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Abstract: Aiming at the problem of low charging efficiency caused by the scattered sensor nodes 
in traditional wireless rechargeable sensor networks (WRSNs), a UAV-assisted WRSN Online 
Charging Strategy Based on Dynamic Queue and Improved K-means (UOCS) is proposed. The 
scheme assumes that the energy consumption of nodes is unpredictable, and only generates charg-
ing requests when the energy is lower than a threshold, and performs on-demand responses to 
nodes that issue charging requests. The scheme combines the characteristics of one-to-one charging 
of UAVs, the selection and allocation timing of waiting queues and the number of UAVs, and the 
improved K-means partitioning based on space-time coordination(SPKM), which simplifies the 
problem of coordinated charging of multiple UAVs and maximizes energy. Using the efficiency and 
charging success rate, the optimal charging trajectory can be found under the constraint that the 
node will not starve to death due to power shortage. Finally, a simulation comparison experiment 
is carried out with the existing UAV charging scheduling strategy. UOCS achieves the optimal node 
survival rate with low algorithm complexity. 

Keywords: Wireless Rechargeable Sensor Network; Unmanned Aerial Vehicle; One-to-one Charg-
ing; Space-time Collaboration; Optimal Charging Trajectory 

1. INTRODUCTION 
With the rapid development of wireless technology, wireless sensor networks have 

avery important status in real life, especially in the field of sensing monitoring applica-
tions, including environmental perception, target tracking and health monitoring [1]. In 
the traditional Wireless Sensor Network (WSN), the sensor node is generally driven by 
battery, but the limited energy of the battery not only hinders large-scale deployment of 
the sensor, but also affects the work life of the entire network.  In response to this prob-
lem, researchers have proposed energy saving [2] and energy extraction [3], attempting to 
reduce or balance the energy consumption of the sensor, but it is impossible to solve this 
problem. For energy-saving methods, it can only effectively extend the life of the network, 
and prevent   the sensor node from exhausting energy, the network will eventually die. 
Taking into account the unpredictability of the environment, the extraction efficiency will 
be greatly affected, causing the sensor node to operate continuously. Kurs et al. [4][5] pro-
poses a problem that the Wireless Power Transfer (WPT) technology can solve the prob-
lem of limited energy in the traditional wireless sensor network, thereby further devel-
oping wireless rechargeable sensor networks (WRSN). 

Domestic and foreign scholars have conducted a lot of research and practice on the 
node energy replenishment of wireless rechargeable sensor networks, among which the 
most commonly used is the use of mobile charging trolleys [6][7][8] (Mobile Charger, MC) 
for energy replenishment of WRSNs. However, the charging car is difficult to play its role 
in some areas with limited conditions and harsh environments, such as natural disaster 
areas, war areas, etc. Even in conventional environments, path planning may fail due to 
many obstacles. 

To solve this problem, we proposed a UAV-assisted non-deterministic WRSN charg-
ing scheduling scheme. In this article, UAVs refer to aircraft that carry charging equip-
ment and can be charged wirelessly. Its advantages include high speed, strong flexibility, 
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easy to pass through general obstacles and fixed-point hovering. Therefore, the non-de-
terministic charging scheduling scheme based on UAV proposed in this paper can make 
up for the deficiency of MC. 

Deterministic charging scheduling [9] considers that under ideal conditions, the en-
ergy consumption of all nodes in the sensor network is known and constant. Charge to 
avoid node power failure and death. The determination here refers to the determination 
of the overall energy state of the network, based on constant node energy consumption 
and the control center knowing the energy state of the network at any time; after the 
scheduling strategy, the charging sequence and charging time of each round is the same, 
and the energy state of each node also decreases at a constant rate and is periodically 
replenished. Therefore, in some works, deterministic WRSN charging scheduling is also 
called periodic WRSN charging scheduling. 

The deterministic scheduling scheme is only suitable for small-scale sensor networks, 
because the energy demand of a single charge is not high, and a single UAV can be used 
to complete the charging of the entire network. In previous research[10][11], path plan-
ning is often used in the focus of periodic charging scheduling. It is similar to the Traveling 
Salesman Problem (TSP). It is necessary to construct an optimal charging access sequence 
for all nodes, which is an NP-hard problem, and factors such as charging effect and charg-
ing efficiency need to be comprehensively considered. And there are many constraints, 
such as the limited energy of the mobile charger, and the need to avoid node power failure 
and death as much as possible. Secondly, in the one-to-many charging scheduling[12] 
based on the UAV, not only the path, but also the one-to-many coverage characteristics of 
the UAV should be further considered, and the determination of the flight height should 
be considered. However, in the existing related research work, there are limitations in the 
planning of the charging path, such as insufficient search space and poor scalability, and 
most of them use one-to-one[13] charging method or a charging method with a fixed 
charging beam size. 

Different from the assumption[14][15] that the energy consumption of nodes is 
known and constant in deterministic charging scheduling, in non-deterministic WRSN 
charging scheduling, considering that the energy consumption of nodes in sensor net-
works in most practical scenarios is affected by environmental changes, routing algo-
rithms and other factors are random and unknown, so each node needs to actively report 
to the base station and send a charging request message when the energy is lower than 
the threshold[16]. After receiving the charging requests, the base station schedules the 
mobile charging device to respond to these requests. The research focus of non-determin-
istic charging schedule and deterministic schedule is different. First, non-deterministic as-
sumptions are generally aimed at large-scale sensor networks[17][18]. At this time, it is 
difficult for a single UAV to meet the energy requirements of all nodes and it is necessary 
to design a mode of coordinated charging of multiple UAVs. Secondly, the non-determin-
istic charging scheduling strategy has high real-time requirements, and it is obviously un-
reasonable to spend more time for calculation and lead to charging delay, so there is a 
certain limit to the time complexity of the scheduling algorithm. 

