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Abstract

For more than half a century, Manfred Deistler has been contributing to the construction of the

rigorous theoretical foundations of the statistical analysis of time series and more general stochastic

processes. Half a century of unremitting activity is not easily summarized in a few pages. In this

short note, we chose to concentrate on a relatively little-known aspect of Manfred’s contribution

which nevertheless had quite an impact on the development of one of the most powerful tools of

contemporary time series and econometrics: dynamic factor models.
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1 Introduction

Manfred Deistler is justly famous for his landmark contribution to the theoretical foundations of time

series analysis. In this short note, however, we deliberately chose to focus on a lesser known aspect

of his activity, which nevertheless had quite an impact on the theory and practice of one of the most

powerful tools of contemporary time series and econometrics: dynamic factor models.

Dynamic factor models1 were developed, in the econometric literature mostly, as a response the need

to analyze and forecast time series in high dimension. Increasingly often, indeed, datasets of econometric

interest take the form

XN,T := {Xit| i = 1, . . . , N t = 1, . . . , T}

of a large number N of time series observed over a period of time T—the finite N × T realization of

double-indexed process

X := {Xit| i ∈ N t ∈ Z}
1As we shall see in Section 3 below, this traditional terminology is somewhat of a misnomer, as the general dynamic

factor model (6)–(7) (of which other factor models are particular cases) follows as a representation result rather than
constituting a statistical model, and does not necessarily involve factors; see Hallin and Lippi (2014).
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with arbitrarily intricate cross-sectional and serial dependence structures.

Even for moderate values of N , traditional (parametric) methods of multivariate time series analysis

are running into the theoretical and numerical problems related with the curse of dimensionality. The

need for an alternative approach became evident in the late 1970s, leading to the first factor model

proposals by Sargent and Sims (1977), Geweke (1977), Chamberlain (1983), and Chamberlain and

Rothschild (1983). These four papers can be considered as early forerunners of the modern literature

on factor models—a literature that had a new start in the early 2000’s, with four papers, essentially,

that triggered most subsequent developments: Forni et al. (2000), Bai and Ng (2002), Stock and Wat-

son (2002a), and Stock and Watson (2002b). Chamberlain (1983) and Chamberlain and Rothschild

(1983) were particularly influential as an early example of high-dimensional time-series asymptotics

where both the dimension N and the series length T tend to infinity.

Econometricians, of course, were not the only ones facing inference problems in high-dimensional

spaces. Interestingly, a couple of years later, mathematical statisticians, in the more restricted context

of Gaussian i.i.d. observations, (a very particular case of time series, thus) independently adopted a

somewhat different approach leading to te so-called spiked covariance model. We are showing here how

spiked covariance models and factor models, while sharing some common features, nevertheless differ

on an essential point, and explain why factor models are both more general and statistically more

successful.

Finally, we show how Manfred Deistler, by providing the missing final piece of the general dynamic

factor model jigsaw, had a decisive impact in the area that deserves being better known.

Outline of the paper. Section 2 is dealing with the spiked covariance model developed in the prob-

ability and mathematical statistics literatures. This model, indeed, bears some relations to the factor

model approach, with an essential difference which helps understand the benefits of the latter. Sec-

tion 3 features a brief history of the factor model approach and introduces the General Dynamic Factor

Model (GDFM). Section 4 highlights the importance of Manfred Deistler’s contribution in the ultimate

development of the GDFM methodology.

2 Spiked covariance models: a needle in a growing haystack

While econometricians were facing the time series version of high-dimensional observations and the

curse of dimensionality, mathematical statisticians also were dealing with high-dimensional asymptotics

in the more restricted framework of i.i.d. samples where only cross-sectional dependencies are present.

Interestingly, while sharing some common features with factor models, the models they developed are

leading to strikingly different conclusions.

