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Abstract: The environmental issues we are currently facing require long-term prospective efforts 
for sustainable growth. Renewable energy sources seem to be one of the most practical and efficient 
alternatives in this regard. Understanding a nation's pattern of energy use and renewable energy 
production is crucial for developing strategic plans. No previous study has been performed to ex-
plore the dynamics of power consumption with the change in renewable energy production on a 
country-wide scale. In contrast, a number of deep learning algorithms demonstrated acceptable per-
formance while handling sequential data in the era of data-driven predictions. In this study, we 
developed a scheme to investigate and predict total power consumption and renewable energy pro-
duction time series for eleven years of data using a Recurrent Neural Network (RNN). The dynamics 
of the interaction between the total annual power consumption and renewable energy production 
are investigated through extensive Exploratory Data Analysis (EDA) and a feature engineering 
framework. The performance of the model is found satisfactory through the comparison of the pre-
dicted data with the observed data, visualization of the distribution of the errors and Root Mean 
Squared Error (RMSE) value of 0.084. Higher performance is achieved through the increase in the 
number of epochs and hyperparameter tuning. The proposed framework can be used and trans-
ferred to investigate the trend of renewable energy production and power consumption and predict 
the future scenarios for different communities. Incorporation of the cloud-based platform into the 
proposed pipeline may lead to real-time forecasting.   

Keywords: Recurrent Neural Network; Renewable Energy; Power consumption; Open Power Sys-
tem Data; Multivariate Exploratory; Time series forecasting 
 

1. Introduction 

In recent decades, interest in renewable energy has grown significantly [1–4]. These non-
polluting, resource-unrestricted energies would provide the perfect electrical source for 
any activity, whether household or industrial, if it weren't for their unpredictability [5–
7]. It is challenging to predict how much power will be gained from renewable sources 
because their throughput varies greatly depending on the circumstances and qualities of 
the location where they are found. In many nations today, it is essential to promote the 
use of renewable energy sources because they provide a wealth of benefits [8–10]. As a 
result, while main energy resource imports are greatly decreased, the security of the en-
ergy supply and the preservation of traditional resources are both guaranteed. Addition-
ally, the use of renewable energy spurs economic growth on a local, regional, and inter-
national scale and generates new job possibilities [11–14]. Utilizing renewable energy 
has the advantage of lessening environmental degradation [15–18]. 

Solar energy has emerged as one of the most important sources of energy in recent years 
[19, 20]. In some countries, solar energy uses a significant percentage of the sun's energy 
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and has a more predictable behavior than wind-based energy. As a result, it ranks 
among the most significant renewable energy sources for a variety of nations in south 
Europe, including Spain, as well as other places along the same latitude, such as Saudi 
Arabia or India [21–23]. Thermal solar energy, which transforms solar radiation into 
thermal energy used to heat buildings, desalination plants, homes, and water treatment 
facilities, among other things, and photovoltaic solar energy, which transforms solar ra-
diation into electrical energy that can be transported for purposes other than heating 
[24–26]. A plentiful natural resource and sustainable energy source is wind. It is known 
that wind energy is both clean and pollution-free. In general, the characteristics of wind 
are its speed, direction, and time of occurrence. The force or speed of the wind is what 
determines how much energy can be extracted from its natural flow [27, 28]. Generally 
speaking, the wind speed or force has a nonlinear and variable nature. Despite its natu-
ral origins, wind has the capacity to produce the necessary amount of energy for the na-
tion's ongoing needs. It is necessary to forecast wind speed in order to increase the 
amount of energy produced [29–31]. Wind speed forecasting strikes a balance between 
the energy generated and the needed demand. An efficient technique for reducing oper-
ating costs and enhancing grid system functionality is a wind speed prediction model 
that is very accurate and dependable [32–35]. 

