhlti (15)
i=1

where:
- hit: equals to 0, if tscle # tsclyaicning; else hit =1
- tscl.: ground truth tscl
- tscliyatching: matched tscl by nearest neighbor method
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3. Results and Discussion

Applying FL with the ew strategy shows good results (see figures 5, ??) in the time-
series classification task with respect to the precision score (see section 2.7). While the
classical approach (see equation 6) converges faster, ew performs better in the long run (up
to 120 epochs) and results in better model generalization. Additionally, the results are very
sensitive to the evaluation datasets whereas ew obviously shows improvements concerning
robustness. While the evaluation datasets do not represent the real dd on the various clients,
the results can only show relative comparisons between the classical approach and ew.

Precision Precision
0.75

0.66 1 — classical Approach —— classical Approach

A
—— our Approach W/\\(W\/*’W“\ 0.744 — our Approach AV ey
0.65 \ \ )
N N\V\J\,L 073
\

N |

Vv
0.64 WV \
i “\“\vl‘\ 0.72

W 071

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Server Epochs Server Epochs

(a) Evaluation data A (b) Evaluation data B

Figure 5. Precision (y-axis) of RAE trained on FL setting (see table 2) for various random evaluation
datasets (see section 2.2.1), number of epochs (x-axis) and strategy ew

4. Conclusion

This paper describes a strategy for classifying time-series using their latent representa-
tions. The ew strategy is a robust approach for weight averaging and model generalization.
Future work will further investigate time-series classification and its parameterization
within FL considering shapelets [16] and data pre-processing to use it for the next steps
in the energy supply chain for energy prediction and energy system optimization. This
task also includes the investigation of Federated Feature-Selection [3] to analyze the inter-
dependency of different parties inside a decentralized energy system.
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