The existing non-deterministic charging schedules of related researches[19][20][21] 
have some shortcomings, most of them have high algorithm complexity, and cannot guar-
antee the real-time scheduling, and do not fully consider the task allocation problem when 
multi-UAV cooperative charging is performed. It is difficult to distribute charging tasks 
fairly by geographical location and other methods, resulting in unbalanced task allocation 
and inability to make full use of charging resources. In addition, most of the work [22][23] 
follow the concept of charging rounds in the deterministic charging scheduling strategy, 
which is not based on dynamic number of UAVs allocates charging tasks, resulting in long 
UAVs idle time. 

Using UAV as a mobile charging device, a non-deterministic on-demand charging 
scheme UOCS (UAV-assisted WRSN Online Charging Strategy Based on Dynamic Queue 
and Improved K-means) based on UAV is proposed to maximize the energy utilization 
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efficiency of UAV and maximize the charging success rate is the optimization target. The 
main work and innovations include: 1) A new mode of charging scheduling based on the 
number of dynamic UAVs is proposed, and the overall energy consumption is estimated 
with the help of the minimum spanning tree, and then the appropriate scheduling time is 
determined to reduce the number of unmanned aerial vehicles and overall idle time of the 
machine. 2) An improved K-means algorithm for space-time partitioning is proposed to 
allocate charging tasks, balance the charging tasks undertaken by each UAV, and ensure 
the rationality of task allocation. 3) The online algorithm based on the greedy strategy 
plans the charging trajectory of each UAV, and takes into account the goals of maximizing 
energy efficiency and charging success rate with low algorithm complexity, and realizes 
the planning and online update of each UAV charging path. 

 

2. SYSTEM MODEL 
2.1. Problem Model 

The considered UAV-assisted wireless rechargeable sensor network consists of a base 
station, a set S of UAVs of size K, and a set of wireless sensor nodes O of size N deployed 
on a two-dimensional plane, O = {𝑜𝑜1 , 𝑜𝑜2 , … , 𝑜𝑜𝑁𝑁}. The base station is the control center of 
the entire network, responsible for the collection of sensor node sensing data, the replace-
ment of UAV batteries, and the scheduling of UAVs to perform charging tasks. The sensor 
nodes are randomly deployed in the monitoring area P. For the node 𝑜𝑜𝑖𝑖  numbered i, its 
position in the area is defined as (xi, yi) in the plane Euclidean coordinate system, and the 
node battery capacity is Ei, as pointed out, the energy consumption qi of each node can 
be estimated based on the amount of data or obtained according to the statistics of charg-
ing records. The real-time power 𝑒𝑒𝑖𝑖 can be detected and reported to the base station by 
the corresponding circuit. When the power of the node reaches the threshold θ𝑖𝑖, it will 
report its own status information γ(T𝑐𝑐𝑖𝑖 , e𝑖𝑖) to the base station, where T𝑐𝑐𝑖𝑖  is the moment 
when the status information message is sent. 

Since one-to-many charging method is suitable for a network with relatively dense 
charging nodes, in on-demand charging scheduling, the nodes that issue charging re-
quests are relatively scattered, and the one-to-many charging method is less efficient. In 
addition, in on-demand charging, it is often necessary to estimate the schedule ability of 
the charging path, that is, to determine whether the energy of the UAV is sufficient to 
support the charging demand on the path. Node charging will bring additional and diffi-
cult-to-estimate power consumption to the UAV, and bring about the difficulty of sched-
ule ability estimation. Therefore, in the non-deterministic charging scheduling, a one-to-
one charging method is adopted. 

2.2. Network Model 
The network and charging model of this paper are shown in Figure 1. 

 
Fig. 1: UAV-assisted WRSN Charging on Demand. 
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WRSNs can be recharged by multiple UAVs equipped with wireless charging mod-
ules. The UAV starts from the base station, determines the next charging node based on 
the scheduling strategy, rises vertically to a certain height h, and then flies horizontally to 
the next node at a constant speed v. And land to charge the node, complete a charging 
response, and repeat the above process after completing the response, until all assigned 
charging responses are completed or the UAV itself is exhausted and returns to the base 
station to replace the battery. It is assumed that the UAV always carries enough energy to 
support it to complete the charging task and return to the base station. 

2.3. UAV Charging Space Model 
One-to-one wireless charging is currently commonly used electric field coupling 

technology or magnetic coupling induction technology [24]. The power Pc of the charging 
device and the energy transmission efficiency η of the charging device to the node can be 
regarded as a constant, and 0 <  η <  1, the energy received power of the node Pr is ex-
pressed as: 

𝑃𝑃𝑃𝑃 =  𝜂𝜂 ·  𝑃𝑃𝑐𝑐    (1)  

From this, the UAV can calculate the node energy demand 𝐸𝐸𝑞𝑞𝑖𝑖 and the time required 
to fully charge the power in this charging request before performing the charging task on 
the node oi 𝑡𝑡𝑒𝑒𝑖𝑖 : 

𝐸𝐸𝑞𝑞𝑖𝑖 = �𝐸𝐸𝑖𝑖 − [θ𝑖𝑖 − (𝑇𝑇 − 𝑇𝑇𝑐𝑐𝑖𝑖) · 𝑞𝑞𝑖𝑖], θ𝑖𝑖 ≤  (𝑇𝑇 − 𝑇𝑇𝑐𝑐𝑖𝑖) · 𝑞𝑞𝑖𝑖  
𝐸𝐸𝑖𝑖 , θ𝑖𝑖 >  (𝑇𝑇 − 𝑇𝑇𝑐𝑐𝑖𝑖)  ·  𝑞𝑞𝑖𝑖

(2) 

𝑡𝑡𝑒𝑒𝑖𝑖 =  𝐸𝐸𝑞𝑞𝑞𝑞
𝑃𝑃𝑟𝑟

                                            (3) 

2.4. Determination of the Number of UAVs 
This paper studies the problem of multi-UAV collaborative charging planning. The 

number of UAVs is also a key factor affecting the charging effect. If the number of UAVs 
is too small, it is difficult to meet the energy demand of the entire network, but due to its 
cost, it is obviously also unlimited deployment is not possible. Therefore, it is a big diffi-
culty to choose the appropriate number K of UAVs. The more UAVs in a certain range, 
the better the charging effect, but when the number exceeds a certain number, there will 
be a phenomenon of diminishing marginal utility, which often needs to be combined with 
the use of sensor networks. In different scenarios, there is a trade-off between cost and 
charging effect. The principle of energy neutrality can be applied here, that is, at any time 
T, the total energy consumption of nodes should not be greater than the sum of the energy 
charged to the sensor network and the initial energy of the network [25].  