Most of the probability and statistics literature in the area revolves around the so-called spiked

covariance models—a terminology that was coined, apparently, by Johnstone (2001). In that model,

which has attracted much interest in the recent years, the observation is of the form

XN,T := {Xit| i = 1, . . . , N t = 1, . . . , T} (1)

where

Xt := (X1t, . . . ,XNt)
′, t = 1, . . . , T are i.i.d. N (0,C), (2)

2
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with, denoting by SN−1 the unit sphere in R
N ,

CN = IN +

q
∑

k=1

λkv
(n)
k v

(n)′
k , q ≥ 1, λ1 > λ2 > . . . > λq > 0, v

(n)
k ∈ SN−1, k = 1, . . . , q unspecified (3)

and N and T tending to infinity with N/T → κ, the so-called phase transition threshold. To simplify

the discussion, let q = 1, that is, CN = IN + λvNv
′
N for some vN ∈ SN .

That model leads to a number of mathematically beautiful but statistically puzzling asymptotic

results: the sample covariance eigenvalues pack together, filling the support of the Marchenko-Pastur

density; the distribution of any finite number of centered and normalized largest sample covariance

eigenvalues converges to the multivariate Tracy-Widom law irrespective of the values of (1+λ) in [1, κ);

the sequence of distributions of Xt under λ = 0 (no spike) is contiguous to the corresponding sequence

with 0 < λ < κ, albeit with contiguity rate n0 = 1—which, in particular, precludes consistent estimation

of λ (see Onatski et al. (2013, 2014) for details). The statistical value of such results is, to say the least,

somewhat limited—all the more so that in practice N = N0 and T = T0 are not tending to infinity,

so that the value of κ, the role of which is crucial, is completely arbitrary and bears no relation to

the observed sample.2 That spiked covariance literature, thus, has little to offer to econometricians

who have to produce forecasts and, moreover, are facing serially dependent and mostly non-Gaussian

observations.

These (intriguing but weird) results all are to be blamed on the choice of the asymptotic scheme

itself. Recall that asymptotics are a mathematical fiction by which limiting results (as N and T tend

to infinity) are expected to provide an approximation to the actual fixed-(N = N0), fixed-(T = T0)

problem. The scenario of that mathematical fiction is not in the data: it entirely depends on the

statistician’s choice. That choice, thus, should aim at optimizing the quality of that approximation and

is not meant to describe any actual real-world situation: a scenario under which the “cross-sectional

future” resembles the actual observation is likely to achieve that objective much better than a “worst-

case one”. In traditional time series asymptotics with fixed-dimension (N =N0), where only T → ∞,

stationarity with respect to t is the reasonable usual choice. While the specification, for N > N0 of a

fictitious yet sensible “cross-sectional future” is more delicate, the choice leading to the spiked covariance

model (2)-(3) definitely has the flavor of a “catastrophe scenario” which is unlikely to provide a good

approximation to the finite-dimensional, finite-sample situation.

Below are two types of data-generating processes (two sequences of unit vectors vN ) leading to the

single-spiked-covariance model—the N ×N covariance matrix (3):

(a)

{

X1t = χ1t + ξ1t

Xit = ξit, i = 2, . . . , N
vN =













1

0
...

0













CN = I+ λ













1 0 . . . 0

0 0 . . . 0
...

. . .

0 0 . . . 0













,

where χ1t i.i.d. N (0, λ), and ξit i.i.d. N (0, 1), i = 1 . . . , N , t = 1, . . . , T ;

2The value of the actual ratio N0/T0 is usually chosen for want of anything better.
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(b)

{

X1t = χ1t + ξ1t

Xit = χit + ξit, i = 2, . . . , N
vN =















1√
N
1√
N
...
1√
N















CN = I+ λ









1
N

. . . 1
N

...
. . .

...
1
N

. . . 1
N









where χit =
√

λ
N
ut , ut and ξit i.i.d. N (0, 1), i = 1 . . . , N , t = 1, . . . , T (for vN = ( 1√

N
. . . 1√

N
)′).

Actually, (a) and (b) coincide up to a rotation in R
N (an orthogonal matrix P with first column of the

form ( 1√
N
. . . 1√

N
)′ is turning (a) into (b)): they only differ by the choice of a coordinate system and all

their eigenvalues (theoretical and empirical) coincide.

