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1. Introduction

Dilation theory of contractions on Hilbert spaces which started from the work of Halmos [22] and for-

warded by Sz.-Nagy [38] is now 70 years old. Influential works on this area are documented in refer-

ences [1, 4–7, 9–16, 19–21, 27, 28, 30–36, 39–42] Gradually, the theory has been put in the Banach space

settings [2, 3, 17,18,25,29,37].

Very recently, the dilation theory has been introduced for functions on sets [8] and linear operators on

vector spaces [8,23,26]. In this paper, we introduce the notion of magic contraction (Definition 2.4). We

then derive p-adic versions of Halmos dilation (Theorem 2.5), Egervary N-dilation (Theorem 2.7), von

Neumann inequality (Theorem 2.8), Sz.-Nagy dilation (Theorem 2.9) and von Neumann ergodic result

(Theorem 2.10). Our paper is highly motivated from the paper of Halmos [22], Egervary [16], Schaffer [35],

Sz.-Nagy [38], Bhat, De and Rakshit [8] and Krishna and Johnson [26].

2. p-adic Magic Contractions, p-adic von Neumann Inequality and p-adic Sz.-Nagy

Dilation

We use the following notion of p-adic Hilbert space which is slight variant of notion introduced by

Kalisch [24].

Definition 2.1. [24] Let K be a non-Archimedean (complete) valued field (with valuation | · |) and X be

a non-Archimedean Banach space (with norm ‖ · ‖) over K. We say that X is a p-adic Hilbert space if

there is a map (called as inner product) 〈·, ·〉 : X × X → K satisfying following.

(i) If x ∈ X is such that 〈x, y〉 = 0 for all y ∈ X , then x = 0.

(ii) 〈x, y〉 = 〈y, x〉 for all x, y ∈ X .

(iii) 〈αx, y〉 = α〈x, y〉 for all α ∈ K, for all x ∈ X .

(iv) |〈x, y〉| ≤ ‖x‖‖y‖ for all x, y ∈ X .

Following are standard examples we keep in mind.
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Example 2.2. Let d ∈ N and K be a non-Archimedean (complete) valued field. Define

Kd := {(xj)dj=1 : xj ∈ K, 1 ≤ j ≤ d}

Then Kd is a p-adic Hilbert space w.r.t. norm

‖(xj)dj=1‖ := max
1≤j≤d

|xj |, ∀(xj)dj=1 ∈ Kd

and inner product

〈(xj)dj=1, (yj)
d
j=1〉 :=

d∑
j=1

xjyj , ∀(xj)dj=1, (yj)
d
j=1 ∈ Kd.

Example 2.3. Let K be a non-Archimedean (complete) valued field. Define

c0(N,K) := {(xn)∞n=1 : xn ∈ K,∀n ∈ N, lim
n→∞

|xn| = 0}

Then c0(N,K) is a p-adic Hilbert space w.r.t. norm

‖(xn)∞n=1‖ := sup
n∈N
|xn|, ∀(xn)∞n=1 ∈ c0(N,K)

and inner product

〈(xn)∞n=1, (yn)∞n=1〉 :=

∞∑
n=1

xnyn, ∀(xn)∞n=1, (yn)∞n=1 ∈ c0(N,K).

Let X be a p-adic Hilbert space and T : X → X be a bounded linear operator. We say that T is

adjointable if there is a bounded linear operator, denoted by T ∗ : X → X such that 〈Tx, y〉 = 〈x, T ∗y〉,
∀x, y ∈ X . Note that (i) in Definition 2.1 says that adjoint, if exists, is unique. An adjointable bounded

linear operator U is said to be a unitary if UU∗ = U∗U = IX , the identity operator on X . An adjointable

bounded linear operator P is said to be projection if P 2 = P ∗ = P . An adjointable bounded linear

operator T is said to be an isometry if T ∗T = IX . An adjointable bounded linear operator T is said to

be self-adjoint if T ∗ = T . We denote the identity operator on X by IX . Following is the magic definition.

Definition 2.4. Let X be a p-adic Hilbert space and T : X → X be a bounded linear adjointable operator.

We say that T is a magic contraction if there are self adjoint bounded linear operators MT : X → X
and MT∗ : X → X (which may not be unique, that is why M) such that

M2
T = IX − T ∗T, M2

T∗ = IX − TT ∗,

TMT = MT∗T.

Our first result is the p-adic Halmos dilation.