The use of Deep Learning (DL) has made it possible to anticipate various physical sys-
tems with greater accuracy. There are several different industries where DL is used [36–
41]. In the modern world, virtually every power grid incorporates renewable energy-
based sources. For successful participation in the electricity market, accurate predictions 
of renewable energy sources are crucial. Because of how much these sources depend on 
the weather; it can be difficult to forecast the plant's production. In recent years, there 
has been a rise in ML research and applications for forecasting plant output from renew-
able energy sources. Different models, including Feedforward Backpropagation (FFBP), 
Feedforward Neural Networks (FFNN), Multilayer Feed-Forward with Backpropagation 
Neural Networks (MFFNNBP), etc., with various learning algorithms, including Bayes-
ian Regularization (BR) and Levenberg-Marquardt (LM), can be found in References un-
der the category of variants of the neural network [42, 43]. Some examples of these tech-
niques include Support Vector Regression (SVR), Random Tree (RT), M5P Decision Tree 
(M5PDT), Gaussian Process Regression (GPR), and Physical Photovoltaic Forecasting 
Model (P-PVFM) [44, 45]. Although several approaches for supervised training of RNNs 
have been investigated over the past decade and there are many various types of train-
ing algorithms, none stand out as the ideal model. Backpropagation revisited and 
through time are common training methods for RNNs as they combine the two qualities 
listed below. 1- They have a distributed hidden state that enables them to store a signifi-
cant amount of historical data effectively; 2- They implement the nonlinear dynamics, 
which enables them to develop sophisticated ways to update their hidden state. These 
are the main reason that RNN can compute a large data set with enough neurons and 
time. 

The use of RNN models to investigate the dynamics of energy consumption in relation 
to renewable energy is a relatively recent development [46–50]. This study aimed to 
evaluate how well the RNN model predicted energy consumption when renewable en-
ergy sources were produced. In order to enable researchers, engineers, and decision-
makers understand the temporal dynamics of the power consumption and renewable 
energy production, make informed engineering/managerial decisions, the goal of this 
study is to build an effective and practical RNN method for forecasting future scenarios 
in annual power production and consumption.  Engineers and managers will be able to 
evaluate the energy's short- and long-term behavior and trend, allowing them to eventu-
ally develop preventative measures using the earlier observational data for a variety of 
issues in the region. The RNN-based method used in this study only requires observed 
data, therefore a substantial amount of computational effort is needed. To get the most 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 September 2022                   doi:10.20944/preprints202209.0404.v1

https://doi.org/10.20944/preprints202209.0404.v1


 

 

performance out of the RNN results in this study, a comprehensive exploratory data 
analysis, feature engineering, and hyperparameter optimization are conducted. The re-
mainder of the essay is structured as follows: Section 2 provides a full explanation of 
RNN fundamentals as well as data engineering and experimental methodology. The 
outcomes of the experiment are thoroughly discussed and analyzed in Section 3. The 
conclusion portion and closing thoughts regarding this article are presented in Section 4. 
 
2. Data and Methods  
2.1 Data Source and workflow   

The time series of the total energy consumption, wind and solar power production is 
used in this study to forecast the future trend of the variables in Germany. The time se-
ries dataset is retrieved from the Open Power System Data (OPSD) for Germany, which 
has been rapidly expanding its renewable energy production in recent years [51]. The 
temporal resolution of the variables used for the RNN -based prediction is daily. The 
data set's timeframe includes data over a decade, from 2006 to 2017. Electricity usage 
and generation from wind and solar sources are reported in gigawatt-hours (GWh). In 
the Table 1, a full description of the variables is presented.   

Table 1: Full description of the energy consumption variables used for EDA and predictive analy-
sis with RNN.     

 

 

 

 

 

 

 

 

 

 

 

Energy Consumption Variables Unit Descriptions 
Total consumption GWh Daily total energy consumption 

Wind power production GWh Daily wind power production 
Solar power production GWh Daily solar power production 
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Figure 1: Entire pipeline of RNN-based prediction. 

The shift and fluctuation in electricity usage and generation over time in Germany scru-
tinized in this paper. Time series tools used to examine both seasonal variations and 
long-term trends in wind and solar power production as well as their consumption. Fur-
thermore, these tools compared the wind and solar power production with electricity 
usage. Using an RNN model anticipated each day's consumption based on historical and 
observed data.    
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     Figure 2: Line plots showing the temporal dynamics of the variables, total energy consumption (a) 

     wind production (b) and electricity production (c) from 2006 to 2017.  

.        

2.2 Multivariate Exploratory Data Analysis 

Multivariate exploratory data analysis (EDA) is performed to understand the internal 
distribution of the attributes of the variables [62]. Temporal distribution of all the varia-
bles is explored using several visual and numerical representation. EDA includes an im-
portant process of conducting initial exploration of the variables to investigate the hid-
den pattern in the dataset. EDA is grouped into multiple activities in this study. They 
are presented as the descriptive statistics of the variables, probability distribution with 
histogram to determine the normality (skewness) of the variables. Descriptive statistics 
provides a great way to demonstrate the basic distribution of the values of the variables 
with the number of data points, mean, standard deviation, percentiles, interquartile 
range, and range (max/min). Full multivariate descriptive statistic of the all the variables 
is shown in Table 2. To show the normality, histograms with line of probability distribu-
tion is used as a visual representation and Pearson’s coefficient of skewness (PCS) is 
used as an indicator of skewness to analyze the distribution.      