∑ 𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=1 𝑇𝑇 ≤  𝐾𝐾𝑃𝑃𝑟𝑟

𝑄𝑄
 𝑇𝑇 +  𝐸𝐸0     (4) 

Among them, 𝑞𝑞𝑖𝑖  represents the energy consumption rate of a single sensor node, 
which is mentioned in Chapter 2 as a known quantity, and the left side of the inequality 
as a whole represents the total energy consumption of all sensor nodes from the start to 
time t. 𝐸𝐸0 represents the initial energy of the network, 𝑞𝑞𝑢𝑢 is the energy consumption rate 
of a single UAV, and the energy efficiency Q fluctuates little with the number of UAVs, 
so it is regarded as a constant here, so there is:  

𝐾𝐾 ≥   �∑ 𝑞𝑞𝑞𝑞
𝑁𝑁
𝑞𝑞=1 𝑇𝑇 −𝐸𝐸0�·𝑄𝑄

𝑃𝑃𝑟𝑟·𝑇𝑇
         (5) 

The above formula is the minimum number of UAVs that can theoretically support 
all nodes without dying under a given network energy consumption rate. The specific 
optimal number of UAVs can be compared with multiple experiments to make sure. 

2.5.Target Optimization 
In the on-demand WRSN scheduling problem, the UAV energy utilization efficiency 

and the number of node deaths are also used as optimization goals. The total service re-
quest set R is recorded, and its quantity is |R|; the UAV energy efficiency Q is defined as 
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the percentage of the power successfully charged into the node to the total power con-
sumption in the charging scheduling, the latter includes the power consumption of the 
UAV charging module, and the travel distance. Power consumption and take-off and 
landing power consumption. Note the battery capacity 𝐸𝐸𝑖𝑖, the energy required for the 
charging request of the node 𝑜𝑜𝑖𝑖  𝐸𝐸𝑞𝑞𝑖𝑖, the overall charging request energy 𝐸𝐸𝑅𝑅 = ∑ 𝐸𝐸𝑞𝑞𝑖𝑖

|𝑅𝑅|
𝑖𝑖=1 , 

remember the total energy consumption of all UAVs on the journey 𝐸𝐸𝑀𝑀 , and the energy 
consumption of UAVs for a single take-off and landing 𝐸𝐸𝐿𝐿 , the goal of maximizing energy 
utilization efficiency can be expressed as: 

𝑚𝑚𝑚𝑚𝑚𝑚 𝑄𝑄 =  𝐸𝐸𝑅𝑅·𝜂𝜂
𝐸𝐸𝑅𝑅+(𝐸𝐸𝑀𝑀+𝐸𝐸𝐿𝐿·|𝑅𝑅|)·𝜂𝜂

            (6) 

The total number of nodes that need to be charged in on-demand scheduling is not 
constant, and the goal of minimizing the number of node deaths should not be simply 
considered. The goal of maximizing the charging success rate is expressed as:  

𝑚𝑚𝑚𝑚𝑚𝑚 𝛿𝛿 = |𝑅𝑅𝑆𝑆|
|𝑅𝑅|

                                    (7) 

Among them, 𝑅𝑅𝑆𝑆 is the set of successful charging requests, and |𝑅𝑅𝑆𝑆| represents its 
number. Same as the previous section, this section will be the weighted summation of the 
two objectives of maximizing the energy utilization efficiency and maximizing the charg-
ing success rate, and deal with it as a single-objective optimization problem: 

𝑚𝑚𝑚𝑚𝑚𝑚 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑡𝑡 =
𝐸𝐸𝑅𝑅 · 𝜂𝜂

𝐸𝐸𝑅𝑅 + (𝐸𝐸𝑀𝑀 + 𝐸𝐸𝐿𝐿 · |𝑅𝑅|) · 𝜂𝜂
+

|𝑅𝑅𝑆𝑆|
|𝑅𝑅|

 

= |𝑅𝑅|𝐸𝐸𝑅𝑅·𝜂𝜂+|𝑅𝑅𝑆𝑆|(𝐸𝐸𝑅𝑅+(𝐸𝐸𝑀𝑀+𝐸𝐸𝐿𝐿·|𝑅𝑅|)·𝜂𝜂)
𝐸𝐸𝑅𝑅+(𝐸𝐸𝑀𝑀+𝐸𝐸𝐿𝐿·|𝑅𝑅|)·𝜂𝜂

     (8) 

𝑠𝑠. 𝑡𝑡.     𝐸𝐸𝑅𝑅𝑖𝑖  ≤  𝐸𝐸𝑖𝑖                                (9) 

0 <  𝐸𝐸𝑅𝑅,𝐸𝐸𝑀𝑀,𝐸𝐸𝐿𝐿                            (10) 

0 <  |𝑅𝑅𝑆𝑆|  ≤  |𝑅𝑅|                          (11) 

𝐸𝐸𝑀𝑀𝐾𝐾 > 𝐸𝐸𝑞𝑞𝑖𝑖 + 𝐷𝐷(𝑖𝑖,0) · 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒 + 𝐸𝐸𝐿𝐿  (12) 
Equation 9 constrains that the amount of electricity charged to each node must not 

be higher than its total capacity. Equations 10 and 11 are range constraints. Equation 12 is 
the schedule ability constraint. The UAV needs to ensure that there is enough power to 
return to the base station after each charging task is performed. Among them, 𝐷𝐷(𝑖𝑖,0) rep-
resents the distance between the node 𝑜𝑜𝑖𝑖  and the base station, and 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒  represents the 
energy consumption per unit distance of the node. 

