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Abstract: The importance of small urban green areas has increased in the context of rapid urbaniza-

tion and densification of the urban tissue. The analysis of these areas through remote sensing has 

been limited due to the low spatial resolution of freely available satellite images. We propose a 

timeseries analysis on 3 m resolution Planet images, using GEOBIA and vegetation indices, with the 

aim of extracting and assessing the quality of small urban green areas in two different climatic and 

biogeographical regions – temperate (Bucharest, Romania) and mediterranean (Athens, Greece). 

Our results have shown high accuracy (over 91%) regarding the extraction of small urban green 

areas in both cities, across all analysed images. The timeseries analysis showed consistency in loca-

tion for around 55% of the identified surfaces throughout the entire period. The vegetation indices 

registered higher values in the temperate region, due to the vegetation characteristics and the plan-

ning of the two cities. For the same reasons, the increase in vegetation density and quality, as a result 

of the distance from the city centre and the decrease in the density of built-up areas is more obvious 

in Athens. The proposed method provides valuable insights in the distribution and quality of small 

urban green areas at city level and can represent the ground basis for many analyses, currently 

limited by poor spatial resolution.  
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1. Introduction 

The rapid urbanization that characterizes society today comes with two main trends 

in urban development – densification of the urban area with the aim of creating compact 

cities and expansion in the peripheral areas, often through urban sprawl. Both models are 

currently being critically analysed from the perspective of sustainable urban develop-

ment, one of the main goals of the HABITAT Agenda [1] and The United Nations Sustain-

able Development Goals [2]. Cities are facing a wide range of challenges, which have an 

effect on environmental quality and the wellbeing of residents [3]. 

One of the main challenges for achieving sustainable, resilient and inclusive cities [4] 

is ensuring the optimum amount of available and accessible high quality urban green ar-

eas. The expansion of cities has resulted in the existing green spaces being hard to reach 

from the new residential areas developed in the urban outskirts [5], while the increase in 

density has multiplied the pressures to which they are subjected [6]. Due to the lack of 

undeveloped public open spaces inside cities, many of the new larger green areas are lo-

cated on the outskirts [7,8]. Therefore, small urban green spaces have become a viable 

solution for increasing the presence of vegetation in cities [9,10] since they are easier to 

plan than the larger spaces, due to their surface and the diversity of existing approaches, 

both traditional (street alignments, residential gardens, pocket parks) and modern (green 

roofs, green walls, rain gardens).  
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Small urban green areas are patches covered by vegetation within cities. The accepted 

size for a small green area is debatable, with many studies focusing on the category rather 

than on the surface. Among the proposed threshold values, one of the most used is 0.5 ha 

[5,11], but depending on the object of the analysis or the legislative context, researchers 

have also opted for other limits. In Romania, for example, the Green Areas Law enforces 

a surface of a minimum of 1 ha, in order for a green area to be acknowledged as a park 

and a maximum of 1 ha for an area to be regarded as a green square [12].   

Small urban green spaces represent stepping stones in the green infrastructure [13] 

and provide cumulative benefits correlated with the network’s density. As with all urban 

green spaces, the small ones contribute to increasing environmental quality through as-

pects such as climate change mitigation [14], pollution and noise control, regulation of the 

hydrological circuit or the creation of habitats [15]. Moreover, they positively impact both 

physical and mental health [16] and help increase human wellbeing and the quality of life 

[17]. 

Research has mainly concentrated on large urban green areas [18], especially urban 

parks and forests, since they are very important elements at urban level and provide a 

wide range of benefits. Research in the field of small urban green areas is still scarce and 

their distribution and quality have generally been neglected, even if as a whole, they rep-

resent a high percentage of the vegetation in cities. Studies focusing on small urban green 

areas usually focus on their use [5], their importance in terms of population health and 

the perception the population has in relation to their design [10] or associated benefits 

[19]. There is also a category of technical studies which focuses, in particular, on exploring 

the characteristics of modern, small urban green areas, such as green roofs [11], green 

walls or rain gardens and quantifying their input in terms of improving environmental 

quality.  

Remote sensing is widely used in the assessment of urban green areas but it espe-

cially targets large areas [20], as they are easier to assess by means of automatic and semi-

automatic methods. Research studies so far have mainly focused on the distribution and 

dynamics of urban green areas [21,22] and their characteristics, such as species composi-

tion [23] and the quality and health of vegetation in cities [24,25]. 