Under (a), a bounded spike λ (justifying the spiked terminology) is “hidden” under a growing num-

ber N−1 of uninformative white noises—a finite needle buried in an ever-growing haystack. Growing N

clearly does not bring any information (only growing T does). The fact that the needle gets undetected

when its size λ is small relative to the asymptotic value κ of the ratio N/T (the larger that ratio, the

faster the haystack growth) thus is hardly surprising.

Model (b) takes the form of a factor model decomposition, with a cross-sectionally pervasive “common

shock” ut loaded (with loadings
√

λ/N tending to zero as N → ∞) by all components Xit and an

idiosyncratic ξit which is Gaussian white noise. While cross-sectionally pervasive, however, ut is not

loaded strongly enough for the largest eigenvalue of CN , which is 1 + λ, to diverge as N → ∞.

The situation, however, improves dramatically if the size of the needle grows with the dimension N .

Letting χit of the form χit =
√

λ/N1−δ ut in (b), with δ ∈ (0, 1) arbitrarily small (loadings
√

λ/N1−δ

still tending to zero as N → ∞, at slightly slower rate, though), CN ’s largest eigenvalue is 1 + N δλ,

which tends to infinity as N → ∞. With χit of the form χit =
√
cλ ut (c > 0 arbitrarily small), the

loadings are
√
cλ and no longer tend to zero as N → ∞; CN ’s largest eigenvalue is 1 + cλN , which

linearly tends to infinity as N → ∞.

All problems then disappear: with such loadings, (b), indeed, yields a (very) special case of the

dynamic factor models developed by the econometricians and described in Section 3, where consistent

estimation of the loadings—hence of λ—is possible.

Now, the same conclusions hold about (b) if we let

χit =

√

λ

N
ut for i = 1, . . . , N and χit =

√

λ/N1−δ ut for i ≥ N + 1 (4)

or

χit =
√
cλ ut for i = 1, . . . , N and χit =

√

λ/N1−δ ut for i ≥ N + 1. (5)

Assuming (b) with χit of the form (4) or (5) instead of the original formulation (2)-(3), clearly, is

tantamount to adopting alternative asymptotic scenarios, as it only modifies the postulated but not-to-

be-observed form of the “cross-sectional future” (namely, the form of the cross-sectional components with

index i ≥ N + 1), which is an arbitrary choice of the statistician. Under these alternative scenarios,

the spike λ = λN , say, keeps growing with N (viz., λN = λN δ under (4), λN = cλN under (5)),

thus balancing the impact of a growing dimension N : the needle now is growing—be it arbitrarily

slowly—with the haystack.

The asymptotic scenario (5) and, actually, any scenario of loadings leading to a linearly exploding

4
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largest eigenvalue for CN (all other eigenvalues remaining bounded) is particularly appealing, as it

consists in assuming that the fictitious “cross-sectional future” resembles the observed one—a form of

cross-sectional stability which is much more likely to provide a good approximation to the finite-(N,T )

problem under study than the classical spiked-covariance-model asymptotics underlying (2)-(3).

3 Dynamic Factor Models: the blessing of dimensionality

As mentioned in the Introduction, econometricians faced the needle-in-the haystack problem long time

before probabilists and mathematical statisticians did—long time before the expression “big data” was

coined. Econometrics require operational solutions: the asymptotic scenario of a needle that, at the end

of the day, cannot be found is somewhat inappropriate in the econometric context. Moreover, economic

data seldom are i.i.d. Gaussian; they generally are serially auto- and cross-correlated, and often heavy-

tailed (typically yielding infinite fourth-order moments). An econometric theory of high-dimensional

time series therefore needs to address much more general situations than covered by Gaussian spiked

covariance models.

The econometric theory of factor models for high-dimensional observations arose from that need and

takes various forms; the spirit of the approach, as initiated by Chamberlain (1983) and Chamberlain

and Rothschild (1983), is easily explained, however, from a multispiked (q spikes) extension of (b)

yielding q exploding eigenvalues λ1;N , . . . , λq;N—namely, q needles which, in a sense, are growing with

the haystack.