Theorem 2.5. (p-adic Halmos dilation) Let X be a p-adic Hilbert space and T : X → X be a magic

contraction. Then the operator

U :=

(
T MT∗

MT −T ∗

)
is unitary on X ⊕ X . In other words,

T = PXU |X , T ∗ = PXU
∗|X ,

where PX : X ⊕ X 3 (x, y) 7→ x ∈ X .
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Proof. A direct calculation says that

V :=

(
T ∗ MT

MT∗ −T

)
is the inverse and adjoint of U . �

As an application of dilation, Sz.-Nagy gave an easy proof of fixed point of a contraction is also a fixed

point of its adjoint [38]. Here we give a similar result for p-adic magic contractions.

Corollary 2.6. Let X be a p-adic Hilbert space and T : X → X be a magic contraction. If x ∈ X is

such that Tx = x, then T ∗x = x.

Proof. Let U be a Halmos dilation of T . Then x = Tx = PXUx. Since PX is an orthogonal projection, we

must have Ux = x. Since U is unitary, we then have U∗x = x. Therefore T ∗x = PXU
∗x = PXx = x. �

Our second result is the p-adic Egervary dilation.

Theorem 2.7. (p-adic Egervary N-dilation) Let X be a p-adic Hilbert space and T : X → X be a

magic contraction. Let N be a natural number. Then the operator

U :=



T 0 0 · · · 0 0 MT∗

MT 0 0 · · · 0 0 −T ∗

0 IX 0 · · · 0 0 0

0 0 IX · · · 0 0 0
...

...
...

...
...

...

0 0 0 · · · 0 0 0

0 0 0 · · · IX 0 0

0 0 0 · · · 0 IX 0


(N+1)×(N+1)

is unitary on ⊕N+1
k=1 X and

T k = PXU
k|X , ∀k = 1, . . . , N, (T ∗)k = PX (U∗)k|X , ∀k = 1, . . . , N,(1)

where PX : ⊕N+1
k=1 X 3 (xk)N+1

k=1 7→ x1 ∈ X .

Proof. A direct calculation of power of U gives Equation (1). To complete the proof, now we need show

that U is unitary. Define

V :=



T ∗ MT 0 · · · 0 0 0

0 0 IX · · · 0 0 0

0 0 0 · · · 0 0 0

0 0 0 · · · 0 0 0
...

...
...

...
...

...

0 0 0 · · · 0 IX 0

0 0 0 · · · 0 0 IX

MT∗ −T 0 · · · 0 0 0


(N+1)×(N+1)

.

Then UV = V U = I⊕N+1
k=1 X

and U∗ = V . �
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Note that the Equation (1) holds only upto N and not for N + 1 and higher natural numbers. Inspired

from the arguments of Sz.-Nagy [38] for the proof of classical von Neumann inequality, we derive following

p-adic von Neumann inequality.

Theorem 2.8. (p-adic von Neumann inequality) Let f(z) := a0 + a1z + · · · + aNz
N ∈ K[z] be a

polynomial of degree N over K. Let T : X → X be a magic contraction. Let U : ⊕N+1
k=1 X → ⊕

N+1
k=1 X be

any Egervary N-dilation of T . Then

‖f(T )‖ ≤ ‖f(U)‖.

Proof. We have

f(T ) = a0IX + a1T + · · ·+ aNT
N = a0PX + a1PXU |X + · · ·+ aNPXU

N |X

= PX (a0IX + a1U |X + · · ·+ aNU
N |X ) = PX f(U)|X

Therefore

‖f(T )‖ = ‖PX f(U)|X ‖ ≤ ‖PX ‖‖f(U)|X ‖ = ‖f(U)|X ‖ ≤ ‖f(U)‖.

�

In the following theorem, given a p-adic Hilbert space X , ⊕∞n=−∞X is the p-adic Hilbert space defined

by

⊕∞n=−∞X := {{xn}∞n=−∞, xn ∈ X ,∀n ∈ Z, lim
|n|→∞

‖xn‖ = 0}

equipped with norm

‖{xn}∞n=−∞‖ := sup
n∈Z
‖xn‖, ∀{xn}∞n=−∞ ∈ ⊕∞n=−∞X

and inner product

〈{xn}∞n=−∞, {yn}∞n=−∞〉 :=
∞∑

n=−∞
〈xn, yn〉, ∀{xn}∞n=−∞, {yn}∞n=−∞ ∈ ⊕∞n=−∞X .

Following is the most important p-adic Sz.-Nagy dilation.

Theorem 2.9. (p-adic Sz.-Nagy dilation) Let X be a p-adic Hilbert space and T : X → X be a magic

contraction. Let U := (un,m)−∞≤n,m≤∞ be the operator defined on ⊕∞n=−∞X given by the infinite matrix

defined as follows:

u0,0 := T, u0,1 := MT∗ , u−1,0 := MT , u−1,1 := −T ∗,

un,n+1 := IX , ∀n ∈ Z, n 6= 0, 1, un,m := 0 otherwise,
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i.e.,

U =



...
...