 

Table 1: Descriptive Statistics of the variables 
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Variable Count Mean Std Min 25% 50% 75% Max 
Consumption 4383 1338.67 165.77 842.39 1217.85 1367.12 1457.76 1709.56 

Wind 2920 164.81 143.69 5.75 62.35 119.09 217.90 826.27 
Solar 2188 89.25 58.55 1.96 35.17 86.40 135.07 241.58 
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     Figure 3: Distribution of the variables using box plot (a), histogram and density plot (b). Pearson’s 

     Correlation Coefficient (PCS) values shows the measure of skewness. 

 

A visual representation of the distribution and the normality of the variables is showed 
in the Figure 3. Overall non-linearity of the wind production is high with left skewness. 
The values of the Pearson Correlation of Skewness (PCS) are attached with figures to the 
numeric measurement of the skewness. PCS values for the wind and solar power pro-
duction and total energy consumption are 5.97, 0.49 and 0.65. Wind power production 
show the highest non-normality among all other variables. Normal distribution is a very 
crucial part in the RNN model performance as it is directly linked to the error minimiza-
tion through the back propagation. Normal distribution is the most crucial factor in the 
field of data-driven predictive analysis e.g., deep neural network regression. As the dis-
tribution of the values of wind power production is highly skewed to the left showing a 
significant non-normally, the neural network regression algorithms without appropriate 
data transformation does not contribute to satisfactory outcomes with good optimiza-
tion. As the distribution of the Renewable energy production series is found to be highly 
skewed, data transformation is performed to decrease the non-normality of the series in 
the feature engineering section. The linear linkage is found to be low among variables. 
The values of the linear correlation coefficients are showed in the bivariate correlation 
plot in Figure 4. The direction of the linear relationship is found to be both positive and 
negative. 
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     Figure 4: Bivariate correlation coefficients among the variables represented by the    

     correlation heatmap.   

      

     2.3 Feature Engineering  

Feature Engineering (FE) is performed after a successful EDA. FE is an important step 
before the training/testing phase of the RNN algorithm. Without a successful FE, any 
data-driven method may not yield to a satisfactory performance with minimum error. 
An adequate optimization through the iterative gradient descent cannot be reached 
without a successful scrutiny of the dataset. Therefore, a comprehensive feature engi-
neering is performed to transform the dataset most suitable for the learning algorithm of 
RNN. FE is performed to prepare the dataset for the predictive analysis. FE involves im-
putation, data transformation, data standardization and splitting the dataset into train-
ing, testing, and validation sets. Imputation in preformed to fill the null values so that 
the entire dataset becomes consistent. In this research, null values or null observation 
were found in every variable. These cells in the dataset are imputed with the median of 
the entire series. In this study, three methods of data transformation are considered e.g., 
logarithmic, power, cubic transformation to transform the distribution of the features 
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more to the normal distribution. Pearson’s coefficient is used as an indicator of normal-
ity.  

Through the data standardization process, the values of a variable are rescaled so that 
the variable has the mean 0 and variance 1 (or Z-score normalization) which is identical 
to the bell-shaped normal distribution curve.  As the variable considered in this study is 
the continuous independent variable, the standardization of the variable is crucial for 
training/testing the neural network algorithm. Standardization is an important step for 
the optimization problem. The RNN recurrent neural network model uses the gradient 
descent technique where the feature value (Renewable energy production) affects the 
step size of the technique. Smooth progress towards minima in gradient descent requires 
the update of the steps at the same rate for all the feature values. A standardized varia-
ble is a prerequisite of reaching the minima in the gradient descends process.  

 

  

All the values in the 
Renewable energy production series are standardized to prepare the training dataset for 
the RNN model. 

Equation 1 shows the formula of standardization of the Renewable energy production 
series. The difference between the Renewable energy production value and the mini-
mum of the entire Renewable energy production series is divided by the range of the 
series provides the standardized data which is further used in the training/testing pro-
cess of the RNN. The entire standardized Renewable energy production series is split 
into two portions i.e., a training set that is used to train the model and a testing set that is 
used to test/evaluate the model. Eighty (70) percent of the dataset is used for training 
and twenty (30) percent is used for testing.  In a nutshell, EDA, and feature engineering 
are pivotal steps for the satisfactory performance of the predictive model.   

