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Abstract: 

Wheat and barley are among the primary food resources of the world 

population; therefore, their growth and observation are essential in farms to 

enhance food security worldwide. On top of that, careful observation of the 

product is essential to find solutions for the issues faced during their 

production and to reduce the impacts of weather changes. With the 

advancement of Remote Sensing chnologyte , the observation and estimation 

process has increased. In this study,  numbers of spectral vegetation indices 

was used along with canopy biophysical properties  ( LAI ) and biochemical 

properties (chlorophyll), there calculated from  (Landsat 8 and Sentinel-2) 

satellite data. The wheat and barley samples were collected before were be 

ready for harvest, and a relation with the vegetarian indices was established 

using the Multi-Linear Regression module, in which the equations used in 

predicting the harvest were developed and used to create a graph for expected 

harvest. The result indicated that there is a strong relationship between the 

vegetation indices of Sentinel-2 and Landsat images and the actual grain yield 

with R2 of 0.77 and 0.71, respectively. The results show that the strongest 

correlation is observed between the LAI data obtained from Sentinel data and 

cereal yield data, with an R2  0.68, and the highest correlation for the indices of 

Landsat images is observed in the NDWI with R2  0.59 and the lowest degree of 

error was in the root mean square error (RMSE) for the Sentinel-2 and Landsat 

8 with 0.57 and 1.54. In addition, this study also showed that the least 

relationship for grain yield prediction was observed between the NDRI for 

Sentinel-2 (R2 0.1) and SAVI for Landsat image (R2 0.47). 
 

Keywords: GEE; Landsat 8 OLI; Multi-linear regression; Remote Sensing; 

Vegetation indices; Wheat and barley. 

 

1. Introduction: 
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The increase in population and other economic and social factors have a 

connection to the reduction of food resources. In the past half century, the 

human population has increased from three billion to more than six billion. A 

report from the United Nations food and agriculture organization in 2009 states 

that human population will increase by more than 30% by the year 2050, this 

indicates that in order to fulfil nutritional requirements the production of food 

must increase by 70% (Kamilaris et al., 2017a). Thus on a regional and 

international level, the production of various types of nutrients is essential, by 

highlighting the type of grain which will have a leading role in the nutrients of 

advanced countries around the world, through the careful combination of the 

best available agricultural activity and changing the old way of doing things 

and the use of modern advanced technology (Khalil & Abdullaev, 2021) . 

Fundamental steps to fixing the food security issue are by estimating the 

products so that it makes it possible to accurately estimate the amount of 

product yield before harvesting (You et al., 2017).   Estimating the yield value 

of a cereal grains for a specific season is essential and must be prepared as soon 

as possible as it allows to carefully plan the retail and quota of cereal by farmers 

and businesses. The prediction of crop yield can be done for specific locations, 

based on the crops farms, according to their region or even on a global scale 

(Panek & Gozdowski, 2021). 

Estimation of yield can be defined as the beforehand evaluation of how 

much yield will be obtained in a specific crop before the final harvest time, 

while the real yield is the number of crops we gain after the harvest. There are 

many ways of predicting crop yield to us such as the traditional way of 

predicting, evaluating, observing and measuring the yield state by experts all 

throughout the growing season. There are two main methods of predicting the 

yield of cereals which are remote sensing (RS) and crop simulation models 

(Basso et al., 2013) . Thus the appearance of digital technology and smart 

agriculture were among the important factors in enhancing the surveillance of 

agriculture, the production of cereal and its estimation (Khalil & Abdullaev, 

2021). In these recent years, with the advancement of remote sensing 

technology, it has been easier to predict the yield of cereals,  by way of the 

differentiating the location, temporal, and brightness data all around the world, 

to an acceptable degree (Qiao et al., 2021). The notes from remote sensing shed 

light on some of the changes that relate to the earth, soil, plant cover and the 

difference between plant health(Kamilaris et al., 2017b).  There has been an 

increase in the importance of paying attention to and using the data collected 

from satellites to monitor and predict the yield of cereal crops this is caused by 

their ability to produce data by location coverage, real time coverage and 

objective  d at product growth (Adeniyi et al., 2020).  