Table 1 lists the symbol identifications in the non-deterministic UAV-assisted WRSN 
charging scheduling problem: 

TABLE I: Symbol Identifications. 

Symbol Mean 
𝑆𝑆𝑘𝑘 The kth UAV 
𝑂𝑂𝑖𝑖  The ith sensor node 
𝐸𝐸𝑢𝑢 Battery capacity of UAV 

   T Current time 
𝑇𝑇𝑐𝑐𝑖𝑖 The time node i sends charge request 
𝑡𝑡𝑐𝑐𝑖𝑖  Node i fully charged time 
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𝜃𝜃𝑖𝑖 Node i charge threshold 
𝑃𝑃𝑐𝑐 Wireless output power 
𝑃𝑃𝑡𝑡  Node received power 
η Wireless charging efficiency 
Q Energy efficiency 
𝐸𝐸𝑞𝑞𝑖𝑖 Node i energy needs 
𝐸𝐸𝑖𝑖 Node i battery capacity 
𝑞𝑞𝑖𝑖 Node energy consumption rate 
𝐸𝐸𝐶𝐶  Wireless transmission energy consumption 
𝐸𝐸𝑀𝑀 UAV’s journey energy consumption  
𝐸𝐸𝐿𝐿 UAV energy consumption per take-off and landing 
𝑅𝑅𝑆𝑆 Charge success request  
R All charge requests 

|R| Number of charging requests  
𝑆𝑆𝑖𝑖,𝑘𝑘 Energy offset of Node i insertion partition k 
𝐷𝐷𝑖𝑖,𝑗𝑗 Euclidean distance between nodes i and j 
𝐷𝐷′𝑖𝑖 ,𝑗𝑗 Blend distance between nodes i and j 

 

3. On-demand charging solution 
 In this section, we will discuss how to determine the scheduling timing, realize the 

assignment of tasks, and plan the charging sequence of each UAV based on the dynamic 
number of UAVs in the multi-UAV-assisted non-deterministic WRSN charging schedul-
ing to achieve the optimization goal. The overall process of the non-deterministic charging 
scheduling strategy proposed in this paper is shown in Figure 2. 

 
Fig. 2: Charging Request and Scheduling Process. 

3.1. Waiting for Queue Maintenance 
Before all charging requests are assigned to specific UAVs to perform services, they 

first enter the waiting queue, and the waiting queue maintenance algorithm performs the 
scheduling of requests. The waiting queue maintenance algorithm mainly consists of two 
parts, namely partition timing decision and urgent request insertion. The former is used 
to dynamically select the appropriate task assignment timing in combination with the 
number of real-time UAVs in the base station, and the latter is used to insert scattered 
urgent tasks into the service queue. In the on-demand WRSN, charging requests are con-
stantly generated, and at the same time, multiple UAVs continue to go back and forth 
between the base station and the network. The selection of charging task allocation timing 
is particularly important. If the allocation is too early, it may lead to incomplete task divi-
sion, each UAV is assigned less tasks, and after completing the charging task, it returns to 
the base station too early, and frequent round trips between base stations lead to waste of 
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energy. If the allocation is too late, it may cause the node to wait for a long time and cause 
the node to die.  

The more intuitive solution is to estimate the energy requirement to respond to all 
charging request tasks in the current waiting queue based on energy information, and 
combine the UAV battery capacity to perform scheduling when the current total energy 
of all UAVs just meets the energy required by the charging request. Achieving higher 
energy utilization efficiency, expressed as: 

∑ 𝐸𝐸𝑞𝑞𝑞𝑞
 |𝑄𝑄𝑄𝑄|
 𝑞𝑞=1
𝜂𝜂

+ 𝐸𝐸𝑀𝑀  +  𝐸𝐸𝐿𝐿 ·  |𝑄𝑄𝑤𝑤| ≥  𝐾𝐾𝐸𝐸𝑈𝑈   (13) 

Except for the path energy consumption 𝐸𝐸𝑀𝑀, all parameters are fixed hardware pa-
rameters, which can be directly calculated or obtained from real machine tests, while 𝐸𝐸𝑀𝑀 
is related to the real-time charging node distribution and the flight path of each UAV, and 
the optimal charging path for multiple UAVs can be approximated as a multi-travel sales-
man problem, which is a NP-hard problem and cannot be solved in polynomial time, but 
its lower bound can be roughly calculated with a relatively low time complexity with the 
help of the minimum spanning tree. Let the minimum spanning tree path length be H, 
then estimated path energy consumption 𝐸𝐸𝑀𝑀 = 𝐻𝐻 · 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒 . For the waiting queue 𝑄𝑄𝑤𝑤, the 
maintenance algorithm estimates the energy consumption required by the multi-UAV 
charging task according to the relevant information of the charging request, and then de-
cides the appropriate time to perform the task assignment. The waiting queue also needs 
to avoid the death of the node due to the unresponsiveness of the charging request for a 
long time.  

Define the request that the node's power exhaustion time is earlier than the earliest 
UAV return time as an emergency charging request, record the power 𝑞𝑞𝑖𝑖  of the node 𝑜𝑜𝑖𝑖 , 
its current remaining power Eri, and the UAV 𝑈𝑈𝑖𝑖 's expected return time 𝑇𝑇𝑏𝑏𝑗𝑗, if the node 
is expected to die early due to lack of electricity at the earliest UAV return time, namely: 

𝐸𝐸𝑞𝑞𝑞𝑞
𝑞𝑞𝑞𝑞

<  𝑚𝑚𝑖𝑖𝑚𝑚 �𝑇𝑇𝑏𝑏𝑗𝑗�                           (14) 

Considering that the charging task has a risk of power shortage, the emergency task 
insertion algorithm inserts the task into the charging queue of the UAV in the partition 
where the node is located. If the latter is put back into the waiting queue again because it 
cannot be scheduled, it will be marked and no longer inserted. Algorithms that avoid 
round-robin scheduling. The overall description of the waiting queue maintenance algo-
rithm is shown in algorithm 1. 