Remote sensing analysis is conditioned by the resolution and characteristics of avail-

able images, their spatial and temporal coverage and access to data [18]. The most used 

images for the extraction of urban green areas are NASA’s Landsat [22,26] and ESA’s Sen-

tinel [27,28], due to their long-term coverage. Yet, their spatial resolution of 30 m, respec-

tively 10 m, does not support the accurate extraction of small patches of vegetation. New 

imagery developed over the last few years, such as Pleiades [28,29] and Planet have al-

lowed researchers to dive into the analysis of the distribution and quality of small urban 

green areas. Furthermore, high resolution images (under 1 m spatial resolution) like IKO-

NOS, GeoEye, World View 3 and 4 are difficult to use on a large scale in research due to 

their cost.  

The extraction and analysis of small green areas through remote sensing also faces 

methodological challenges. OBIA, one of the most widely used methods in the field, can 

create irregular shapes for the objects through the segmentation process [30]. To solve this 

problem, it has been suggested that an appropriate segmentation scale and a multi-tem-

poral analysis of object-based classification be used [31]. Another issue in the classification 

of small urban green areas is the presence of shadows on the imagery [18], since they very 

often occupy the areas near buildings which can’t be properly seen. Hyperspectral images 

are recommended in this situation since different combinations of bands can help better 

distinguish the elements [32]. 

In a recent study, Shahtahmassebia et al. [18] realized a review regarding the remote 

sensing of urban green spaces and highlighted the need for a more detailed investigation 

of small urban green areas. They recommended developing timeseries analysis and the-

matic applications, among others. Our study contributes to filling this gap by trying to 

respond to three research questions: (1) Is GEOBIA method applied to Planet images suit-

able for extracting small urban green areas? (2) Is the method suitable irrespective of the 
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biogeographical region to which is applied? (3) Does the method provide valuable results 

in terms of the quality of small urban green areas regardless of the biogeographical re-

gion? 

In order to respond to these questions, we tested the method on two cities located in 

different climatic and biogeographical regions – Bucharest (Romania) and Athens 

(Greece). In line with the proposed research questions, the study proposed two objectives: 

(1)to determine whether small urban green areas can be extracted using GEOBIA on 

Planet timeseries in two different biogeographical and climatic regions. 

(2)to compare the quality of small urban green areas in two different biogeographical and 

climatic regions. 

2. Data and Methodology 

2.1. Study area 

The proposed method was developed and tested using two European capitals as case 

studies: Bucharest, the capital of Romania, situated in a plain area and Athens, the capital 

of Greece, located in a hollow area, edged by the Saronic Gulf (Aegean Sea) (Figure 1). 

Both cities are the largest in their respective countries, Bucharest having 2 million inhab-

itants and an area of 240 km2 [33], meanwhile the number of inhabitants in the Greater 

Athens Area has reached 3.1 million in an area of 360 km2 [34].  

The two study areas are characterized by different climatic conditions which influ-

ence the quality and quantity of urban green spaces. Bucharest has a temperate-continen-

tal climate with a transition effect [35], meanwhile Athens enjoys a typical Mediterranean 

climate, with hot, dry summers and mild, rainy winters (Table 1). Over the last few years, 

both areas have been affected by heatwaves. Both cities contain large, dense built-up areas 

and are affected by urban sprawl and intense air pollution which, combined with the de-

struction of peri-urban forests by wildfires or changes in land cover, have generated an 

urban heat island effect with an intensity as high as 10oC in Athens [36], compared with 

an average of 5oC in Bucharest [37]. 

Table 1. Climatic characteristics of Bucharest and Athens. 

City 
Annual mean 

temperature 

Temperature 

amplitude 

Minimum 

monthly aver-

age temperature 

Maximum 

monthly aver-

age temperature 

Annual average 

amount of pre-

cipitation 

Reference 

Bucharest 10.5oC 26oC -3oC in January 23oC in July 585 mm ANM [38] 

Athens 17.8oC 19.5oC 8.8oC in January 28.3oC in July 411.8 mm 

Hellenic National 

Meteorological 

Service [39] 

The planning systems in which the cities developed have considerably influenced the 

surface and morphology of green areas. Bucharest is a mix of socialist neighbourhoods, 

containing all important public services (including green areas, both large and small),  

historical areas, usually represented by dense single-family residential, and modern pro-

jects, mainly represented by office spaces [40,41]. Over the past three decades, the city has 

experienced a chaotic development as a result of two key processes - urban sprawl and 

densification [42,43]. By contrast, Athens began to experience spontaneous, undesigned 

urban development in rural areas around its historical centre starting in the 1920s, with 

the uncontrolled and unplanned outward expansion of the urban tissue continuing to this 

day [44,45]. Consequently, both cities have limited public open spaces. 
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Figure 1. Location of the case studies and main land use categories, based on Urban Atlas data [46]. 