Under their most general form (the General Dynamic Factor Model3 or GDFM introduced in Forni et

al. (2000)), factor models proceed as follows. The observation is still of the form XN,T described in (1),

but the assumptions are much more general, allowing for serial auto- and cross-correlations and non-

Gaussian densities. Assuming that they exist, denote by ΣΣΣN (θ), θ ∈ [0, π] the N ×N spectral density

matrices of the N -dimensional processes {XN,t := (X1t, . . . ,XNt)
′| t ∈ Z}. These density matrices are

nested as N → ∞. Some eigenvalues—q of them, say—are exploding (θ − a.e.) and the other ones

remain bounded (θ − a.e.) as N → ∞. This yields a decomposition of ΣΣΣN (θ) into

ΣΣΣN (θ) = ΣΣΣχ
N (θ) +ΣΣΣξ

N (θ), θ ∈ [0, π]

where ΣΣΣχ
N (θ), called the common spectral density has reduced rank q and q diverging dynamic eigenval-

ues,4 while ΣΣΣξ
N (θ), called the diosyncratic spectral density only has bounded dynamic eigenvalues.

That decomposition in turn induces a decomposition of the observations Xit into

Xit = χit + ξit i = 1, . . . , N, t = 1, . . . , T, N ∈ N, T ∈ Z (6)

where χit, with spectral density ΣΣΣχ
N (θ), and ξit, with spectral density ΣΣΣξ

N (θ), are mutually orthogonal

at all leads and lags; χit is called the common component, ξit the idiosyncratic component. Since the

spectral density ΣΣΣχ
N (θ) has reduced rank q, the common component χit is driven by q << n mutually

orthogonal white noises:

χit = Bi(L)ut, ut = (u1t, . . . , uqt)
′ (7)

3The terminology Generalized Dynamic Factor Model is used equivalently.
4The terminology dynamic eigenvalues used for the eigenvalues of a spectral density matrix was coined by

Brillinger (1964, 1981), who introduced the concept.

5
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(L, as usual, stands for the lag operator), while the idiosyncratic component ξit, having bounded dynamic

eigenvalues, is only mildly cross-correlated (it can be strongly auto-correlated, though); see Hallin and

Lippi (2019) or Lippi et al. (2022) for recent surveys.

Further constraints can be imposed on the decomposition. Among them, the static loading assump-

tion (Stock and Watson (2002a, b), Bai and Ng (2002), Bai (2003), and many others)

χit = B
′
iut, ut = (u1t, . . . , uqt)

′ (8)

(Bi a q × 1 real vector) under which the shocks ut are loaded in a static, contemporaneous way while

in (7) the loadings are filters Bi(L).

As soon as the spectral density ΣΣΣN (θ) exists and admits a finite number q of exploding eigenvalues,5

a GDFM representation (6) with dynamic loadings (7) exists. The existence of a factor model decompo-

sition (6) with static loadings (8), however, is a strong assumption one should like to avoid. Multivariate

conomic time series, let alone the infinite-dimensional ones, indeed, typically involve leading and lag-

ging series, loading the common shocks with various leads and lags. The GDFM, which allows for this

and basically does not place any restrictions on the data-generating process, is much preferable in that

respect.

The GDFM was introduced by Forni et al. (2000), who establish its asymptotic identifiability—

the “blessing of dimensionality”—and propose a consistent6 estimation strategy based on Brillinger’s

concept of dynamic principal components. The moot point with dynamic principal components is that

their computation involves two-sided filters, i.e., implicates both the past and the future values of the

observed Xit’s. This is fine in the “center” of the observation period but not at the edges. In particular,

the estimation, for forecasting purposes, of uT , is likely to be poor irrespective of N and T , as the future

observations XN,T+1,XN,T+2, . . . are not available.