Not having a good understanding of how spatial and temporal methods 

are used for estimating the crop yield is one of the main obstacles faced by 

Revenue Improvement Managers in a specific crop such as using water, energy 
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and fertilizers to increase the yield (Franz et al., 2020). Using remote sensing 

data for the process of farming and crop production is very common, especially 

based on Predictive empirical models, the estimation of cereal yield can be done 

efficiently and quantitatively (Bose et al., 2016). Researchers have tried to obtain 

useful information regarding agricultural fields using satellites, which it ’s 

estimated would be of great benefit to farmers and food production policy 

researchers through which it estimates a correct yield for each field per year 

even this is correct for a piece of land within a field without taking into account 

the growth of the crop  (Sibley et al., 2014). 

In recent years, there has been a rapid development in the types and 

criteria of remote sensing, with the emergence of several aircraft, drones and 

satellite bases that have been used in various field methods and helped to fill 

the scientific gaps in this field. In general, remote sensing observations and data 

have brought about many variables that have led to the understanding of 

altitude, soil and vegetation cover in terms of crop variety and health, these 

were all used as initial data to determine the information in a preliminary and 

relative manner for several complex crops (Franz et al., 2020). For the remote 

sensing approach to be more useful to fill the gap in this area it requires two 

important features: (1) additional ground-based calibration, necessary to 

reduce the time and expense involved in data acquisition production over 

several regions and years, (2) Determination of the exact level of the field and 

the degree of proximity to reality (Sibley et al., 2014). Despite all these 

advances, one of the major challenges that still exists is the collection of ground 

data required to calibrate and validate remote sensing logarithms at large 

spatial and temporal scales (Paliwal & Jain, 2020). Most available cereal yield 

models require a variety of farm data that are not always available or accurate, 

especially in developing countries (Prasad et al., 2007). 

In general, there are two main types of strategies used to estimate grain 

yield based on remote sensing data. The first model is based on crop growth 

models, combining remotely sensed data with an agrometeorological model or 

a biophysical model. Another commonly used method is to experimentally link 

remote sensing data to crop yields at the local or regional scale. Such 

correlations are always explored based on the use of some indicators generated 

from remotely sensed images (Ferencz et al., 2004). Different models have been 

developed to predict grain yield using remotely sensed data, the most common 

being the regression model, to develop empirical relationships between 

normalized difference vegetation index (NDVI) measurements and grain yield 

Derived from satellites at different times (Huang et al., 2013). NDVI, a product 

derived from multimodal satellite data, is used to estimate health and monitor 

vegetation changes, so that higher NDVI indicates more greenery coverage, 

while lower NDVI indicates loss of growth and viability of the crop (Bose et al., 

2016). Vegetation index is one of the main variables used in modeling the 

relationship between remote sensing data and grain yield. Various plant 
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diversity indicators have been developed from visible satellite sensors that can 

provide a lot of information about plant health and biodiversity (Xu et al., 

2011). There is a relationship between vegetation indicators (NDVI) and 

seasonal initial yield, because of this relationship vegetation density can be 

used as an indirect measure of initial grain yield through clear formation 

activity of agricultural plants during a certain period before harvest (Adeniyi 

et al., 2020). The main aim of this study is to predict wheat and barley yield and 

investigate the relationship between remote sensing derived vegetation indices 

to experiment with as many vegetation indices as possible with the aim of 

improving grain yield prediction. The result of the paper will contribute 

effectively by adding more knowledge to the field to the ongoing attempt to 

improve prediction techniques and it helps to efficiently predict crop data by 

using various vegetation indices. 

2. Methodology:  

2.1. Study area: 

The study area is located in the northeastern part of Iraq in Erbil 

province, between 44° 1" 8' 44° longitude 29'15"44° and 05" 40' 36° latitude 17' 

23' 36° East, as it borders Soran district on the north and northeast, and on the 

south the area is bounded by Koysinjeq district to the center of Erbil province 

as shown in Figure 1. Although the study area is far from any water bodies, the 

impact of some of them on the climate of the region is significant, the 

Mediterranean Sea being the most obvious, which directly affects the climate 

of the region. The climate of the region is characterized by semi-arid climate, 

BSh according to Köppen classification (Köppen, 2011). Summers are hot and 

dry, and winters are cold and rainy. Rainfall is inadequate for the period 

between October and November, averaging 543 mm annually (Hussein et al., 

2017). According to Beurring's classification, the soil of the study area consists 

of four types of soil such as lithic mixture with limestone, brown soils of 

medium and deep thickness, covered with Bakhtyary dust, deep chestnut soil, 

rocky and sloping soil and cracked and rocky soil. (Buringh, 1960) . 
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Figure1: illustration of the location of the study area, (Harir plain) 

2.2. Data: 

In this study, satellite data and field survey data were used to map and 

predict grain yield through linear regression models. This study is based on 

Landsat 8 OLI and Sentinel-2A satellite data, processed through Google Earth 

Engine (GEE) and R Program. All the processing steps and data used are shown 

in Figure 2. the details of these steps are described in detail in the following 

subsections. 