According to the European Environment Agency [47], Bucharest and Athens boast a 

low percentage of urban green and blue spaces, compared with the other European capi-

tals and are ranked 31 and 36, respectively, out of the 37 analysed cities. The green space 

network in the two cities is represented both by large green areas (such as parks, cemeter-

ies, sports areas, forests) and small urban green areas, such as pocket parks, residential 

and institution gardens, street alignments or green roofs, which represent a significant 

part of the total. National statistics may differ slightly from the European figures, since 

each country regulates their green space differently. Romania, for example, doesn’t in-

clude green roofs or playgrounds but does include cemeteries and sports areas [12], which 

may contain extensive, impervious surfaces. Greece regulates green spaces along with 

other public areas, such as sidewalks, bike paths or playgrounds, which may not include 

green areas, and suburban green [48]. 

2.2. Extracting small urban green areas using GEOBIA  

For the present study we used four-band Planet imagery with a 3 m spatial resolution 

[49] for the period 2018-2020. We selected summer images retrieved between 1st June and 

15th July, when the vegetation season was at its height in both case study areas. We ex-

tracted small urban green areas using Geographic Object-Based Image Analysis 

(GEOBIA) [30,50,51]. In the segmentation step, the scale factor was chosen based on sev-

eral trials with values between 18 and 20 [52,53]. Random forest classification was used to 

classify the objects obtained in the segmentation step into three main land use types 

(green, developed and water) [29,54,55]. The validation of the obtained classification was 

performed using confusion matrix to calculate the overall accuracy and Kappa index 

[28,37]. We classified four images for each city, all of which had an overall accuracy higher 

than 91%, which is considered very good [27] and a Kappa index higher than 0.84 (Table). 
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Table 2. Accuracy results for GEOBIA classification. 

City Image code Acquisition date Overall accuracy (%) Kappa 

Athens 

A20180613 13 June 2018 94.80 0.9020 

A20190708 08 July 2019  91.80  0.8470 

A20200621 21 June 2020 93.40 0.8783 

A20200722 22 July 2020  92.87  0.8662 

Bucharest 

B20180610 10 June 2018  96.20  0.9267 

B20190613 13 June 2019 93.20 0.8739 

B20200626 26 June 2020  95.00  0.9080 

B20200715 15 July 2020 93.00  0.8700 

As it was only required to maintain the small urban green areas in our database, we 

used the OSM 2021 data [56] to erase the land uses associated with large green areas, such 

as cemeteries, farmland, farmyards, forests, meadows, allotments, nature reserves, parks, 

recreation grounds and scrubs from the obtained classifications. Moreover, we also de-

leted the areas classified as green outside the built-up limit, which were not identified as 

green by OSM, but also did not represent urban green areas. Afterwards, we used the 

roads from the same database to split the remaining green areas into parcels and deleted 

those with an area over 2 ha. The resulted dataset was used in the next steps of the analy-

sis, which focused only on the small urban green spaces.  

2.3. Vegetation indices used for assessing the quality of small urban green areas  

To analyse the small urban green areas, we selected two widely used vegetation in-

dices - the Normalized Difference Vegetation Index (NDVI) [57] and the Modified Soil 

Adjusted Vegetation Index 2 (MSAVI2) [58]. Considering the visible spectrum and near 

infrared provided by the Planet images [59], we calculated NDVI and MSAVI2 using the 

formula in Table 3. NDVI is an indicator of vegetation, used for evaluating the abundance 

of vegetation and its characteristics, based on a scale from -1 to +1, where 0.2 is considered 

as a threshold for impervious areas [60,61]. MSAVI2 is considered to provide better results 

than NDVI in terms of distinguishing different canopy structures, as well as in the case of 

early stages of vegetation or types of vegetation which do not entirely cover the soil, even 

when they are fully developed [62]. Usually, these two indicators are used together for 

analysis purposes to obtain better information [29]. Due to objective considerations, such 

as the wavelength of the images, it was not possible to calculate indices referring to water, 

nitrogen or carbon [63–65].  

In the context of the current study, we refer to quality of small urban green areas 

from the point of view of the information provided by the two indicators – NDVI and 

MSAVI2. Therefore, through quality we understand the density and health of vegetation, 

since the assessed indicators are strongly correlated to photosynthetic activity, biomass, 

plant and soil moisture and plant stress [66,67].  

Table 3. Vegetation indices used in the analysis [68]. 

Index code Index Formula 

MSAVI2 

Modified Soil Ad-

justed Vegetation In-

dex 2 

 

2 × ��� + 1 − �(2 × (��� + 1)� − 8(��� − ���)

2
 

 

NDVI 
Normalized Differ-

ence Vegetation Index 

 
(��� − ���)

(��� + ���
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An optimized hot spot analysis was performed based on the Getis-Ord GI z-scores 

[69,70] for NDVI and MSAVI2, to identify statistically significant spatial clusters of high 

values (hot spots) and low values (cold spots) [71]. 