The advantage of static loadings is that, under (8), q coincides with the number of exploding “static”

eigenvalues—the eigenvalues of the N ×N covariance matrix CN of XN,T . And Bai and Ng (2002) and

Stock and Watson (2002a, b) propose an estimation method relying on a traditional principal component

analysis of XN,T . These principal components, at time t, only require the contemporaneous observa-

tion XN,t := (X1t, . . . ,XNt)
′: no problems, thus, for t = T . This, and the popularity of traditional

principal component methods, explains why practitioners regrettably prefer the static contemporaneous

loading approach despite its lesser generality, its lack of parsimony, and the fact that the crucial and

quite restrictive underlying assumption (8) may not hold.7

Up to this point, thus, the General Dynamic Factor Model, in view of its generality, is a brilliant idea

the practical implementation of which is blocked, apparently, by the two-sidedness nature of Brillinger’s

dynamic principal components. Here is, however, where Manfred Deistler enters into the picture.

5Although an infinite number of exploding eigenvalues in theory is not impossible, such cases are extremely artificial
and contrived: see Hallin and Lippi (2014) for an example.

6Consistency here is not uniform in t, though: see Forni et al. (2000) for details.
7This latter fact is often dispelled by arguing that lagged values of the factors can be incorporated into a static loading

scheme via stacking. This, which may very severely inflate the number of factors, is a flawed argument. Indeed, there is no
guarantee that these lagged values enjoy the pervasiveness properties required from static factors, with the consequence
that, in the traditional principal component estimation method, they get lost to the idiosyncratic.

6
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4 Manfred Deistler and the General Dynamic Factor Model

Manfred Deistler’s seminal contribution to the analysis of General Dynamic Factor Models originates in

his interest in the properties of reduced rank processes. The following result—unrelated, at first sight,

to factor models and high-dimensional time series—follows from Anderson and Deistler (2008a).

Anderson and Deistler call tall the transfer function D(L) of a Q-dimensional process {Yt| t ∈ Z}
driven by a q-dimensional white noise {wt| t ∈ Z} where q < Q—namely, a process of the form

Yt = D(L)wt t ∈ Z (9)

where D(L) is some Q× q filter. By abuse of language, we say that the process {Yt} itself is tall.

Recall that a process satisfying (9) with D(L) = (Dij(L)) is called rational if the filter D(L) itself

is rational, that is, if there exist Q × q matrix filters (Eij(L)) and (Fij(L)) and integers m and p

such that, for all i = 1, . . . , Q and j = 1, . . . , q, Fij(0) = 1, the degree of Eij(L) is m, the degree

of Fij(L) is p, and Dij(L) = Eij(L)/Fij(L); note that D(L) then involves a finite (although unspecified)

number P = Qq(m+ p+ 1) of real parameters: call it rational of order P . Also recall that a subset of

a topological space is generic if it contains an open and dense subset. Denoting by ΠP the parameter

space8 indexing the family of rational filters of order P , genericity below is meant for ΠP as a subset

of RP : call it ΠP -genericity.

As in Forni et al. (2015), the way the fundamental result of Anderson and Deistler (2008a) is

presented here is geared towards its General Dynamic Factor Model application and slightly differs

from the original formulation. Rather than a rational spectrum of order P (P unspecified but finite),

the latter, actually, assumes a state space representation with finitely many parameters. For the sake

of simplicity, the formulation below also slightly differs from the statements in Sections 3 and 4 of Forni

et al. (2015) where more general and complete results can be found.

Proposition. Let {Yt| t ∈ Z} be a tall process satisfying (9) for some rational Q×q filter D(L). Then,

for ΠP -generic values of D(L) (P unspecified), Yt admits, for some K < ∞, a VAR(K) representation

of the form

A(L)Yt =
K
∑

k=1

AkYt−k = Rwt (10)

where A(L) is Q×Q and R is Q× q.

Refinements of this result can be found in Anderson and Deistler (2009), Chen et al. (2011), and

Anderson et al. (2012), where some of its consequences also are discussed. The most elegant proof is

found in Anderson et al. (2016). Anderson and Deistler (2008a) only briefly mention, without entering

into details, the relevance of their result for the General Dynamic Factor Model (with dynamic loadings

as in (7)). That relevance is further discussed in Anderson and Deistler (2008b, 2009), Deistler et

al. (2010), and Forni and Lippi (2011); it is fully exploited in Forni et al. (2015, 2017), Forni et

al. (2018), Barigozzi et al. (2021, 2022), and several subsequent papers.