Landsat 8 OLI and Sentinel-2A satellite image data: 

Remote sensing images were acquired by the Operational Land Imager 

(OLI) onboard (Landsat 8), as well as the MSI-Multi-Spectral onboard (Sentinel-

2A). In this study, 4 different time images of Landsat 8 OLI, and 9 2A-Sentinel  

have been obtained for the study area, from early January to mid-June (2022), 

as shown in Table 1. 
                           Table 1: Experimental images for this study 

No Sensor Dates of Pass Spatial 

Resolution 

 
 

 

1 

 

 

Landsat 8(OLI) 

31-01-2022 

16-02-2022 

05-04-2022 

21-04-2022 

08-06-2022 

 

 

30m 
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2 

 

 

 

 

Sentinel-2 

06-01-2022 

26-01-2022 

15-02-2022 

16-04-2022 

21-04-2022 

21-05-2022 

26-05-2022 

31-05-2022 

10-06-2022 

 

 

10m 

20m 

60m 

 

The Landsat 8 OLI image contains 9wavelength bands with a locational 

resolution of 30m and 15m for the panchromatic band, namely blue, green, red 

and near infrared (NIR) and shortwave infrared (SWIR) bands were used. 

While the Sentinel-2A images include 13 bands of light at different locational 

resolutions (10, 20, 60 m). Blue, green, red, near infrared (NIR), short wave 

infrared (SWIR) and vegetation red edge bands were used in this study (Table 

2). After testing the images, it was found that the most appropriate date for 

processing the forecast model is 21-04-2022 for Landsat 8 OLI image and 21-05-

2022 for Sentinel-2A image. This is because the highest correlation is shown on 

this date. In addition, most previous studies suggested that the best date for 

taking images to predict grain yield is about one to two months before the start 

of harvest (Li et al., 2021). 

 
Table 2: Details of Landsat 8 OLI and Sentinel-2 image satellites 

Details of Landsat 8 (OLI) satellite Images 

 Band Number                Spectral range μm           Spatial Resolution (m)                 Band Name 

1                                      0.435-0.451                  30                                 Coastal/Aerosol 

2                                      0.452-0.512                   30                                        Blue 

3                                      0.533-0.590                   30                                        Green 

4                                      0.636-0.673                   30                                        Red 

5                                      0.851-0.879                   30                                        NIR 

6                                      1.566-1.651                   30                                       SWIR-1 

7                                      2.107-2.294                   30                                       SWIR-2 

8                                      0.503-0.676                   15                                       Pan 

9                                      1.363-1384                    30                                       Cirrus 

10                                    10.60-11.19                  100                                     TIR-1 

11                                    11.50-12.51                  100                                     TIR-2 

Details of Sentinel-2 satellite Images 

 Band Number                Spectral range μm            Spatial Resolution (m)                 Band Name 
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1                                        0.443                   60                                     Coastal/Aerosol 

2                                        0.490                   10                                           Blue 

3                                        0.560                   10                                           Green 

4                                        0.665                   10                                            Red 

5                                        0.705                   20                              Vegetation Red Edge 

6                                        0.740                   20                              Vegetation Red Edge 

7                                        0.783                   20                              Vegetation Red Edge 

8                                        0.842                   10                                           NIR 

8A                                     0.865                   20                             Vegetation Red Edge 

9                                        0.945                   60                                    water vapour 

10                                     1375                     60                             SWIR-Cirrus 

11                                     1610                     20                                          SWIR 

12                                     2.190                    20                                          SWIR 

 

 

2.3. Choosing the Vegetation Indices: 

Vegetation indices are changes in multiple brightness bands and 

wavelengths that allow the monitoring of leaf canopies and photosynthesis 

activities (Zhao et al., 2020a). In this study, the ability of satellites to predict 

wheat and barley production was assessed using bands from Landsat 8 and 

Sentinel-2A, 9 different bands were chosen. Their effect on the estimation 

process of wheat and barley farms in the study area were determined in Table 

3. These indices are generally known for their ability to make use of the spectral 

properties in the visible spectrum and near-red region. The NDVI index is a 

very important parameter for models locally, regionally, and globally, for 

example, biogeochemical models (Huete et al., 2002). The Simple Ratio Index 

(SR) is sensitive to green plant surfaces, it has a strong connection to the Leaf 