2.4. Factors influencing the quality of small urban green spaces 

In order to understand the spatial variations in the quality of small urban green areas, 

as indicated by the two calculated indicators (NDVI and MSAVI2), we performed statis-

tical analysis which helped in quantifying the variations. Based on scientific literature, we 

selected three indicators which proved useful when assessing the characteristics of urban 

green spaces, in order to assess the spatial distribution of the quality of small urban green 

areas. The three selected indicators were the distance from the main roads [65] (as defined 

in the OSM database), the distance from the city centre [62] and built-up density [72] (cal-

culated using OSM data for a fishnet of 100x100m). The small urban green areas extracted 

in the previous step were clipped using the same fishnet and for each resulted patch (with 

a surface of maximum 1 ha) we calculated the distance from the closest main road, the city 

centre and the built-up density. For each patch we also applied spatial statistics and cal-

culated the z-score for NDVI and MSAVI2 [73]. 

After calculating the three indicators for each patch of small urban green area in the 

two cities, we identified the minimum and maximum values. For each indicator and each 

city, we created five classes using the equal interval method. For the built-up indicator, 

the values ranged from 0 (no built-up areas in the analysed cell) to 1 (the cell was entirely 

occupied by the built-up area). 

One-way ANOVA was performed using SPSS [74] in order to compare the effect of 

the three indicators on the quality of small urban green areas. The average value of NDVI 

and MSAVI2 per patch of small urban green area were used as dependent variables. As 

independent variables, we used the three indicators: distance from the green patch to the 

main roads – Class_roads, distance from the city centre – Class_centre and built-up density 

– Class_built.  

Furthermore, we tested the differences in average NDVI and MSAVI2 values be-

tween the five classes established for each indicator. We performed post hoc tests (Tukey 

HSD test) [75] in order to identify the different classes between which differences were 

registered. The calculation of the vegetation indexes, the zonal statistics and the hot spot 

analysis were optimized by developing Python scripts. 

3. Results 

3.1. Distribution and dynamics of small urban green areas 

The analysis highlighted that a considerable share of the green areas in the cities are 

represented by small patches. The extraction of green features through GEOBIA revealed 

that, on average, 49% of Bucharest and 68% of Athens are covered by vegetation (includ-

ing tree canopy overlapping built areas and infrastructure, agricultural land, protected 

areas and abandoned surfaces covered by vegetation in the peripheral area of the cities). 

Between 36% (in the case of Athens) and 47% (in the case of Bucharest) of the surface 

identified as vegetation is represented by small urban green areas, which mainly include 

residential gardens (both public and private), pocket parks, street trees and gardens of 

institutions. Analysing the dynamics of the small urban green areas between 2018 and 

2020, we observed that in Bucharest, these showed variations between 21% and 28% of 

the city’s surface with a slightly increasing trend (Figure 2a), meanwhile in Athens they 

registered a gradual decrease from 29% to 23% (Figure 2b). 
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Figure 2. Variations of small urban green areas per image for Bucharest (a) and Athens (b). 

The dynamics of the small urban green areas was analysed by overlapping the four 

images for each city. In Bucharest, 37.11% of the surface of small urban green areas is 

identified as green on all four images (100% overlap), 18.57% overlaps on three images 

(>50% overlap), 18.87% on two images (<50% overlap), while 25.44% of the green surface 

only appears on one of the classified images (Figure 3a). In Athens, 36.5% of the surface 

of identified small urban green areas are distributed in this category in all four analysed 

moments, 15.67% are classified as green on three images (>50% overlap), 22.41% on two 

images (<50% overlap) and 25.41% appear on only one image (Figure 3b).  

  
 

Figure 3. Small urban green area distribution for Bucharest (a) and Athens (b), 2018-2020. 

The percentage of overlaps highlights the certainty of the presence of small urban 

green areas in those locations. In the case of both cities, around 55% of the identified small 

green areas remain in this category almost across the entire analysed timeframe. The areas 

with a high percentage of overlaps have different distributions across the two cities. 

Meanwhile Bucharest has high overlap mainly in the peripheral socialist neighbourhoods, 

in Athens those areas are mostly located in the hills in the north-eastern part of the city 

where neighbourhoods consisting of villas belonging to the higher class are located. 

3.2. Quality of small urban green areas 

The values of NDVI and MSAVI2 highlight the characteristics and quality of small 

urban green spaces in the two cities. At city level, Bucharest has higher values than Athens 

in the analysed timeframe, even if the latter contains a larger surface of green areas, the 

a b 

a b 
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same tendency exists when analysing only the small urban green areas. The average val-

ues for NDVI of identified small urban green areas, calculated for the analysed timeseries, 

are 0.53 for Bucharest and 0.29 for Athens; meanwhile, the average value of MSAVI2 for 

the same surfaces is 0.69 for Bucharest, compared to 0.44 for Athens. The highlighted ten-

dency is explained by the different types of vegetation characterizing the two cities. 

