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Abstract: Increasingly measured data in the context of smart cities can be used to develop new and 1

innovative business models to increase efficiency and the value of life. A time-series classification 2

algorithm can support to automatize many different processes such as forecasting services. In order 3

to ensure data security and privacy, Federated Learning (FL) trains a global model collaboratively on 4

multiple clients. Having different data-distributions (dd) and data-quantities (dq) across participating 5

clients, neural networks suffer from slow convergence and overfitting [2]. Based on different dd, dq and 6

number of clients, we develop and evaluate different data-clustering strategies to update global model 7

weights in comparison to the state of the art [9]. We use public time-series data from [1], generate 8

various synthetic datasets considering dd, dq and train a Relational-Regularized Autoencoder (RAE) 9

for classification purposes. Our results show an improvement of model performance concerning 10

generalization. 11

Keywords: Federated Learning Strategies, Relational-Regularized Autoencoder, Time-Series Classifi- 12

cation 13

1. Introduction 14

The digitalization of industrial processes, marketing and controlling of energy fluxes as 15

well as health care is accompanied by high-frequency data generation on edge devices. This 16

data contains a lot of information about processes that could be optimized and automated. 17

Since there exists a lack of data-privacy and -security as well as a communication latency 18

when operating in the cloud, many companies prefer edge-computing. This governance 19

often means that each company or device has access to a relatively small amount of data, 20

leading to overfitting while applying machine learning models to solve some specific prob- 21

lems. As many applications benefit from sharing their knowledge, FL helps to circumvent 22

this conflict by training locally and aggregating model weights on a central server in a loop. 23

FL has already been applied to predict load and renewable energy profiles as well as electric 24

vehicle charge demand in a smart grid [6], [14], [11], [12]. Digital twins are incorporated 25

into edge networks to fill the gap between physical systems and digital spaces as well as to 26

improve communication efficiency [8]. Electric vehicles consumption during various traffic 27

and environmental scenarios has been modelled in a co-simulation with a FL-framework 28

to model battery behaviour [7]. In future, various new devices like smart meters will be 29

installed locally generating large volume time-series data. Since there are no consistent 30

labels for unique time-series classes between these devices, this paper focuses on the un- 31

supervised time-series classification task to calculate strongest similarities and mutual 32

relations. This could later be used within a local energy system, recognizing time-series 33

relations automatically to optimize its generation in operating mode. In our approach, 34

a RAE (see section 2.6) is used to create time-series specific encodings considering their 35

means and variances (see sections 2.4 and 2.6). These encodings could be additionally used 36

to exchange the state of local energy consumption for incorporation into a swarm based 37

approach. Time-series correlation as well as entropy measures do not make sense here since 38
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time-series from devices located far apart possess completely different characteristics in the 39

same time interval. In case of heterogeneous data from different participants on the clients, 40

FL can lead to slow convergence and overfiting [2]. Based on the time-series classification 41

task, this paper presents a suitable approach (see section 2.5) to overcome these difficulties. 42

Related Work 43

The state of the art FL method uses iterative linear weight averaging, based on the 44

number of data-points on each client, to train deep neural networks [9] (see equation 6). 45

This approach shows robust results considering different dd and dq. Based on this initial 46

work, a lot of research has been done on the issue of heterogeneous data distributions across 47

clients. Federated Adaptive Weighting [18] compares local and global model gradients to 48

develop a non-linear mapping function for weight averaging based on client contribution. 49

This accelerates convergence while excluding non-participating clients. [20] propose the 50

earths mover’s distance to measure model weight divergence of different dd for weight 51

averaging on the central server. However this requires a small randomly chosen subset 52

from each client on the central server, which violates data-privacy. [15] use client updates to 53

perform active device selection, which speeds up convergence and minimizes the number 54

of communication rounds of federated training. Another option to accelerate convergence 55

is to exclude clients with irrelevant model updates [17]. Additionally the weight drift on 56

various clients can be controlled by using a stochastic averaging algorithm to reduce the 57

effect of different dd, improving global model performance at the cost of slower convergence 58

[5]. Besides learning only a single global model, there is additionally the option to learn 59

multiple models [10]. Here the nodes are clustered according to their various dd and those 60

with less correlation to their corresponding cluster members or with slow convergence are 61

excluded. This direct exclusion of some clients may be unacceptable in the case of time- 62

series classification tasks. Optimizing multiple models via FL using the multi-task learning 63

framework proposed by [13] only works for convex models like support vector machines. 64