Algorithm 1 Waiting queue maintenance  
Input: waiting queue 𝑄𝑄𝑤𝑤 , UAV set S, charging 
request R, partition set C  
1 assignFlag←false; C←null; H←null;//H is 
Minimum spanning tree’s path length 
2 while running do  
3     while request Added  
4         if (assign Flag = true) then  
5             break;  
6         end if  
7         update MST(R, H)//Update minimum 

spanning tree 
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8         /*calculate schedule ability of current 
𝑄𝑄𝑤𝑤 based on formula(10)*/  

9      assign Flag =calSchedulable(R,H,S)  
10    end while  
11    SPKM(𝑄𝑄𝑤𝑤, S)//space-time partitioning based 

on K-Means 
12    /*determine charging urgency based on. 

formula(11)*/  
13    for r in 𝑄𝑄𝑤𝑤:  
14        if (isUrgentRequest(r)) then  
15            insert r into C  
16        end if  
17    end for  

 end while 

3.2.Improved K-means Algorithm 
UAV charging task assignment is a major difficulty in multi-UAV charging schedul-

ing. The assignment of tasks needs to comprehensively consider multiple factors such as 
equal distribution of tasks and avoidance of task conflicts. By dividing the charging area 
into several non-overlapping zones, it is an intuitive and effective way for UAVs to be 
responsible for charging tasks in their respective zones, and has also been used in many 
studies. The K-means algorithm was originally used for clustering problems in unsuper-
vised learning. After determining the number of clusters K in advance, based on the sim-
ilarity of feature vectors, find K centroids, and divide all samples into the nearest ones. 
The core idea is to divide the closest points into the same cluster in each round, and itera-
tively update the centroids based on the clustering results until it converges to a specified 
degree. In WRSN multi-UAV charging scheduling, the use of K-means clustering algo-
rithm to partition the charging tasks of nodes has achieved good results [26,27,28], and 
the clustering results obtained based on the clustering algorithm are used as the charging 
of each UAV. The schematic diagram of partition and multi-UAV partition charging is 
shown in Figure 3. 

 
Fig. 3 Schematic Diagram of Multi-UAV Charging. 

However, the traditional K-means algorithm directly based on geographic location 
has great limitations, especially when the distribution of charging requests in the network 
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is not uniform. Figure 4 shows an extreme situation. Compared with other clusters, Clus-
ter3 obviously allocates fewer points. If it is directly used as the basis for on-demand 
charging partition, it will cause no one unequal distribution of machine tasks. 

 

Fig. 4 K-means Non-uniform Clustering Diagram 

In the non-deterministic WRSN charging scheduling based on the number of dy-
namic UAVs targeted in this paper, the unbalanced workload of UAV charging tasks will 
lead to uneven charging time, which will bring about scheduling problems: the probabil-
ity of UAVs in the base station at the same time is lower, and it is more likely that fewer 
UAVs stay at the base station, that is, tasks are allocated by the waiting queue maintenance 
algorithm. Under the same energy demand, the number of UAVs is obviously smaller. A 
single UAV needs to cover a larger service area, and consumes more energy on the return 
journey of the node, resulting in a decrease in charging efficiency. Therefore, the cluster-
ing algorithm that can make the charging time of each UAV more equal can ensure that 
more UAVs participate in the task assignment in each task assignment, thereby bringing 
about a better charging scheduling effect. 

In view of the traditional K-means algorithm that simply divides the samples accord-
ing to the location, and does not take into account the problem of similar locations and 
equal charging time, this paper proposes an improved SPKM algorithm based on space-
time partitioning, which comprehensively considers the node spatial location and the 
charging request execution time to divide charging tasks. 

For each UAV, the execution time of its charging demand consists of two parts: the 
time on the journey and the charging time for the node. Considering that the former is 
much smaller than the latter, the charging time for the node is only related to the energy 
demand of the node. Therefore, the equal charging time of each UAV can be equivalent to 
the equal charging demand allocated to each UAV. Therefore, the optimization of the im-
proved K-means algorithm proposed in this paper is that the energy metric and spatial 
metric are combined as the basis for the node to decide the partition division, so as to take 
into account the similarity in execution time between the partitions and the charging re-
quest within the same partition. The energy measurement is represented by the concept 
of energy offset, which is defined as the difference between the expected energy demand 
of the partition and the average energy demand after the node is inserted into a partition. 
The summation is used as the partition distance, which is the basis for the node partition 
in the algorithm iteration. The derivation process of the partition distance is as follows: 
1. Define the calculation of average energy demand 𝐸𝐸𝑡𝑡 of each partition based on en-

ergy demand of all nodes in the waiting queue, and the average number of requests 
𝑁𝑁𝑡𝑡: 

 𝐸𝐸𝑚𝑚 = ∑ 𝐸𝐸𝑞𝑞𝑖𝑖
 �𝑄𝑄𝑄𝑄�
 𝑖𝑖=1
𝐾𝐾                                        (15) 

𝑁𝑁𝑡𝑡 = |𝑄𝑄𝑤𝑤|
𝐾𝐾

                                       (16) 
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2. Define the energy offset 𝑆𝑆𝑖𝑖,𝑘𝑘, score the number of nodes 𝑚𝑚𝑘𝑘  in the current partition 
of the partition 𝐶𝐶𝑘𝑘 , and the total energy demand in the current area 𝐸𝐸𝑐𝑐𝐸𝐸, for the en-
ergy offset 𝑆𝑆𝑖𝑖,𝑘𝑘 after the node oi is inserted into the partition 𝐶𝐶𝑘𝑘, its value is divided 
into two types Situation: when 𝐸𝐸𝑐𝑐𝐸𝐸 + 𝐸𝐸𝑞𝑞𝑖𝑖 < 𝐸𝐸𝑚𝑚, take the average energy of nodes in 
the partition and multiply by the average number of requests, which is the expected 
energy demand of the partition 𝐶𝐶𝑘𝑘 , and the absolute value of the difference between 
it and the average energy demand 𝐸𝐸𝑡𝑡  is the energy offset; when 𝐸𝐸𝑐𝑐𝐸𝐸 + 𝐸𝐸𝑞𝑞𝑖𝑖 ≥ 𝐸𝐸𝑚𝑚, 
the actual energy offset can be obtained by direct subtraction. The formula for the 
value of 𝑆𝑆𝑖𝑖,𝑘𝑘 is expressed as follows: 