Area Index as well as the biomass of the leaves(Chen, 1996a). As for Enhanced 

Vegetation Index (EVI), it is responsive to the structure of leaf canopies, for 

instance, the Leaf Area Index (LAI), type of leaf canopy, and plant properties 

(Huete et al., 2002).  Ratio Vegetation index (RVI) is very capable of showing the 

structure of chlorophyll and nitrogen indirectly based on the leaves and the 

surfaces of the leaves, this also makes it more capable of evaluating ant damage 

(Ye Tan, 2019). Also, SAVI detects and decreases any changes due to the 

environment and the earth as well as their impact (Huete, 1988). Although, 

NDWI senses the change in water ratio in plants, however, it is less sensitive to 

atmospheric changes compared to NDVI (Gao, 1996). It is also worth noting 

that GRVI detects changes in plant canopies and determines growth stages. 

GRVI is arguably more effective for this purpose than NDVI (Ballester et al., 

2019). NDRE index is a sensitive index for monitoring chlorophyll levels 

(Boiarskii & Hasegawa, 2019).  Chlorophyll and Leaf Area Index were also used, 

due to these two parameters have a direct effect on yield. 

 
Table 3: Mathematical formulas of used vegetation indices  
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2.4. Data collection and wheat and barley yield prediction models: 

In mid-October 2022, the first field visit was conducted to determine the 

geographical location (latitude and longitude) of the study area. Location 

information is recorded by a handheld Global Positioning System (GPS) 

manufactured by (Garmin) model (62St). In general, the study area is divided 

into 11 plots (Figure 1). In each plot, 5 geographical locations of  Leaf area index 

were measured with the Viticanopy app and a SPAD instrument has been used 

to measure chlorophyll, so that 6 LAI and chlorophyll were measured in each 

plot. In addition, wheat and barley yields are collected. Then the mean yield is 

obtained for each plot to represent the product because the accuracy of the GPS 

used was about 3 m. The data collected by GPS were used to generate the 

prediction model equations and evaluate the accuracy of the prediction model. 

In order to establish a relationship between vegetation indices and actual 

aggregate production values. Multiple -Linear Regression model was used for 

prediction, which mainly allows to explain the relationship between the 

independent variables and the tested dependent variables (Shastry, 2017). The 

Multiple –Linear Regression model is the most common form of Linear 

Regression used as a predictive tool, it allows us to infer the relationship 

between many independent variables (X1, X2 Xk) and the tested dependent 

variable (Y). The coefficient of determination (R2) explains the relative variation 

of the dependent variable. In other words, it is a measure of the adequacy of 

the model. The following equation is used to express this relationship.   

Index                                                                                             Equation                                                      Reference 

Enhanced Vegetation Index                           𝑬𝑽𝑰 = 2.5 ×
(𝑁𝐼𝑅−𝑅𝐸𝐷)

(𝑁𝐼𝑅+6×R𝐸𝐷−7.5×BLUE+1)
                             (Liu & Huete, 1995) 

Normalized Difference Vegetation Index              𝑵𝑫𝑽𝑰 =
(𝑁𝐼𝑅−𝑅𝐸𝐷)

(𝑁𝐼𝑅+R𝐸𝐷)
                                (TOWNSHEND & JUSTICE, 1986)                           

Normalized Difference Water Index                                𝑵𝑫𝑾𝑰 =
(NIR − MIR)

 (NIR + MIR) 
                                     (McFEETERS, 1996) 

Soil Adjusted Vegetation Index                                      𝑺𝑨𝑽𝑰 =
(NIR − R)

 (NIR + R+0.5×(1.0+0.5)) 
                            (Huete, 1988)     

Simple Ratio                                                                            𝑺𝑹 =
NIR

 Red
 

                                                                 (Chen, 1996b) 

Ratio Vegetation Index                                                  𝑹𝑽𝑰 =
RED
 NIR

 

                                                       (Pearson et al., 1972) 

Green Ratio Vegetation Index                                       𝑮𝑹𝑽𝑰 =
(𝐆𝐫𝐞𝐞𝐧 − 𝐑𝐞𝐝)

 (𝐆𝐫𝐞𝐞𝐧 + 𝐑𝐞𝐝) 
                                   (Motohka et al., 2010) 