That relevance stems from the fact that, by definition, for almost all values of i1, . . . , iq+1, the (q+1)-

dimensional vector of common components Yt := (χi1,t, . . . , χiq+1,t)
′ is tall, with Q = q + 1 and

8A complete description of ΠP would require the filters Fij(L) and Eij(L) to be stable and having no common zeroes.

7
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a q-dimensional white noise wt = ut. Under the very mild additional assumption that {Yt} is ra-

tional (for some unspecified m and p), thus, the above proposition applies.

Suppose, for convenience (and without loss of generality), that N = M(q + 1), where M ∈ N, and

write (χ1,t, . . . , χN,t) as (χχχ1′
t , . . . ,χχχ

M ′
t )′ where χχχk

t ∈ R
q+1, k = 1, . . . ,M . Assuming the rationality of

all χχχk
t ’s, the Anderson-Deistler result applies, so that













A
1(L) 0 · · · 0

0 A
2(L) · · · 0

. . .

0 0 · · · A
M (L)

























χχχ1
t

χχχ2
t

...

χχχM
t













=













R
1

R
2

...

R
M













vt,

that is, generically,9 for some An(L), Rn and vt, we have the block-diagonal VAR representation

An(L)χχχnt = Rnvt

with (q + 1) × (q + 1) blocks A
k(L), k = 1, . . . ,M , an N × q matrix Rn, and a q-dimensional white

noise vt.
10

As a consequence,

An(L)Xnt = An(L)(χχχnt + ξξξnt) = Rnvt +An(L)ξξξnt (11)

where, being a linear transformation of idiosyncratic components, AAAn (L)ξξξnt itself is idiosyncratic. This

is a static factor model (static contemporaneous loadings) for the filtered series An(L)Xnt: traditional

principal components thus, which do not involve filters, can be used instead of dynamic ones in the

estimation of (11) once consistent estimators11 Â
k(L) are substituted for the unspecified filters A

k(L).

Based on this, Forni and Lippi (2011) and Forni et al. (2015, 2017) propose a winning strategy

for a consistent one-sided reconstruction of the common components χit (hence, also the idiosyncratic

components ξit), their impulse response functions, the common shocks ut, the loadings filters Bi(L),

etc. The corresponding asymptotic distributions are derived in Barigozzi et al. (2022). Surprisingly, the

consistency rates are comparable to those obtained by Bai (2003) for the static method (without the

preliminary filtering (11)—-the validity of which, however, requires the much more stringent assumptions

of the static model (8). The same results also apply in the identification and estimation of volatilities

(Barigozzi and Hallin (2016, 2017, 2019)), of time-varying GDFMs (Barigozzi et al. (2021)), and in the

prediction of conditional variances, values at risk, and expected shortfalls (Hallin and Trucíos (2022),

Trucíos et al. (2022)).

The (asymptotic) validity of this strategy, of course, requires (11) to hold. This has to be assumed.

Since, however, it holds generically, that assumption is extremely mild.

Numerical exercises (both Monte-Carlo and empirical) demonstrate the forecasting superiority of

the resulting method, which seems to outperform all other methods proposed in the literature while

remaining valid under much milder and more general assumptions on the data-generating process. Forni

9Genericity here is meant for any fixed N .
10It can be shown, moreover, that vt = Out for some q × q orthogonal matrix O.
11Such estimators can be constructed from the decomposition of the estimated spectral density followed by inverse

Fourier transforms and Yule-Walker VAR estimation in dimension q + 1: see Forni et al. (2015, 2017) for details.

8
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et al. (2018) show that, even when the assumptions (8) of static loadings are satisfied, the GDFM method

still performs better than the static one. Barigozzi et al. (2022) finalize the study of its asymptotic

properties by establishing the corresponding asymptotic distributional results.

Manfred Deistler, thus, can be credited for unlocking the applicability of the General Dynamic Factor

Model with dynamic loadings instead of the more restrictive, less performant, and less parsimonious

model with static loadings.
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