Multiple model approaches are not applicable to our usecase since the objective is to learn 65

a global model that should be able to compare many time-series at once. This paper aims 66

to develop a simple alternative to the previously mentioned weight-averaging strategies 67

with respect to the time-series classification task. Assuming weights should be averaged 68

according to the various client dd and their relative position to each other (see figure 1), 69

cluster-variance-weighting (cvw), client-centroid-weighting (ccw) and ensemble-weighting 70

(ew) are introduced in section 2.5. They are applied on the encodings learned by the RAE 71

(see section 2.6). To analyze these strategies, a scenario is defined in section 2.1. Pre- and 72

post-processing of the data is detailed in section 2.3 and 2.4. The evaluation procedure is 73

explained in section 2.7, followed by a discussion of the results in section 3. 74

Figure 1. dd σ in and centroid S between each client C
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2. Materials and Methods 75

2.1. Data 76

A real-valued energy time-series dataset with a quarter-hourly resolution is extracted 77

from [1]. It contains 22 classes of several German grid operators and European countries 78

within a period of time between 2 and 6 years. Each time-series is split into annual intervals 79

to generate multiple sequences per class. This leads to a larger sample set for evaluation 80

statistics. The number of time-series class labels (tscl) are as follows: 81

• Biomass (30) 82

• Brown coal (18) 83

• Export (126) 84

• Fossil gas (30) 85

• Grid load (30) 86

• Hard coal (30) 87

• Hydropower (30) 88

• Import (126) 89

• Nuclear energy (18) 90

• Other conventional (25) 91

• Other renewables (30) 92

• Pump storage (30) 93

• Photovoltaic (30) 94

• Physical netto-export (26) 95

• Power price (8) 96

• Price (83) 97

• Pump storage (30) 98

• Quantity called (8) 99

• Quantity held (10) 100

• Residual load (30) 101

• Wind offshore (12) 102

• Wind onshore (30) 103

• Working price (8) 104

105

The dd of various tscl can be analyzed by calculating dmean which equals to the mean 106

standard deviation of its encodings (see equation 1, 5 and table 1): 107

dmean =
1
L

L

∑
j=1

√√√√ 1
N

N

∑
i=1

(−→enctsi,j − µ−→enctsi,j
)2 (1)

where: 108

L: number of indices per encoding 109

N: number of encodings of one tscl 110

111

112
Table 1: dmean of each tscl

Quantity called 0.0324 small

Residual load 0.0538 small

Physical netto-export 0.0652 small

Pump storage 0.0687 small

Power price 0.0704 small

tscl Variance Distribution label

Continued on next page 113
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Table 1: dmean of each tscl (Continued)

Photovoltaic 0.0706 small

Price 0.0775 small

Grid load 0.0815 medium

Import 0.0816 medium

Wind onshore 0.0874 medium

Fossil gas 0.0904 medium

Export 0.1073 medium

Hard Coal 0.1132 medium

Quantity held 0.1205 medium

Working price 0.125 medium

Wind offshore 0.1305 big

Other conventional 0.1331 big

Hydropower 0.1442 big

Other renewables 0.1538 big

Brown coal 0.1653 big

Biomass 0.1715 big

Nuclear energy 0.1923 big

tscl Variance Distribution label

114

2.2. Generating Synthetic Datasets 115

For evaluating different weighting-strategies (see section 2.5) of the trained models, 116

they are evaluated on 10 clients with diverse dd. In the following, a scenario is detailed 117

with regard to dd: 118

2.2.1. Evaluation Dataset 119

While a RAE is trained within a FL-framework, its evaluation concerning model 120

performance is essential after each FL-epoch. Therefore, 20% of randomly chosen time- 121

series of each class (see section 2.1) are extracted from the entire dataset according to various 122

dd. These multiple evaluation-datasets located on the central server help to control the 123

number of epochs or even abort the entire process. 124

2.2.2. Training Dataset 125

To divide time-series into and generate different dd, the central question is “what is 126

a highly distributed time-series”. This task is mostly solved by applying statistics or in 127

particular entropy measurements [4]. Unfortunately, these methods only consider the entire 128

distribution but not really the type of sub-sequence of a specific time-series. To Overcome 129

this shortcoming, the method described in section 2.3 and the RAE are used to generate 130

daily encodings of Min and Max. By calculating the mean (the mean sub-sequence) and 131

standard deviation (the distribution around the mean sub-sequence) of these encodings, the 132

time-series can be clustered according to their similarity and distribution. The clustering 133

works as follows: 134

135

Firstly, the RAE is trained on the entire dataset to generate representative encodings −→encts 136