In the case of Bucharest, the average values of NDVI, calculated for the small urban 

green areas, vary between 0.48 in 2018 and 0.59 in 2019. Meanwhile, Athens is character-

ized by smaller variations, with a minimum average of 0.26 in 2018 and a maximum av-

erage of 0.30 for the other three images. According to the registered values, the small ur-

ban green areas in Bucharest have denser and healthier vegetation than those in Athens. 

The values above 0.66 show that these small patches contain mature trees with a dense 

canopy, a situation which is characteristic of Bucharest, whereas those between 0.33 and 

0.66 suggest the presence of bushes or scarcer vegetation, as may be found in Athens.  

The highest values of NDVI within small green patches in Bucharest are associated 

with the wealthier neighbourhoods in the north, followed by some of the largest socialist 

neighbourhoods in the city, Titan (in the east), Berceni (in the south) and Militari and Dru-

mul Taberei (in the west) (Figure 4a). In Athens, the highest values are around 0.66 and 

characterize the north-eastern region of the city (Kifisia, Ekali), an area inhabited by the 

wealthier class (Figure 4b).  

 

Figure 4. NDVI distribution of small urban green areas for July 2020 in Bucharest (a) and Athens (b). 

In Bucharest large urban green areas (as forests and parks) are characterized by 

higher values of NDVI than small green patches throughout the entire analysed 

timeframe. In 2019, we registered the highest values of NDVI with 67% of the large urban 

green areas and 45% of the small urban green areas having values over 0.66. In Athens, 

few areas have NDVI values above 0.66, regardless of whether they are large or small. 

The MSAVI2 average values, calculated for small urban green areas, varied between 

0.64 in 2018 and 0.74 in 2019 in Bucharest and between 0.4 in 2018 and 0.46 in 2019 in 

Athens, with very similar values for 2020. Both the spatial distribution and the temporal 

dynamics of MSAVI2 are similar to those of NDVI. In Bucharest, almost all surfaces iden-

tified as small green areas have average values over 0.6 (Figure 5a), indicating that the 

vegetation is sufficiently dense to cover the soil. However, in Athens, the registered aver-

age values for MSAVI2 above 0.6 were between 6% in 2019 and 31% in July 2020. The 

majority of the small urban green areas in the city have average values between 0.4 and 

0.6 (Figure 5b) highlighting the scarcity of Mediterranean vegetation. The spatial distribu-

tion of the values of MSAVI2 points to both city centres as lacking appropriate green cov-

erage. 

a b 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 September 2022                   doi:10.20944/preprints202209.0411.v1

https://doi.org/10.20944/preprints202209.0411.v1


 

 

 

Figure 5. MSAVI2 distribution of small urban green areas for July 2020 in Bucharest (a) and Athens (b). 

3.3. Spatial distribution of the quality of small urban green areas 

The Optimized Hot Spot Analysis showed the same spatial characteristics for both 

indicators and all four images analysed for each city. The average values of NDVI and 

MSAVI2 for small urban green areas showed that strong spatial clustering, marked as hot 

spots in the northern and western part of Bucharest exists (Figure 6a), whereas the centre 

and the eastern regions are identified as cold spots. In Athens, the clustering shows hot 

spots in the northern and eastern parts of the city (Figure 6b). In both cities, there is a 

tendency to create hot spots in areas near the forests (in the north in Bucharest and the 

north-east in Athens) and cold spots in the central area. Small urban green areas tend to 

have higher average values, if they are in the proximity of large green areas. 

  

Figure 6. Optimized hot spot distribution of NDVI for July 2020 Bucharest (a) and Athens (b). 

Testing the spatial distribution of the quality of small urban green areas highlighted 

similar tendencies for NDVI and MSAVI2 in both cities. The ANOVA tests revealed sig-

nificant statistical differences between the quality of small urban green areas (measured 

a b 

a b 
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through NDVI and MSAVI2) for all three tested indicators – distance from main roads, 

distance from the city centre and built-up density (Table 4) in both cities. The only excep-

tion was the image of Bucharest from 2018 in which we were unable to identify significant 

differences between the NDVI classes in relation to the built-up surface.  

Table 4. ANOVA test results for mean values of NDVI and MSAVI2 for Bucharest and Athens. 