2.4 Recurrent Neural Network (RNN)   

Recurrent neural networks (RNNs) are a type of neural systems that can reveal dynamic 
temporal behavior by enabling the use of hidden states and previous outputs as inputs. 
RNNs, which are derived from feedforward neural networks, process input sequences of 
various lengths via using their internal state (memory) and connect the outputs of all 
neurons to their inputs. The main structure concept of NN is the replication of connec-
tion weights configurations to zero to imitate the lack of connections between particular 
neurons. 

      For each timestep 𝑡𝑡, the activation 𝑎𝑎<𝑡𝑡> and the output 𝑦𝑦<𝑡𝑡> are expressed as follows: 

𝒂𝒂<𝒕𝒕> = 𝒈𝒈𝟏𝟏(𝑾𝑾𝒂𝒂𝒂𝒂𝒂𝒂<𝒕𝒕−𝟏𝟏> + 𝑾𝑾𝒂𝒂𝒂𝒂𝒂𝒂<𝒕𝒕> + 𝒃𝒃𝒂𝒂)                  (2), and 

 
𝒚𝒚<𝒕𝒕> = 𝒈𝒈𝟐𝟐�𝑾𝑾𝒚𝒚𝒂𝒂𝒂𝒂<𝒕𝒕> + 𝒃𝒃𝒚𝒚�                         (3) 

 

 Where 𝑾𝑾𝒂𝒂𝒂𝒂, 𝑾𝑾𝒂𝒂𝒂𝒂, 𝑾𝑾𝒚𝒚𝒂𝒂, 𝒃𝒃𝒂𝒂, and 𝒃𝒃𝒚𝒚 are coefficients that are shared temporally and 
 𝒈𝒈𝟏𝟏, 𝒈𝒈𝟐𝟐 are activation functions. 

In the case of a recurrent neural network, the loss function Ը of all time steps is defined 
based on the loss at every time steps as follows: 

𝑿𝑿𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 = 𝑿𝑿−𝑿𝑿𝒏𝒏𝒎𝒎𝒏𝒏
𝑿𝑿𝒏𝒏𝒂𝒂𝒂𝒂−𝑿𝑿𝒏𝒏𝒎𝒎𝒏𝒏 

                      (1) 
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Ը(𝒚𝒚�,𝒚𝒚) = ∑ Ը(𝒚𝒚�<𝒕𝒕>,𝒚𝒚<𝒕𝒕>)𝑻𝑻𝒚𝒚
𝒕𝒕=𝟏𝟏                        (4) 

  
Backpropagation is done at each point in time. At timestep T, the derivative of the loss Ը 
with respect to weight matric W is expressed as follows: 

𝝏𝝏Ը(𝑻𝑻)

𝝏𝝏𝑾𝑾
= �

𝝏𝝏Ը(𝑻𝑻)

𝝏𝝏𝑾𝑾
�

(𝒕𝒕)

𝑻𝑻

𝒕𝒕=𝟏𝟏

                               (𝟓𝟓) 

 
 
 
 
  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 September 2022                   doi:10.20944/preprints202209.0404.v1

https://doi.org/10.20944/preprints202209.0404.v1


 

 

 

     Figure 5: Schematic of the Recurrent Neural Network (RNN) 
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2.5 Model Evaluation using Loss Functions 

Root Mean Square Error (RMSE), correlation coefficient (R), relative error, and consen-
sus were the top four techniques of standard performance assessment (RE). In fact, more 
than one error metric, which can also accurately capture the high streamflow time series 
values, should be used to evaluate model correctness. The most popular evaluation met-
ric is the Root Mean Square Error (MSE) as the function is more sensitive about signifi-
cant errors. That's because the squared term multiplies greater errors exponentially more 
than smaller ones. MSE is the mean of the absolute value of the errors and is normalized 
by the number of data points, N: 

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 = 𝟏𝟏
𝑵𝑵
∑ �𝑸𝑸𝒕𝒕(𝒏𝒏𝒃𝒃𝒔𝒔) −  𝑸𝑸𝒕𝒕(𝒄𝒄𝒏𝒏𝒏𝒏)�

𝟐𝟐𝑵𝑵
𝒕𝒕=𝟏𝟏         (6) 

     where 𝑄𝑄𝑡𝑡(𝑜𝑜𝑜𝑜𝑜𝑜) = observed Renewable energy production , 𝑄𝑄𝑡𝑡(𝑐𝑐𝑜𝑜𝑐𝑐) = computed Renewable 
     energy production , so (𝑄𝑄𝑡𝑡(𝑜𝑜𝑜𝑜𝑜𝑜) −  𝑄𝑄𝑡𝑡(𝑐𝑐𝑜𝑜𝑐𝑐)) represents the error term between the real and 
     measured value for each data point which is normalized by dividing by the total number 
     of observations after summation of all terms. The lowest MSE score corresponds to the best 
     predictive accuracy. 
      