Normalized Difference Red Edge                                𝑵𝑫𝑹𝑰 =
(NIR − RedEdge)

 (NIR + RedEdge) 
                             (Thompson et al., 2019) 

Cropping Management Factor Index                             𝑪𝑴𝑭𝑰 =
Red

 (NIR + Red) 
                                              (Lin et al., 2010) 

Chlorophyll                                                                         𝐂𝐡𝐥𝐨𝐫𝐨𝐩𝐡𝐲𝐥𝐥 =
Vegetation Red Edge

 (Green) 
− 1                                               

Leaf Area Index                                                                  𝑳𝑨𝑰 =
( 0.69−SAVI

0.59
)

 (0.91) 
                                            (Sousa et al., 2019)                                   
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× 1    ----1 

Y- Dependent variable (explained variable), 

X1, X2 . . . . . . . . Xk- independent variables (explanatory variables), 

βo, β2 . . . . . . . . . β1, β k- Parameters of Eq. 

ε - random component (rest of the model). 
 

Landsat 8 and Sentinel 2 imagery was used to develop this model, which 

resulted in an empirical equation for predicting wheat and barley yields. The 

most appropriate vegetation indices for prediction were identified in which 

indices were strongly correlated with yield. A standard set of measures was 

also used to evaluate the linear regression model for prediction such as the Root 

Mean Square Error (RMSE), the Mean Squared Logarithmic Error (MSLE), the 

Mean Square Error (MSE), and the Root Mean Square Logarithmic Error 

(RMSLE). 

   RMSE =    √
1

𝑛
∑ (𝑙𝑜𝑔 (𝑋𝑖

𝑛
𝑖=1 + 1) − 𝑙𝑜𝑔(𝑦𝑖 + 1))2    ---------------------2 

      MSE =
1

𝑛
∑ (𝑌𝑖 + 𝑌

^

𝑖))
2𝑛

𝑖=1

-----------------------------------------------3 

                            MSLE  =
1

𝑛
∑ (𝑌𝑖 + 1) − 𝑙𝑜𝑔 (𝑌

^

𝑖 + 1))
2𝑛

𝑖=1

----------------------------4 

                            RMSLE=    √
1

𝑛
∑ (𝑙𝑜𝑔 (𝑋𝑖

𝑛
𝑖=1 + 1) − 𝑙𝑜𝑔 (𝑦

^
+ 1))

2

-----------------------5 

In another step to provide an insight into the variance of the farm’s yield level 

distribution, the maps of predicted crops were classified into five distinct zones 

based on their productivity and greenness co-pillars. These areas included very 

high yield (18 kg, hectare and above), high yield (16-18 kg, hectare), medium 

yield (14-16 kg, hectare),  low yield (10-12 kg, hectare) and very low area below 

(10 kg, hectare). 

 

3. Results  

Food security in Iraq in general and the Kurdistan Region, in particular, 

is constantly threatened due to various natural and human impacts on grain 

production. Therefore, forecasting cereal yields can help plan makers and 

decision makers to optimize agricultural management and food security under 

various environmental conditions 

In general, satellite vegetation indices are appropriate estimators of 

plant environmental parameters and grain yield determinations. This study 

focused on predicting grain yields (wheat and barley) before the harvest 

process, as well as mapping them. For this purpose, an area planted with wheat 

and barley containing  539 pixels (Landsat 8 OLI) and  4429 pixels (Sentinel-2) 

was resampled to 30 m to test several vegetation indices, in order to achieve the 
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objectives of the research, in addition to analyzing and treating satellite images, 

fieldwork has been conducted and data on the actual production has been 

collected as shown in Table 4. 

 
Table 4: Statistical analysis of actual farm data 

 

 

 

 

3.1. Temporal profile of vegetation index 

The relationship between the estimated and actual data of crop yield, in 

the growth and early growth stages of plants (the first 70 days), was low, as 

seen in (Figure 2). This relationship, parallel to the growth of plants, has 

increased until the 90-100 day age. In the last stages of growth (blooming at 

115-130 days) the value reaches its peak (21-April-2022). The stages after 

blooming saw a decline in terms of vegetation indices until an all time low at 

the fully developed stage (harvesting). Temporal changes in vegetation indices 

in this study are parallel to that of previous studies (Nagy et al., 2021; Qader et 

al., 2018a; Rahman & Robson, 2020). This could be a result of the inefficient 

reflection of plantation surfaces in the early stages of growth due to ground 

surfaces. On the other hand, at the late stages of development, the leaves decay 

and yellow, hence the lack of chlorophyll causes insufficient reflection. The 

value of vegetation indices always directly impacts the estimation of crops, 

therefore, in this study, the most accurate prediction methods have been 

adopted (21/April/2022) from Landsat images and (21-may-2022) from Sentinel 

images. 