𝑆𝑆𝑖𝑖,𝑘𝑘 = ��𝑁𝑁𝑡𝑡
𝐸𝐸𝑐𝑐𝑘𝑘 + 𝐸𝐸𝑞𝑞𝑖𝑖
𝑚𝑚𝑘𝑘 + 1

−  𝐸𝐸𝑡𝑡� ,𝐸𝐸𝑐𝑐𝑘𝑘 + 𝐸𝐸𝑞𝑞𝑖𝑖 <  𝐸𝐸𝑡𝑡 

𝐸𝐸𝑐𝑐𝑘𝑘  +  𝐸𝐸𝑞𝑞𝑖𝑖  −  𝐸𝐸𝑡𝑡 ,𝐸𝐸𝑐𝑐𝑘𝑘 + 𝐸𝐸𝑞𝑞𝑖𝑖  ≥  𝐸𝐸𝑡𝑡
       (17) 

3. Define the partition distance𝐷𝐷′𝑖𝑖 ,𝑗𝑗, which is the weighted summation of the energy 
offset 𝑆𝑆𝑖𝑖,𝑘𝑘 and the Euclidean distance 𝐷𝐷𝑖𝑖 ,𝑗𝑗, and score the partition 𝐶𝐶𝑘𝑘 
The centroid of is 𝑃𝑃𝑘𝑘(�̅�𝑚, y̅). For the node 𝑞𝑞𝑖𝑖(𝑚𝑚𝑖𝑖 ,𝑦𝑦𝑖𝑖), the energy offset 𝑆𝑆𝑖𝑖,𝑘𝑘 is normal-
ized with the Euclidean distance 𝐷𝐷𝑖𝑖 ,𝑘𝑘 and the weighted summation is obtained to 
obtain the improved partition distance 𝐷𝐷′𝑖𝑖,𝑘𝑘 : 

𝐷𝐷𝑖𝑖,𝑘𝑘 = �(𝑚𝑚 −  𝑚𝑚𝑖𝑖)2 + (𝑚𝑚 −  𝑦𝑦𝑖𝑖)2              (18) 

𝐷𝐷′𝑖𝑖,𝑘𝑘 = α𝐷𝐷𝑖𝑖,𝑘𝑘 + (1 −  α)𝑆𝑆𝑖𝑖,𝑘𝑘                         (19) 

In formula(19), 𝛼𝛼 is the distribution weight of Euclidean distance and energy offset. 
When 1 is taken, it is a common location-based K-means algorithm, and subsequent 
experiments will be carried out to determine the optimal distribution weight. The 
space-time partitioning K-means algorithm is described as follows: 

Algorithm 2 space-time partitioning K-Means 
(SPKM) 
Input: charging queue 𝑄𝑄𝑤𝑤 , UAV set S, node set, 
average energy demand avgNrg, average number of 
requests avgReqNum 
Output: Partition result C 
1 C[0…S]←null; clusterCenters←null; flag←true;  
2 clusterEngs[0…S]←null; //store energy sum of 

each cluster  
3 randomly select |S| clusterCenters  
4 add clusterCenters into C  
5 while flag do  
6     for o in O do:  
7         for center in clusterCenters do:  
8         /*calculate energe-distance according to 

formula(14) */  
9             calculate ergDis(o, 
cluster,ClusterEng)  
10            calculate uldDis(o, cluster)  
11            clusterDis←α·ergDis+(1-α)·uldDis  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 September 2022                   doi:10.20944/preprints202209.0402.v1

https://doi.org/10.20944/preprints202209.0402.v1


 11 of 19 
 

 

12         end for  
13     end for  
14     put o into nearest cluster s  
15     update clusterCenters, clusterEngs[s]  
16     flag = any center changed  
17 end while 

3.3. Intra-Partition Online Path Planning Algorithm 
After the partition is completed, the charging task of each partition is performed by 

the corresponding UAV, and the path planning within a single UAV partition, that is, how 
to properly determine the access order of nodes, is another major factor that affects the 
effect of on-demand scheduling. As mentioned in the previous section, the charging path 
needs to take into account the goals of maximizing energy utilization efficiency and max-
imizing charging success rate. Existing schemes such as multi-objective discrete fireworks 
algorithm [29] and multi-objective ant colony algorithm [30] can achieve excellent results. 
However, the calculation is complicated, and it needs to be recalculated when the charg-
ing queue is adjusted. Therefore, this paper proposes an online path planning algorithm 
based on a greedy strategy to obtain a better path plan with a lower computational delay. 

The main process of the path planning algorithm is to determine the next charging 
node of the UAV based on the established strategy at each step, and then form the UAV 
path. In this algorithm, the selection of the next charging node is divided into three cate-
gories: 1) is the node closest to the current location, selecting such a node can bring lower 
path cost and make the overall energy efficiency higher; 2) it is the nodes that die without 
charging in time, in most networks, the long-term dead time of the node will significantly 
affect the quality of service, so such nodes should be charged first when conditions permit; 
3) the charging request is relatively urgent, if not charged in time, there will be shortages 
Electrode-dead nodes, so such nodes should be given a higher charging priority. In this 
paper, the priority of node selection is set to 3>2>1, that is, when selecting the next charg-
ing node, the node with urgent charging request is selected first to avoid the situation of 
power shortage and death, followed by the dead node to avoid node death if the time is 
too long, when there is no dead node, select the node closest to the current position to 
keep the path cost as low as possible. Both categories 1 and 2 are clearly defined, and how 
to decide whether a charging request is urgent is a key issue. In this paper, if a node's 
power is insufficient to support its operation to the next charging selection, its charging 
request is regarded as an urgent charging request. Iteratively execute the above node se-
lection process to obtain the charging path of the UAV. The set C of nodes to be charged 
in the score area is recorded, and the path planning algorithm is divided into 5 steps as 
follows: 