     The coefficient of determination (𝑅𝑅2) is a popular error metric for the accuracy of the model 
     and the model fitness to the data points’ values depicted by this metric. The better the 
     model fits the data, the higher the 𝑅𝑅2 is. The square root of coefficient of determination 
     represented as correlation coefficient (R) which is the second error function implemented 
     in this study. 

𝑹𝑹 = ∑ �𝑸𝑸𝒕𝒕(𝒄𝒄𝒏𝒏𝒏𝒏)−𝑸𝑸�(𝒄𝒄𝒏𝒏𝒏𝒏)��𝑸𝑸𝒕𝒕(𝒏𝒏𝒃𝒃𝒔𝒔)−𝑸𝑸�(𝒏𝒏𝒃𝒃𝒔𝒔)�𝑵𝑵
𝒕𝒕=𝟏𝟏

��∑ �𝑸𝑸𝒕𝒕(𝒄𝒄𝒏𝒏𝒏𝒏)−𝑸𝑸�(𝒄𝒄𝒏𝒏𝒏𝒏)�
𝟐𝟐𝑵𝑵

𝒕𝒕=𝟏𝟏 ��∑ �𝑸𝑸𝒕𝒕(𝒏𝒏𝒃𝒃𝒔𝒔)−𝑸𝑸�(𝒏𝒏𝒃𝒃𝒔𝒔)�
𝟐𝟐𝑵𝑵

𝒕𝒕=𝟏𝟏 �
      (7) 

      

     Where 𝑄𝑄�(𝑐𝑐𝑜𝑜𝑐𝑐) = average of computed Renewable energy production, 𝑄𝑄�(𝑜𝑜𝑜𝑜𝑜𝑜) = average of 
     observed Renewable energy production. The 𝑅𝑅2 range is 0 to 1, with 0 indicating no  
     correlation and 1 signifying perfect correlation between observed and computed values. 
      

     The third evaluation metric utilized in the dataset is Relative Error (RE) which is calculated 
     by dividing the computed Renewable energy production as a measured value by the  
     observed Renewable energy production having a real value, then decreasing the  
     numerator by diving the absolute value of that it by the observed Renewable energy  
     production value.  

𝑹𝑹𝑹𝑹 = 𝟏𝟏
𝑵𝑵
∑ �𝑸𝑸𝒕𝒕(𝒄𝒄𝒏𝒏𝒏𝒏)−𝑸𝑸𝒕𝒕(𝒏𝒏𝒃𝒃𝒔𝒔)�

𝑸𝑸𝒕𝒕(𝒏𝒏𝒃𝒃𝒔𝒔)

𝑵𝑵
𝒕𝒕=𝟏𝟏              (8)   

Where the smallest value for RE, the same as MSE, correlates to the best model perfor-
mance. 

3. Results and Discussion 

The output from the RNN algorithm is compared to the observed Renewable energy 
production data from USGS database through visualization in the Figure 7. Both ob-
served and predicted Renewable energy production time series is plotted against the 
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number of datapoints. The overall distribution of the predicted Renewable energy pro-
duction values is approximately identical to the observed data providing a satisfactory 
performance of the RNN algorithm. After the RNN model is trained with the training 
portion of the dataset, the entire observed dataset is fed to predict the outcome. The en-
tire dataset is divided into training and testing sets with the proportion of 70% and 30%. 
Training dataset is used to train the model and testing dataset is used to evaluate the 
model performance. Observed data is showed in the Figure 6 (a) with green color. In the  
Figure 6 (b), deep cyan portion of the plot illustrate training portion of the dataset 
whereas deep blue portion shows the testing portion. The RMSE values of the training 
and testing portion are 0.097 and 0.045 respectively. Lower RMSE values shows the sat-
isfactory performance of RNN algorithm.       