(see section 2.4) of each annual time-series. Having an encodings matrix, k-means clustering 137

with k = 10 is used to assign each annual time-series to a specific cluster. Based on this pool 138

of different clusters, diverse synthetic client-datasets representing different distributions 139
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and number of datapoints are created for the FL setting (see table 2): 140

141

142
Table 2: FL setting concerning time-series cluster (number of annual time-series of cluster)

with various dd (lowest on C1 and highest on C10) on different clients

C1 1 (60)

C2 2, 3 (56)

C3 2 ,3, 4 (51)

C4 1, 4, 5, 6 (48)

C5 1 ,2 ,3 ,4 ,5 (45)

C6 2, 3, 4, 6, 7, 8 (42)

C7 1, 2, 3, 4, 5, 6, 7 (35)

C8 1, 2, 4, 5, 6, 7, 8, 9 (24)

C9 1, 2, 3, 4, 5, 6, 7, 8, 9 (18)

C10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 (10)

Client Number Time-Series Cluster (N Time-Series)

143

2.3. Pre-Processing 144

Time-series are subject to various exogenous variables and possess different charac- 145

teristics concerning trend, seasonality and noise. Assuming a characteristic sub-sequence 146

beginning at a local minimum (Min) or maximum (Max), it might be possible to classify 147

distinct time-series. Therefore, Min and Max are chosen on a daily basis, producing a vector 148

with length of an entire day with 96 values for the classification task. The resulting sub- 149

sequences −→x sub are then normalized using the monthly maximum of their corresponding 150

time-series −→x month,max. Monthly normalization is chosen due to the monthly evaluation 151

(see section 2.7): 152

−→x ′
sub =

−→x sub
−→x month,max

(2)

2.4. Post-Processing 153

Applying the RAE on the pre-processed dataset generates a huge number of encodings. 154

To make these comparable to each other, each encoding has to be standardised by: 155

enc′i,j =
enci,j − 1

n ∑n
i=0 enci,j√

1
n ∑n

i=0(enci,j − µenc,j )2
(3)

where: 156

n: total number of encodings 157

i: i-th encoding 158

j: index of the encoding 159

enc: sub-sequence encoding 160

161

Each time-series is then characterized by statistics of its Min and Max encodings. At 162

this point, the mean µts,j as well as the standard deviation σts,j per time-series, year, Min 163

and Max (see section 2.3) are calculated: 164
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Figure 2. Minimum and maximum sequence of a single day

µ,j =
1
n

n

∑
i=0

xi,j; σ,j =

√
1
n

n

∑
i=0

(xj − µts,j)2 (4)

where: 165

n: number of encodings of one time-series, year, Min or Max 166

167

To calculate similarities between different time-series according to the Euclidean distance, 168

the vectors of −→µ ts,min, −→µ ts,max, −→σ ts,min and −→σ ts,max are concatenated to include both 169

dimensions as well as its Min and Max characteristics: 170

−→encts = concatenate
(−→µ ts,min,−→µ ts,max ,−→σ ts,min,−→σ ts,max

)
(5)

2.5. Federated Learning Strategies 171

In classical FL, the different client-model-weights (cmw) are averaged according to the 172

number of their datapoints [9] (see equation 6). This can be a good method for homogeneous 173

distributed data, but somewhat less for the heterogeneous case. For example, a model 174

trained on a client with a lot of similar data can result in overfitted and non optimal weights. 175

In contrast, training a model on a client with highly diverse data can result in better weights. 176

Thus the latter clients should contribute more when averaging all cmw to obtain the best 177

global-model-weights (gmw). 178

gmwk+1 =
1

ncl

ncl

∑
i=1

ak
i

∑ncl
i=1 ak

i
∗ cmwk

i (6)

where: 179

- gmw: global model weights 180

- ncl : number of clients 181

- a: number of datapoints per client 182

183

184
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2.5.1. Cluster variance weighting 185

The first weighting strategy applies k-means clustering on the encoding matrix of all 186

−→x ′
sub on each client. The number of clusters may be variable, but is considered as constant 187

nc = 7. Assuming that dd correlates with the variance between the cluster-centers (cc), one 188

clients’ cvw is defined as: 189

cvw =
1
nc

nc

∑
j=0

√√√√1
l

l

∑
i=0

(cci,j −
1
l

l

∑
i=0

cci,j)2 (7)

where: 190

- l: length of −→x sub 191

- cc: cluster centers 192

193

This distribution score cvw now enables cmw averaging according to the client distributions: 194

gmwk+1 =
1

ncl

ncl

∑
i=1

cvwk
i ∗ cmwk

i (8)