Image code 
Df between 

groups 

Df within 

groups 

F-statistic/ 

p-value 

Class_roads Class_center Class_built 

NDVI MSAVI2 NDVI MSAVI2 NDVI MSAVI2 

A20180613 4 223966 
F 357.03 348.71 4778.36 4580.19 4203.57 4347.13 

p 0.00 0.00 0.00 0.00 0.00 0.00 

A20190708 4 149844 
F 428.16 413.18 2975.23 2984.12 2841.54 3006.98 

p 0.00 0.00 0.00 0.00 0.00 0.00 

A20200621 4 181283 
F 385.94 369.83 5220.60 5085.26 4531.01 4743.90 

p 0.00 0.00 0.00 0.00 0.00 0.00 

A20200722 4 242108 
F 180.10 203.38 3548.11 3484.79 3789.40 3897.32 

p 0.00 0.00 0.00 0.00 0.00 0.00 

B20180610 4 91753 
F 34.32 63.79 5.83 256.52 1.34 42.52 

p 0.00 0.00 0.00 0.00 0.25 0.00 

B20190613 4 92611 
F 32.75 32.91 340.22 351.81 144.91 126.52 

p 0.00 0.00 0.00 0.00 0.00 0.00 

B20200626 4 107680 
F 26.87 26.24 230.55 217.16 116.02 107.57 

p 0.00 0.00 0.00 0.00 0.00 0.00 

B20200715 4 100240 
F 518.35 507.65 2274.74 2216.17 1206.33 1182.90 

p 0.00 0.00 0.00 0.00 0.00 0.00 

The most relevant indicator was the distance of the small green areas from the centre 

of the city. The Tukey HSD test showed significant differences between all analysed clas-

ses in seven of the eight images. The image for Bucharest from 2018 only registered sig-

nificant differences between some of the five classes. In the case of Athens, the quality of 

the small green areas exhibited a significantly clear increase from the city centre to the 

peripheral areas, with differences between 0.8 (2019) and 0.13 (July 2020) for the mean 

values of NDVI and between 0.9 (2019) and 0.14 (July 2020) for those of MSAVI2. Regard-

ing Bucharest the values are much closer together with class 2 (located between 2.5 and 

4.7 km from the city centre) only registering significantly higher values. This class is es-

sentially located outside the inner-city ring of Bucharest and overlaps the large socialist 

neighbourhoods in the city.  

As in the case of the first indicator, the built-up density is better illustrated in Athens 

than in Bucharest. The quality of the small urban green areas decreases as the built-up 

density increases; the differences are registered by the mean values for the five classes, 

varying between 0.11 (2018) and 0.17 (June 2020) for NDVI and between 0.15 (2018) and 

0.22 (June 2020) for MSAVI2. The Tukey HSD test highlights that in Athens, there are sig-

nificant differences between all classes except classes 4 (61-80% built-up) and 5 (81-100% 

built-up) in respect of the two images in 2020. For Bucharest, the results are similar with 

those registered for the distance from the city centre, with small variations between the 

means of the five classes and no consistent spatial pattern.  

In the case of the distance from the main roads, the results are similar for both cities. 

The post-hoc tests showed several classes with no significant differences between them, 

especially those closer to the main roads compared with those farthest away. In both cities, 

the highest-class averages for NDVI and MSAVI2 were registered for the medium dis-

tances. Multiple comparisons showed that there is a correlation between the results ob-

tained with Optimized Hot Spot Analysis and the differences between groups. 
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4. Discussions 

4.1. Method efficiency for extracting small urban green areas 

GEOBIA is an efficient method, widely used for extracting different types of land use 

at city level, including urban green areas [76,77]. We took one step further and calibrated 

this to efficiently extract the small urban green areas using high resolution images. Our 

data showed a high level of accuracy when identifying green areas (over 91% across all 

analysed images) in both the climatic and biogeographic regions analysed – mediterra-

nean and temperate.  

The small urban green areas we extracted from the images do not exactly represent 

the physical surface of the green areas, but the canopy for those which contain trees [18]. 

For this reason, combined with the resolution of images and the fact that the selected 

method allows the exclusion of artificial areas, which are included in green spaces [78] 

(e.g., large alleys in parks, roofs of sports areas), but also the inclusion of green areas which 

may not be considered as such in the legislation (e.g., informal green areas which may 

include, among others, the green roofs or private residential gardens [7]), the resultant 

green areas cannot be compared with the official statistics. Instead, these should be com-

parable with the data provided by Copernicus Land Monitoring Service and other similar 

databases since they use the same range of methods [37]. 

Image resolution is a positive aspect of our analysis. Sun et al. [79] demonstrated that 

urban green spaces can be successfully identified using images with spatial resolution 

between 2 m and 16 m. With a 3 m resolution, Planet images are the best available satellite 

images, provided freely for research by Planet. They offer the opportunity to study the 

small urban green areas, which was not possible with other widely used satellite imagery, 

like Landsat (30 m resolution) and Sentinel (10 m resolution). Research into urban green 

areas, using Planet images, is still in its infancy, however, the application of the latter is 

wide-ranging. For example, Pascual et al. [80] used these in order to predict the risk of 

tree mortality in a tropical eucalypt forest in Brazil.  