Figure 2: Temporal profiles of vegetation and grain growth indices 

 

Number of Samples 24 

Actual Yield (kg ha-1) Minimum 7.6 

Maximum 18.4 

Mean 11.8 

Std. Deviation 2.9 

Std. Error 0.9 
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3.2. Crop production prediction model:  

This study aimed to find a relationship between vegetation parameters 

and actual crop production to estimate crop yield. For this purpose, 7 indices 

from Landsat 8 and 11 from Sentinel-2 images have been extracted and Red, 

NIR, Blue, and MIR bands of Landsat 8 have been utilised. Moreover, Green, 

Blue, MIR, Red Edge, NIR, Red bands of Sentinel-2 have been used to present 

the relationship between each vegetation index and the actual counterparts in 

crops throughout their growth using Multi-linear and Simple Linear 

Regression Analysis. Table 5 and 6 presents the estimated equations for making 

a crop prediction map. It is worth noting that each equation needs to be dealt 

with according to its unique sensor and location. The last stages of 

development (115-130 days) are found to be the optimal time for estimation of 

produce, for which two equations are suggested for each individual index. 

Through algorithmic categorisation, the chosen indices from Landsat 8 images 

were deemed efficient for prediction. This could be due to the resolution of the 

location, each pixel representing 30 m, which restricts the control over all the 

study area plantation surfaces. For the indices from Sentinel-2 images, it was 

shown that the actual product has a good relationship with the indices except 

for NDRI. 
Table 5. The adequate equations utilized Multi-linear regression  

 

 

 
Table 6. The adequate equations were utilized for the prediction of crop yield in the study 

area (simple linear regression). 

N

o 

Vegetation 

Index 

Landsat 8(OLI) R2 Sentinel-2 R2 

 

1 

 

 

All 

Vegetation 

Indices 

 

Yield(kg ha)= 0.7065* indices + 3.4267 

 

 

70.7 

 

Yield(kg ha)= 0.8066* indices  + 2.2229 

 

 

76.8 

No Vegetation 

Index 

Landsat 8(OLI) R2 Sentinel-2 R2 

1 NDVI Yield(kg ha)=59.6993*NDVI-

21.892 

0.54 Yield(kg ha)=15.776*NDVI+7.1184 0.58 

2 NDWI Yield(kg ha)=-74.363*NDWI-

26.308 

0.59 Yield(kg ha)=-24.955*NDWI+3.1207 0.59 

3 SAVI Yield(kg ha)=62.396*SAVI-14.562 0.47 Yield(kg ha)=19.896*SAVI+6.8489 0.59 

4 CMFI Yield(kg ha)=-

736.72*MCFI+32.355 

0.54 Yield(kg ha)=-22.659*MCFI+18.195 0.46 

5 EVI Yield (kg ha35.334*EVI-10.649 0.51 Yield(kg ha)= 15.775*EVI-7.1676 0.59 

6 SR Yield(kg ha)=52.367*SR-7.1368 0.52 Yield(kg ha)=33.633*SR+5.1946 0.62 

7 RVI Yield(kg ha)=-7.3688*RVI+32.352 0.54 Yield(kg ha)=-1.3006*RVI+19.054 0.55 

8 GRVI -------------------------------------  Yield(kg ha)=125.5*GRVI+116.5 0.56 
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3.3. Predicting the crop production: 

Mult-ilinear regression was used to evaluate the vegetation indices with 

the measured land yield data for both Sentinel and Landsat. The results showed 

that there is a strong correlation between the measured actual yield data and 

predicted yield data of the vegetation indices (Figure 3). High R2 (0.70) and low 

RMSE (1.31 kg-ha) for Landsat 8, as well as for Sentinel-2 high R2 (0.77) and low 

RMSE (1.27 kg-ha), which revealed a close match between measured and 

predicted grain yield. In addition, the study demonstrated the relationship of 

each coefficient with measured crop yield to demonstrate the role of different 

coefficients in predicting grain yield. 