Step 1: Update the node status, calculate the power exhaustion time of each node 
according to the remaining power of the node and the power of the node, that is, the death 
time, record the death time of node i 𝑡𝑡𝑑𝑑𝑖𝑖 , and calculate the estimated power exhaustion 
time of all nodes in the charging zone according to the latest far ordering is sequence 𝑄𝑄𝑑𝑑; 
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Step 2: Determine the preliminary candidate node. If there is a dead node in C, select 
the node closest to the current position from the dead node as the candidate node, other-
wise directly select the closest node, and denote the candidate node as c, which can be 
calculated by formula (3) the time 𝑡𝑡𝑒𝑒𝑐𝑐 when the UAV is expected to finish charging node 
c; 

Step 3: Judging the urgency of charging, considering that the time for the UAV to 
charge the node is much longer than the time for the UAV on the path between nodes, the 
charging time is regarded as the total time that the UAV serves the node, and the candi-
date whether node c as the next charging node will cause the death of the first node in 𝑄𝑄𝑑𝑑, 
that is, whether 𝑡𝑡𝑒𝑒𝑐𝑐 is earlier than the earliest death time in 𝑄𝑄𝑑𝑑: 

 min {𝑄𝑄𝑑𝑑}  < 𝑡𝑡𝑒𝑒𝑐𝑐                                               (20) 

If the above formula is true, no other nodes will die during the charging period for 
candidate node c, then node c is directly used as the next node. Select the node closest to 
the current position in the node set earlier than 𝑡𝑡𝑒𝑒𝑐𝑐 as the next node n; 

Step 4: Add node n to the charging path, update the remaining energy after UAV 
service n according to the distance from the current position to n and the energy consump-
tion demand of node n, take node n as the current position, and return to step 1 until the 
collection all nodes in C are placed in the path, or the UAVs expected to have insufficient 
power to support more charging requests, and put the nodes in C that have not entered 
the path back into the waiting queue for rescheduling; 

Step 5: The UAV charges the nodes according to the access sequence of the path, until 
the execution is completed, and returns to the base station. Go back to step 1 when waiting 
for an incoming emergency charging request from the queue maintenance algorithm. The 
algorithm is described as follows. 

Algorithm 3 Online Path Planning  
Input: set C to be charged, base station location BS, 

UAV battery capacity Eu, waiting queue 𝑄𝑄𝑤𝑤 
Output: Charge Path Path 
1 curNode←BS; nrg←Eu; Path←null; 𝑄𝑄𝑑𝑑←nul;  
2 while (nrg > 0 and C not null) or urgentRequest 

added to C do //nrg is UAV’s electricity 
3     if exist dead node in C then  
4         candidate←nearest dead node  
5     else  
6         candidate←nearest node  
7     end if  
8     𝑡𝑡𝑒𝑒𝑐𝑐←  𝐸𝐸𝑅𝑅𝑐𝑐 /𝑃𝑃𝑃𝑃 //calculate when charge on 

candidate ends based on formula(3)  
9     update 𝑄𝑄𝑑𝑑 on starvation time  
10    if min(𝑄𝑄𝑑𝑑) < 𝑡𝑡𝑒𝑒𝑐𝑐 then  
11        candidate←nearest node n in {𝑚𝑚|𝑄𝑄𝑄𝑄𝑚𝑚 < 

𝑡𝑡𝑒𝑒𝑐𝑐, 𝑚𝑚 ∈ 𝐶𝐶}  
12    end if 
13    /*consider schedule ability based on formula 

(9)*/ 
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14    update nrg = nrg-nrgDemand(candidate)-
nrgDis(curNode, candidate)  

15    if nrg < 0 then  
16        break; //if not schedulable, stop Path 

calculating  
17    end if  
18    add candidate into Path;  
19    remove candidate from C;  
20 end while  
21 if C not null then //put unserviceable node back 

into waiting queue 𝑄𝑄𝑤𝑤  
22    put C into 𝑄𝑄𝑤𝑤 
23 end if  

The overall process of the UOCS on-demand charging scheduling scheme proposed 
in this paper is shown in Figure 5, which consists of three parts: waiting queue mainte-
nance (algorithm 1), space-time partitioning (algorithm 2), and path planning (algorithm 
3). The number of nodes is recorded as n, and the main work of algorithm 1 is to dynam-
ically maintain the minimum spanning tree. Here, the heap-optimized Prim algorithm is 
used to implement the time complexity of O(nlogn). It is executed once for each inserted 
node, so the overall time complexity is O(𝑚𝑚2logn). Algorithm 2 improves the distance cal-
culation of the K-means algorithm, and the complexity is the same as that of the classical 
K-means. The number of UAVs is recorded as k, the number of iterations is t, and the 
complexity is O(𝑚𝑚 · 𝐸𝐸 · 𝑡𝑡). The main work of Algorithm 3 is the comparison of node death 
time based on insertion sorting, and the complexity is O(𝑚𝑚2). The overall time complexity 
of the algorithm is O(𝑚𝑚2logn). When the UAV charges a node, it is automatically recorded, 
and it will not be charged repeatedly, and for the flight trajectory in a large area, the flight 
height can be ignored for plane path planning. 

 
Fig. 5 Flow Chart of On-demand Scheduling Scheme. 
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4. Experiment and result analysis 
This section tests the performance of the UOCS scheme in terms of the number of 

starved nodes, charging success rate and charging time, and compares it with other re-
lated schemes. The number of starved nodes represents the number of nodes that fail due 
to insufficient energy in a charging cycle; the charging efficiency represents the percentage 
of the total energy that the UAV supplements for nodes in the network to its own total 
energy consumption in one charging schedule; the charging time refers to the UAV from 
the time for starting from the base station and returning to the base station after complet-
ing a round of charging. 