Our analysis showed that very small green areas (such as the green patches on round-

abouts) and linear elements (such as street alignments) have lower validation scores than 

pocket parks or residential gardens. To analyse these accurately, there is a need for images 

with a better resolution, technologies which may not be publicly available and a compu-

tational capacity which increases exponentially with the detail degree of the analysis [81]. 

The use of timeseries ensures validation [82], especially when analysing an element 

with high spatial dynamics, such as small urban green areas. In both case studies in more 

than 50% of the cases small urban green areas are identified as such on at least three of the 

four images. The rest of the surface may be identified as small green only on some images, 

due to the technical factors or changes in the land cover. Among the relevant technical 

factors, we highlight the quality of the images and the shadow effect, which especially 

affects the areas near high buildings where small green areas may be located [18]. Re-

searchers have explored several methods in order to minimize this problem, such as the 

use of four masks (vegetation, height, shadow and distance) [83].  

Land cover change is a significant aspect when analysing small urban green areas 

[82,84] since their surface and their often unclear legal status make them vulnerable to 

transformations [43]. For example, in Bucharest, in the context of a volatile legislative 

framework, many small green areas have been transferred into private property and 

transformed into other land uses [85,86]. Moreover, there are areas which are not actively 

managed and therefore, depending on the climatic conditions and the works that take 

place, these may be covered by ruderal vegetation [87], by bare soil or even urban waste. 

This might be the case in abandoned industrial or agricultural areas, brownfields or even 

different types of gardens depending on their management [26]. On a smaller scale, the 

differences between the images may be attributable to various reasons, such as artificial 

vs. natural grass on football fields, the construction or demolition of buildings, the clear-

ing of grass on empty plots and the pruning of trees and bushes, which is not performed 

to the same extent every year. 
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4.2. Insights into the quality of small urban green areas 

In line with prior research [88], our findings highlighted higher values of NDVI in 

Bucharest, which has a temperate climate, than in Athens, which enjoys a mediterranean 

climate. This aspect is related to both the biogeographical characteristics of the two regions 

and the planning decisions implemented in the cities. The vegetation in Athens is mainly 

represented by evergreen species, such as oak and cypress, and in the peripheral areas 

there are olive groves [89]. Many urban green spaces in the city contain oleander, olive, 

lemon or orange trees. The vegetation in Bucharest mainly consists of deciduous species, 

such as linden, hornbeam, American maple and platanus.  

Mediterranean vegetation is adapted to cope with drought stress and has a low water 

content [89] which explains the lower levels of NDVI in comparison with the vegetation 

in the temperate climate during summer. Meanwhile evergreen vegetation has similar 

NDVI values over the year [90]; deciduous species in the temperate zone register maxi-

mum values during late spring and early summer when the biomass and photosynthesis 

are at peak [67].  

Our results showed that both cities have neighbourhoods with very well developed 

small urban green areas (Figure 7), but their share within the city is very different. In Bu-

charest, the socialist neighbourhoods (e.g. Drumul Taberei), which comprise the majority 

of the multi-family residential spaces, have very well developed small green areas, mainly 

represented by residential gardens, pocket parks and street alignments. These areas, 

which were planned during the socialist regime, along with the residential buildings they 

serve, have dense and well-developed vegetation (usually including mature trees which 

are 40-50 years old) rendering them NDVI hot spots at city level. In contrast, multi-family 

residential areas in Athens (e.g. Kalithea) have low values of NDVI, due to the scattered 

character of the vegetation which generates very low values of NDVI (around 0.3). The 

single-family residential areas have comparable NDVI values in Bucharest and Athens, 

but in the case of the latter, these cover small areas, usually in the eastern and north-east-

ern peripheries.  
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Figure 7. Sample of small green area with high NDVI values in Bucharest and Athens. 

When assessing the quality of small green areas in relation to the distance from the 

city centre, the distance from roads and built-up density, there were smaller differences 

between the NDVI and MSAVI2 classes averages in Bucharest than in Athens. This is ex-

plained by the fact that in the urban core of Athens vegetation is very scarce and is domi-

nated by individual trees; meanwhile on the periphery, there are residential gardens (Fig-

ure 7) and pocket parks. Even if the spatial resolution of the utilized images is very good, 

the 9 sqm pixels cannot optimally represent individual trees, especially those with small 

crowns, as in the case of many species encountered in the small urban green areas in the 

Mediterranean region. Even if the pixel is identified as green, the intrusion of the artificial 

areas surrounding the trees will lower the registered NDVI value [91]. On the other hand, 

in Bucharest the differences are less between the centre and the periphery in terms of small 

green areas, their surface and characteristics being less contrasting.  