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      Figure 6: Rolling mean   
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      3.1 Model Evaluation Matrices and Improvement 
      The performance of the RNN neural network is evaluated using three error  
      matrices e.g., Root Mean Square Error (RMSE), the coefficient of determination  
      (R2) and Nash Sutcliffe model efficiency coefficient (E) [63]. Further, the   
      performance of the model also evaluated and improved through increasing the  
      number of iterations i.e., epoch in the neural network. The value of R2 is observed 
      with the increase in the number of epochs in the Figure 7. The number of epochs is 
      increased up to 100 to increase the performance. The RMSE value is found to  
      decrease from 0.01 to 0.0025 which indicates satisfactory performance in the RNN 
      algorithm. The model performance increases significantly from the very beginning 
      of the iteration for both the train and test scenarios. The trend of change in the  
      decrease in the RMSE values reaches a near-steady state after 20 epochs. Local  
      decease in the performance i.e., increase in the RMSE value can be seen after 20  
      epochs. 

 
      Figure 7: Improvement of the model prediction capability with the increase in the 
      number of iterations i.e., epoch for the train and test set. R2 value is the indicator of 
      the model performance.  
       
      Observed and predicted values of the energy from RNN model and the distribution 
      of the RMSE values are illustrated in the Figure 8 using a scatter plot (a) and histo
      gram (b). The scatterplot shows that the points follow an approximately 45° trend
      line originated at zero. Some points are found to locate outside of the main cluster 
      of the points which shows the error in the prediction process. The r2 value of the 
      best fitted straight line is +0.862 which gives a good indication of the performance.  
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     Figure 8: Model performance are presented using the scatterplot of the observed and predicted  

     Renewable energy production values from RNN model.    

      

     Time series prediction for renewable energy production and consumption is a pivotal task 
     in the field of power management. The application of the data-driven prediction models is 
     highly efficacious in predicting various energy variables without taking complicated  
     equations and assumptions into consideration. In this study, annual power consumption 
     and renewable energy production is predicted using the most powerful neural network in 
     predicting sequential data i.e., RNN recurrent neural network. RNN algorithm is capable 
     of recalling both the short- and long-term pattern of the time series to forecast. The range 
     of the energy time series considered in this research is quite large containing multiple  
    seasonal dynamics. Traditional physics-based numerical modelling tool requires   
    assumptions, other correlated variables, and expensive calibration of the parameters.   
    Compared to the other neural network regression models, RNN are proved to show good  
    performance especially the time series prediction. As the energy consumption and   
    production provides a sequential data which has high temporal dynamics, RNN is used to  
    quantify future values based on the past data. As the shape of the energy dataset is   
    comparatively large eleven years of daily data, RNN algorithms showed highly    
    satisfactory performance. 
      

     4. Conclusions 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 September 2022                   doi:10.20944/preprints202209.0404.v1

https://doi.org/10.20944/preprints202209.0404.v1


 

 

This study adds to the development of a reproducible template for analyzing large 
amounts of exploratory data in order to understand the distinctive temporal dynamics of 
energy consumption and renewable energy production. Various modern data exploration 
technologies are used to uncover a hidden pattern in the distribution of energy values 
throughout more than eleven years of data, which is a necessary condition for the success-
ful training of the RNN algorithm. Following a successful training phase, an explicit iter-
ative performance record is used to tweak and optimize the RNN. This performance rec-
ord can then be used to anticipate the value of the energy in a similar geographic area. 
The effectiveness of the RNN algorithm in predicting river energy shows how well-suited 
the algorithm is to the time series of energy. Many error matrices exhibit positive perfor-
mance with little error. 

Along with the benefits, there are a few disadvantages of adopting RNN, including the 
following: 1) the amount of time necessary to train the model, with RNN analysis taking 
more time, and the length of time it can take to run the model over a big dataset compared 
to other conceptual models. The computing effort/time needed for the RNN algorithm in 
this investigation was discovered to be extremely high. 2) The slow process also made it 
necessary to use more of the system's memory and storage capacity, which can make it 
difficult to train on a large dataset, as was the case in our study. 3) A challenging aspect 
of RNN for time series data processing is overfitting, which can lead to incorrect extremely 
low error measurements. 4) Despite the fact that the essential to implementing RNN is the 
capacity to compare the different time lags throughout the whole time series dataset, we 
were unable to obtain sufficient performance for this dataset for periods longer than three 
days. Any time lapses that occur during a three-day period are flawless and produce low 
error measurements that are satisfactory. To achieve the greatest results, future research 
projects should be done incorporating high performance computing and cloud-based pro-
cesses. To test the model's transferability, RNN models with various configurations 
should be used in various geographic and climatic regions.  
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