4.1. Parameter Settings 
 The parameters required for experiment are shown in Table 2: 

TABLE II : Parameter Settings 

Parameter Description Value 

A 
Wireless rechargeable 

sensor network area 
1000m*1000m 

n 
Total number of sensor 

nodes 
[100，500] 

Eu 
UAV carries total 

energy 
15000J 

Ei 
Energy when the sensor 

is fully charged 
30J 

v UVA flight speed 5m/s 

Cv 
UAV flight energy 

consumption 
125J/s 

Cx 
UAV hovering energy 

consumption 
3J/s 

Ci 
UAV charging energy 

consumption 

5J/s 

 

a Charging parameters 100 

𝑆𝑆𝑚𝑚 

 

Sensor energy 

consumption 
[0.2-0.3] J/s 

𝑆𝑆𝑥𝑥 

UAV energy 

consumption per take-

off and landing 

300 J 

4.2. Algorithms to Compare 
This paper uses K-means, mTS[36], and Pushwait[38] schemes for comparative ex-

periments. 

4.3. Experimental Results and Analysis 
The experimental scene is a 1000*1000m WRSN, and sensor nodes with different re-

sidual energy are randomly distributed among them. In view of the fact that the tradi-
tional K-means algorithm cannot take into account the equalization of all UAV tasks when 
it is applied to charging distribution, an improved SPKM partition algorithm is proposed. 
Figure 6 compares the uneven distribution of 50 charging requests in the monitoring area. 
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The node energy is 30%, and the charging task is allocated to three UAVs. The partition 
results of the K-means algorithm and SPKM, where the partition distance distribution 
weight α of SPKM is 0.5. It can be seen that in the results of the K-means algorithm, the 
distribution of nodes in the three partitions is quite different, partition 1 is assigned more 
charging tasks, while partition 2 and partition 3 have relatively few tasks, while in the 
SPKM algorithm in the result, partitions 2 and 3 are assigned more tasks, and the nodes 
whose partitions are changed are marked with arrows, and the three partitions are more 
balanced than K-means. 

 
Fig. 6 Comparison of Partition Results Between K-means and SPKM. 

In addition, before carrying out the comparison experiment, it is necessary to deter-
mine the value of the Euclidean distance and the energy offset distribution weight α in 
the SPKM algorithm, as shown in Figure 7. The charging success rate and energy effi-
ciency under 0.9 determine the trade-off between the two goals. Within a certain range, 
with the increase of the α value, the partition will pay more attention to the task allocation 
among multiple UAVs. Balance degree, and make the UAV charge the nodes farther away 
to eliminate the uneven distribution of tasks, and sacrifice energy efficiency to bring a 
higher charging success rate. At the same time, it is noted that when α is set to 0.9, the 
energy efficiency and the charging success rate are both lower, because at this time, the 
partition algorithm focuses too much on the equal division of tasks and ignores the simi-
larity of the geographical location of nodes in the partition, resulting in the partition being 
too scattered and making the UAV unmanned. More energy is consumed on the charging 
path, resulting in a shortage of charging resources and the inability to respond to charging 
requests in time. When α is set to 0.1, the charging success rate is too low, because the 
charging task division is not well balanced at this time, and the total idle time is prolonged 
when each UAV partition is unbalanced, and it is also unable to respond to charging re-
quests in time. Therefore, the value of α should not be too large or too small, in order to 
take into account the goals of energy efficiency and charging success rate, and α is set to 
0.5 in the subsequent experiments. 
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Fig. 7 Successful Charging Rate and Energy efficiency Under Different Values of α. 

Figures 8 and 9 respectively show the charging success rate under different network 
scales, compared with the total idle time of the UAV. When the number of nodes is small, 
the charging success rate of the three algorithms is higher, and as the number of sensor 
nodes gradually increases , the increase in charging requests, the mTS algorithm and the 
Pushwait algorithm always need to wait for all UAVs to return to the base station and 
then perform scheduling, resulting in a large number of nodes not charging in time and 
dying, while the UOCS algorithm in this paper has always maintained a low waiting time, 
making full use of the charging resource ensures a higher charging success rate when the 
charging request increases. 

 
Fig. 8 Successful Charge Rates Under Different Network Scales. 
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Fig. 9 UAV’s Waiting Time Under Different Network Scales. 

Figure 10 compares the energy efficiency of different network scales. Overall, the en-
ergy efficiency of the mTS algorithm is higher than that of Pushwait, while the UOCS 
algorithm is not much different from the two when the number of sensors is less than 330, 
and then is relatively low. When charging requests are frequent, the UOCS algorithm 
based on the number of dynamic UAVs sacrifices the effect of partition to ensure timely 
response, so that nodes with farther distances are assigned to the same partition, resulting 
in an increase in mobile energy consumption. Achieving a more efficient charging sched-
ule when requests are intensive is an improvement direction in future. 

 
Fig. 10 Comparison of Energy Efficiency Under Different Network Scales. 

5.CONCLUSION 
Aiming at the limited energy of sensor nodes in small and medium-range wireless 

rechargeable sensor networks, this paper proposes a spatiotemporal coordinated on-de-
mand charging scheduling algorithm UOCS based on the number of dynamic UAVs. The 
scheme combines the waiting queue and the number of UAVs to select the allocation tim-
ing, and the improved K-means partitioning based on space-time coordination, which 
simplifies the problem of multi-UAV cooperative charging. Compared with the existing 
schemes, UOCS achieves the optimal node survival rate with lower algorithm complexity 
and minimum charging cost. 

At the same time, UOCS has room for improvement in energy efficiency. First, there 
is room for optimization in intra-cluster path planning. For example, meta-heuristic algo-
rithms, reinforcement learning, etc. can be used to plan better paths. Second, how to better 
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coordinate tasks when charging requests are dense. Distribution to achieve better energy 
efficiency is the focus of future work. 
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