 Figure 3: correlation between predicted yield data with actual yield data using 

Multi-Linear regression 

 

 

Table 7 and Figure 4,5,6 and 7 show the accuracy of the obtained empirical 

9 NDRI -------------------------------------  Yield(kg ha)= -9.0698*NDRI+4.336 0.1 

10 LAI   Yield(kg ha)= 1.0307x + 0.4723 0.67 

11 Chlorophyll   Yield(kg ha)= 0.541chlorophyll + 5.392 0.54 
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models (yield prediction) against the actual yield, where the significance level 

of the model is <0.001. The results show a strong correlation between the 

estimated images from Sentinel-2 and the actual yield of crops. The highest 

degree of accuracy was for the LAI index for which the R2 value was 0.68. The 

lowest degree of error was in MRSE which was 0.57 kg-hectors. At the same 

time, the Sentinel Leaf Area Index data are strongly correlated with the SPAD 

Leaf Area Index data (field data). This shows that this parameter is a suitable 

measure for predicting grain yield (wheat and barley. The indexes SAVI, EVI 

and NDWI are of R2 0.59 value respectively. Then, NDVI, GRVI, RVI and 

chlorophyll are 0.58, 0.56, 0.55 and 0.54, respectively, and finally, MCFI is 0.46, 

except for NDRE being 0.1 and proving useless for predicting any sort of actual 

yield. 

Table7: Vegetation index and their relationship with the actual Crop yield. 

                                                    Sentinel-2 

N

o 

Vegetation 

Index 
R2 

Std. 

Dev. 
RMSE MSE MSLE RMSLE Sig.(1-tauled) 

1 NDVI 0.58 0.5 1.75 3.08 0.02 0.14 <0.001 

2 NDWI 0.59 0.43 2.72 2.98 0.01 0.14 <0.001 

3 SAVI 0.59 0.49 1.74 4.04 0.02 0.14 <0.001 

4 MCFI 0.46 0.17 1.99 3.96 0.02 0.16 <0.001 

5 EVI 0.59 0.71 1.72 2.98 0.01 0.14 <0.001 

6 SR 0.62 2.87 1.67 2.80 0.01 0.13 <0.001 

7 RVI 0.55 0.44 1.82 3.33 0.02 0.14 <0.001 

8 GRVI 0.56 0.05 1.80 3.24 0.02 0.14 <0.001 

9 NDRI 0.1 0.03 2.71 7.34 0.04 0.20 <0.001 

10 LAI 0.67  0.56 0.32 0.003 0.55 <0.001 

11 Chlorophyll 0.54  1.65 2.74 0.02 0.16 <0.001 

    Landsat 8(OLI) 

N

o 

Vegetation 

Index 
R2 

Std. 

Dev. 
RMSE MSE MSLE RMSLE Sig.(1-tauled) 

1 NDVI 0.54 0.26 1.65 2.75 0.01 0.13 <0.001 

  2 NDWI 0.59 0.22 1.54 2.39 0.01 0.12 <0.001 

3 SAVI 047 0.21 1.75 3.09 0.02 0.14 <0.001 

4 MCFI 0.54 0.02 1.63 2.66 0.01 0.13 <0.001 
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5 EVI 0.51 0.4 1.63 2.66 0.01 0.13 <0.001 

6 SR 0.52 0.27 1.67 2.79 0.01 0.13 <0.001 

7 RVI 0.54 0.21 1.73 3.02 0.02 0.14 <0.001 

 

The accuracy of images from Landsat 8 is relatively less than those from 

Sentinel-2, in a way that the R2 value was the highest for NDWI at 0.59 and the 

lowest error was an RMSE of 1.54 kg hectares. The indices NDVI, CMFI, and 

RVI had R2 values of 0.54 and error ranges of RMSE at 1.65, 0.63, and 0.73, 

respectively. The SR and EVI indices yielded an R2 values of 0.52 and 0.51 and 

RMSE values of 1.67 and 1.63, respectively. The SAVI index had an R2 value of 

0.47 and RMSE of 1.75 kg hectares. 