...
...

...
...

· · · IX 0 0 0 0 0 · · ·
· · · 0 IX 0 0 0 0 · · ·
· · · 0 0 MT −T ∗ 0 0 · · ·
· · · 0 0 T MT∗ 0 0 · · ·
· · · 0 0 0 0 IX 0 · · ·
· · · 0 0 0 0 0 IX · · ·

...
...

...
...

...
...


∞×∞

where T is in the (0, 0) position (which is boxed), is unitary on ⊕∞n=−∞X and

Tn = PXU
n|X , ∀n ∈ N, (T ∗)n = PX (U∗)n|X , ∀n ∈ N,(2)

where PX : ⊕∞n=−∞X 3 (xn)∞n=−∞ 7→ x0 ∈ X .

Proof. We get Equation (2) by calculation of powers of U . The matrix V := (vn,m)−∞≤n,m≤∞ defined

by

v0,0 := T ∗, v0,−1 := MT , v1,0 := MT∗ , v1,−1 := T,

vn,n−1 := IX , ∀n ∈ Z, n 6= 0, 1, vn,m := 0 otherwise,

i.e.,

V =



...
...

...
...

...
...

· · · IX 0 0 0 0 0 · · ·
· · · 0 IX 0 0 0 0 · · ·
· · · 0 0 MT T ∗ 0 0 · · ·
· · · 0 0 −T MT∗ 0 0 · · ·
· · · 0 0 0 0 IX 0 · · ·
· · · 0 0 0 0 0 IX · · ·

...
...

...
...

...
...


∞×∞

where T ∗ is in the (0.0) position (which is boxed), satisfies UV = V U = I⊕∞n=−∞X and U∗ = V . �

We note that explicit sequential form of U is

U(xn)∞n=−∞ = (. . . , x−2, x−1,MTx0 − T ∗x1, Tx0 +MT∗x1 , x2, x2, . . . )

where T ∗ is in the 0 position (which is boxed) and U∗ is

U∗(xn)∞n=−∞ = (. . . , x−3, x−2, MTx−1 + T ∗x0 ,−Tx−1 +MT∗x0, x1, . . . ).

Using his dilation result, Sz.-Nagy gave a new proof of von Neumann mean ergodic theorem [38]. Moti-

vated from this, now derive p-adic von Neumann mean ergodic theorem.
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Theorem 2.10. (p-adic von Neumann mean ergodic theorem) Let X be a p-adic Hilbert space

and T : X → X be a magic contraction. If p-adic Sz.-Nagy dilation U of T is such that the limit

lim
N→∞

1

N + 1

N∑
n=1

Unx exists for all x ∈ X ,

then the limit

lim
N→∞

1

N + 1

N∑
n=1

Tnx exists for all x ∈ X .

Proof. This follows from the observation

lim
N→∞

1

N + 1

N∑
n=1

Tnx = lim
N→∞

1

N + 1

N∑
n=1

PXU
nx = PX

(
lim

N→∞

1

N + 1

N∑
n=1

Unx

)
∀x ∈ X .

�

We are now in the position to ask following problems based on dilation theory in Hilbert spaces.

Problem 2.11.

(i) Whether there is p-adic Ando dilation? If yes, whether one can dilate commuting

three, four, ... commuting magic contractions to commuting unitaries?

(ii) Whether there is p-adic von Neumann-Ando inequality?

(iii) Whether there is (a kind of) uniqueness of p-adic Halmos dilation?

(iv) Whether there is p-adic intertwining-lifting theorem (commutant lifting theorem)?

Remark 2.12. Even though we derived all results in the p-adic setting, we can do all the results except

von Neumann inequality and von Neumann ergodic theorem, for modules (or even vector spaces) which

admits bilinear (resp. conjugate) forms over rings (resp. *-rings). Meanwhile, in that case, the title

of the paper can be written as MAGIC CONTRACTIONS ON MODULES/VECTOR SPACES AND

SZ.-NAGY DILATION.

We give various examples.

Example 2.13. Let Z3 be the standard modulo 3 field. Then the operator

T :=

(
2 2

2 2

)
: Z2

3 3 (x, y) 7→ T

(
x

y

)
∈ Z2

3

is a magic contraction. For, first notice (
2 2

2 2

)2

=

(
2 2

2 2

)
.

Hence

I − TT ∗ = I − T ∗T =

(
1 0

0 1

)
−

(
2 2

2 2

)
=

(
2 1

1 2

)
.