(a) low data-distribution (b) high data-distribution

Figure 3. Different client dd

2.5.2. Client centroid weighting 195

While the previous strategy only weights by the intra-client dd, it does not handle the 196

inter-client dd (see figure 1). Assuming each client’s data to be a single time-series, equation 197

5 becomes: 198

−→enccl = concatenate
(−→µ cl,min,−→µ cl,max ,−→σ cl,min,−→σ cl,max

)
(9)

where: 199

- cl: client 200

201

Having a mean encoding of all clients which additionally does not fit the length of RAE- 202

encodings to reproduce it on the central server, each client can be weighted with respect to 203

the distance to its centroid: 204

ccwi =

∣∣∣∣∣−→enccl,i −
1
n

n

∑
k=1

−→enccl,k

∣∣∣∣∣ (10)

where: 205

- ccw: client centroid weight 206

207

Resulting in gmw: 208
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gmwk+1 =
1

ncl

ncl

∑
i=1

ccwk
i ∗ cmwk

i (11)

2.5.3. Ensemble weighting 209

Since one single strategy is unlikely to perform the best, all previous strategies are 210

combined into an ew: 211

(12)gmwk+1 =
1

ncl

ncl

∑
i=1

(
ak

i

∑ncl
i=1 ak

i
+

cvwk
i

∑ncl
i=1 cvwk

i
+

ccwk
i

∑ncl
i=1 ccwk

i
) ∗ cmwk

i

2.6. Model 212

Conventional Autoencoders do not regularize the latent space which often leads to non- 213

plausible encodings. In consequence, the encodings are not comparable and are unusable 214

for unsupervised time-series classification. Therefor, this paper applies a RAE to overcome 215

this issue [19]. The RAE uses a siamese network architecture to regularize the encodings by 216

adding a special loss function lossrel (see equation 13) with regularization factor α to the 217

reconstruction loss lossmse to calculate the total loss Loss (see equation 14). 218

lossrel = |∆2
input − ∆2

enc| (13)

Loss = lossmse + α ∗ lossrel (14)

Figure 4. Relational Autoencoder

2.7. Evaluation 219

Assuming a time-series can be summarized by a distribution of different sub-sequence 220

characteristics, their means −→µ ts,min, µts,max and standard deviations −→σ ts,min, −→σ ts,max are 221

calculated for 3 consecutive months and concatenated to −→encts (see section 2.4). In the next 222

step, the nearest neighbors of each −→encts are calculated using the Euclidean distance. Then 223

a precision score can be calculated by comparing the correct label to the label given by the 224

nearest neighbors of −→encts (see equation 15). Besides this raw classification score, the model 225

loss as well as its convergence time are evaluated. 226

precscore,tscli =
1
N

N

∑
i=1

hiti (15)

where: 227

- hit: equals to 0, if tsclc ̸= tsclmatching; else hit = 1 228

- tsclc: ground truth tscl 229

- tsclmatching: matched tscl by nearest neighbor method 230
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3. Results and Discussion 231

Applying FL with the ew strategy shows good results (see figures 5, ??) in the time- 232

series classification task with respect to the precision score (see section 2.7). While the 233

classical approach (see equation 6) converges faster, ew performs better in the long run (up 234

to 120 epochs) and results in better model generalization. Additionally, the results are very 235

sensitive to the evaluation datasets whereas ew obviously shows improvements concerning 236

robustness. While the evaluation datasets do not represent the real dd on the various clients, 237

the results can only show relative comparisons between the classical approach and ew. 238

(a) Evaluation data A (b) Evaluation data B

Figure 5. Precision (y-axis) of RAE trained on FL setting (see table 2) for various random evaluation
datasets (see section 2.2.1), number of epochs (x-axis) and strategy ew

4. Conclusion 239

This paper describes a strategy for classifying time-series using their latent representa- 240

tions. The ew strategy is a robust approach for weight averaging and model generalization. 241

Future work will further investigate time-series classification and its parameterization 242

within FL considering shapelets [16] and data pre-processing to use it for the next steps 243

in the energy supply chain for energy prediction and energy system optimization. This 244

task also includes the investigation of Federated Feature-Selection [3] to analyze the inter- 245

dependency of different parties inside a decentralized energy system. 246
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