Figure 4: Maps of predicted crop yield using Landsat 8 

 

Figure 5: Maps of predicted crop yield using Sentinel-2 and 
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Figure 6: Maps of predicted crop yield for Landsat-8 OLI 
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Figure 7: Maps of predicted crop yield for Sentinel-2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition, Figure 8 shows the ratio of change in the area of each index 

compared to the satellite images obtained. In areas with a lot of production 

(18kgs/hectare), there are huge differences between the indices, in such a way that 

CMFI and RVI make up 50% of the area in Landsat 8 images. The same indices 

decrease to about 15% with Sentinel-2 images, in a way that CMFI is roughly 13% of 
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the total area, meanwhile, EVI comes out to 31% of the area. Predicting through 

Sentinel-2 in dense areas yields opposing results to Landsat 8 results for the same 

index. Therefore, it can be derived that the combination of these two satellites, NDVI, 

SR, and SAVI from Landsat 8 and the index CMFI, SR, NDVI and NDWI from Sentinel-

2, is efficient for estimation purposes.  Future research should attempt to test several 

other methods for grain prediction and take several grain growing seasons to 

experiment with different data and methods 

Figure-8: The difference in productivity classes of (a) Landsat 8 and (b) Sentinel-2 yield maps 

 

 

Discussion:   

 Satellite data have been widely used in agriculture, such as crop monitoring, 

area estimation, and yield forecasting. (Kumhálová & Matějková, 2017)   in their study 

relied on satellite images with medium spatial resolution (Landsat satellite data) and 

very high resolution images (QuickBird and WorldView-2 satellites), with artificial 

crop sensors (GreenSeeker). Each of (Skakun et al., 2019), (Zhao et al., 2020b), (Řezník 

et al., 2020) and   (ADİBAN et al., 2021) used (Landsat 8) and (Sentinel-2) data to map 

and estimate wheat and barley yields in conjunction with field-based data. (Mkhabela 

et al., 2011) and (Qader et al., 2018b) also used low spatial accuracy multi-temporal 

MODIS satellite data to predict wheat and barley yields through NDVI and EVI. 

Despite this, the Landsat images face certain obstacles when it comes to the prediction 

of crops since Landsat images generally tend to be spaced out in 15 day periods and 

are often compromised due to cloud coverage. Therefore, for prediction and 
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monitoring purposes, it needs to be combined with Sentinel data. Since Sentinel is a 

newly orbited satellite, many studies have taken advantage of its predictive abilities 

for crops and other farming applications, and it has proven more effective than other 

multispectral Landsat images.  

In this study, seven vegetation indices for Landsat and eleven for sentinel 

images were utilized to analyze the relationships of vegetation indices with Crop yield 

for estimating wheat and barley production in the study site. According to the results 

of previous studies, the results of this study show a strong relationship between 

vegetation indices and yield of grain data, as well as peak season with the highest 

value of vegetation indices are considered the best time to predict yields. In this study, 

21-4-2022 for Landsat images, 1-5-2022 for Sentinel images is considered the best time 

to predict grain yield. Regarding the validation of the models adopted for wheat and 

barley yield prediction, it was found that the use of multi-regression for Sentinel 0.77% 

has much more accurate prediction results than the use of Landsat images 0.70%, this 

result is very consistent with the studies in Study (Skakun et al., 2017, 2018) which 

reported that Sentinel image coefficients have a higher correlation with actual yield 

than Landsat indicators. In addition, the accuracy of the prediction model is based on 

different compositions of visible spectral bands, NIR, MIR, SWIR, vegetation red edge, 

red and green. the best relationship was observed for leaf index area of 0.67% for 

Sentinel and NDWI for Landsat with 0.59%, which confirmed findings of earlier study 

(Manivasagam et al., 2021) which showed that the best result for grain yield prediction 

is LAI.    

5. Conclusion  

The main goal of this study was to estimate crop production based on 

vegetation indices. The life cycle of any crop begins with plantation, goes through a 

few development stages, and gets harvested in the end. Thus, a process to determine 

the Phonological status of plants was conducted, and appropriate spectral indices 

were then assigned accordingly. Then, a linear regression model was used for 

vegetation indices from Landsat 8, Sentinel-2 and real pre-harvesting data. In this 

study, 9 indices were utilized and it was found that there exists a strong relationship 

between the indices and real yield of crops such that the R2 value for Landsat 8 was 70 

and for Sentinel-2 was 77, excluding the NDRE index which had no significant 

relation. The highest apparent connection was shown in the SR index from Sentinel 

with the lowest RMSE level of 1.67, for which the highest value was from Landsat’s 

NDWI. This study also produced various maps for crop scattering in the study area 

and differences were highlighted in crop production. The lowest amount of crops was 

detected on the outskirts of farms. A great difference is apparent due to the various 

indices, and the highest ranking area has been detected by CMFI and RVI of Landsat 

8 and by EVI of Sentinel-2. 
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