In both Bucharest and Athens, the highest values of NDVI and MSAVI2 were usually 

registered at medium distance from the main roads. This phenomenon might be related 

to the poor air quality in the proximity of main roads and the lack of maintenance works 

in the peripheral areas, which are located at a great distance from them.  

Our results regarding the variations of NDVI and MSAVI2 in respect of built-up den-

sity in Athens are in line with those of Yang et al. [92], who found that in China, more 

concentrated building density generates a poorer quality of urban green areas in similar 

natural conditions. In Bucharest, this relationship is much less significant, with fewer dif-

ferences between the classes and no clear tendency. This might be explained by the char-

acteristics of the temperate deciduous vegetation, which is often higher than the buildings, 

especially in single-family residential areas, and therefore visible. Nawar et al. [24] argue 

that the decrease in the surface of green areas is directly related to the decrease in their 
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quality. Our analysis did not focus on the evolution of the quality of individual green 

patches. Instead, it highlighted that small urban green areas are characterized by lower 

values of NDVI and MSAVI2 than large areas (associated mainly with parks and forests).  

4.3. Influence of climatic and biogeographical characteristics  

We tested the method for extracting the small urban green areas of two cities from 

different climatic and biogeographical areas, to ensure its higher potential of application. 

Considering the different climate zones of the analysed cities, we focused on creating 

training samples specifically for each city. Even though the acquired images were from 

the same period of time, the texture and the spectral response were different across the 

two cities. In the case of Bucharest, vegetation in small patches was easy to observe, while 

for Athens this was more difficult, due to the low water content of the vegetation [93]. In 

Athens, there are areas covered by low vegetation, which may become drier during cer-

tain periods, therefore, their spectral response may lead to different results; the drier the 

vegetation, the more likely it is that these areas are classified as “developed”. 

The identified surface of small green areas is related to the climatic conditions in the 

period prior to the analysed images. In Bucharest, for example, the smallest surfaces of 

the small green areas, registered in June 2018 and July 2020, are associated with the lowest 

rainfall [92] and the highest average temperature at the time of analysis (Table 5). The 

values of NDVI and MSAVI2, calculated at patch level, register higher differences in Bu-

charest than in Athens along the analysed timeseries. This may also be explained by the 

significant climatic variations [94] in Bucharest compared to those registered in Athens 

during the period before the images were acquired. 

Table 5. Climatic conditions in Athens and Bucharest within the 30 day period before the analysed 

images [95]. 

City Image code Rainfall (mm) Rainy days (no.) 
Average temperature 

(oC) 

Athens 

A20180613 0 0 24.1 

A20190708 0 0 27.1 

A20200621 0 0 21.5 

A20200722 0 0 26.3 

Bucharest 

B20180610 31 9 21.2 

B20190613 157 14 20.1 

B20200626 109 14 19.8 

B20200715 83 9 23.7 

The two indicators we selected for the analysis complement one another, especially 

in the case of the Mediterranean climate. In the case of Bucharest, the large surfaces with 

high values of NDVI reduce the contribution of MSAVI2. Virtually, all surfaces identified 

as small green areas on all images have the potential of developing dense vegetation. 

However, in Athens, MSAVI2 better highlights the areas where there is high potential for 

dense vegetation development and also identifies the areas with herbaceous vegetation, 

which cover larger surfaces in the Mediterranean city.  

5. Conclusion 

The novelty of our research relates, in the first place, to the resolution of utilized sat-

ellite images, which allows for the analyses of small urban green areas at city level. Past 

research only focused on large natural or urban green areas, or on small scale case studies. 

Our study is one of the first to analyse small green areas at urban level and provides a 

complex image of their distribution and quality. GEOBIA proved reliable in the analysis 

of small urban green areas and the use of timeseries improves the results. The method is 

easily replicable and an increased number of analyses on the subject would support the 
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elaboration of a guideline to establish the suitable parameters for GEOBIA. The method 

rendered good results in both the temperate and mediterranean climatic regions, the main 

uncertainties being related to the individual trees and street alignments which require an 

even better spatial resolution and to the intense dynamics of these areas. An advantage of 

the presented method is the possibility of including in the assessments the private green 

spaces, which are difficult to analyse through field methods.  

Planet images support the calculation of some vegetation indices, which can provide 

a general image of the state and quality of small urban green areas. Both NDVI and 

MSAVI2 register higher values in the temperate region due to the climatic and biogeo-

graphical characteristics supporting a greater vegetation density and water content. Test-

ing the method in two different climatic regions proved its potential for generalization 

and revealed valuable insights in relation to the characteristics of small urban green areas. 

Future studies may target other climatic and biogeographical regions to ensure validation.  

The proposed methodological framework can represent the basis for a large number 

of applications which require an accurate easy to implement method for extracting urban 

green areas.  Such studies may relate to the assessment of cities sustainability, quality of 

life in urban areas, health and epidemiological studies. 
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