Just take

MT = MT∗ :=

(
2 1

1 2

)
.

6

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 September 2022                   doi:10.20944/preprints202209.0433.v1

https://doi.org/10.20944/preprints202209.0433.v1


Then

M2
T =

(
2 1

1 2

)(
2 1

1 2

)
=

(
2 1

1 2

)
= I − TT ∗ = I − T ∗T

and

TMT =

(
2 2

2 2

)(
2 1

1 2

)
=

(
0 0

0 0

)
=

(
2 1

1 2

)(
2 2

2 2

)
= MTT.

Example 2.14. The operator

T :=

(
1 1

1 1

)
: Z2

2 3 (x, y) 7→ T

(
x

y

)
∈ Z2

2

is a magic contraction. Take

MT = MT∗ :=

(
0 1

1 0

)
.

Then

I − TT ∗ = I − T ∗T =

(
1 0

0 1

)
−

(
0 0

0 0

)
=

(
1 0

0 1

)
=

(
0 1

1 0

)(
0 1

1 0

)
= M2

T = M2
T∗

and

TMT =

(
1 1

1 1

)(
0 1

1 0

)
=

(
1 1

1 1

)
=

(
0 1

1 0

)(
1 1

1 1

)
= MTT.

Note that we can directly verify that 
1 1 0 1

1 1 1 0

0 1 1 1

1 0 1 1


is a Halmos dilation of T . We can also take

MT = MT∗ :=

(
1 0

0 1

)
.

In this case, we get the matrix 
1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1


which is also a Halmos dilation of T .

Example 2.15. Let a, b ∈ N∪{0} and p ≥ 2 be such that a2 +b2 ≡ p−1(mod p) and 2ab ≡ p−2(mod p).

Then the operator

T :=

(
p− 1 p− 1

p− 1 p− 1

)
: Z2

p 3 (x, y) 7→ T

(
x

y

)
∈ Z2

p
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is a magic contraction. Notice (
p− 1 p− 1

p− 1 p− 1

)2

=

(
2 2

2 2

)
.

Hence

I − TT ∗ = I − T ∗T =

(
1 0

0 1

)
−

(
2 2

2 2

)
=

(
p− 1 p− 2

p− 2 p− 1

)
.

Define

MT = MT∗ :=

(
a b

b a

)
.

Then

M2
T =

(
a b

b a

)(
a b

b a

)
=

(
a2 + b2 2ab

2ab a2 + b2

)
=

(
p− 1 p− 2

p− 2 p− 1

)
= I − TT ∗ = I − T ∗T

and

TMT =

(
p− 1 p− 1

p− 1 p− 1

)(
a b

b a

)
=

(
(p− 1)(a+ b) (p− 1)(a+ b)

(p− 1)(a+ b) (p− 1)(a+ b)

)

=

(
a b

b a

)(
p− 1 p− 1

p− 1 p− 1

)
= MTT.

Example 2.16. The operator T := 2 ∈ Z5 is not a contraction. This is because

1− TT ∗ = 1− 4 = −3 = 2 6= 02, 12, 22, 32, 42.

Example 2.17. Let p be an odd prime and consider Zp. Now gcd(2, p − 1) = 2. Let a ∈ Zp such that

gcd(1− a2, p) = 1 and

(1− a2)
p−1
2 6≡ 1(mod p).

Quadratic reciprocity then says that a is not a contraction.

Example 2.18. Consider C with involution as identity. Let a, b ∈ C be such that a2 + b2 = 1. Then a

is a magic contraction. Halmos dilation of a is(
a b

b −a

)
.

Hence every complex number is a magic contraction w.r.t. identity involution! We can do this on any

commutative ring whenever ring has elements a, b such that a2 + b2 = 1.

It is a good problem (which seems to be not easy and may require Number Theory tools such as

Quadratic Reciprocity) to characterize all magic contractions in the set of all n by n matrices over Zp

where p ∈ N. Officially, we can formulate the following problem.

Problem 2.19. Let R be a ∗-ring (may be finite or infinite) and for m,n ∈ N, let Mm×n(R)

be the set of all m by n matrices over R. Let In be the n by n identity matrix over R.

Classify matrices T ∈ Mm×n(R) which are magic contractions, i.e., for which matrices

T ∈ Mm×n(R), there are self adjoint matrices (may not be unique) MT ∈ Mm×n(R), MT∗ ∈

8
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Mn×m(R) satisfying following:

M2
T = In − T ∗T, M2

T∗ = Im − TT ∗,

TMT = MT∗T.

If R is finite, what is the number of magic contractions in Mm×n(R) or whether there is

atleast a good upper bound on the number of magic contractions in Mm×n(R)?
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