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Abstract: A simple line of reasoning, based on the most fundamental concepts of thermodynamics,
yields some intriguing results for a better understanding of the processes occurring in the observa-
ble Universe. Gravitational mass must be continuously generated within an expanding thermody-
namic system for this system to remain closed. The Second Law is a direct consequence of this pro-
duction of mass. Simple expressions for the entropy and temperature of the Universe were obtained
and the results agree well with observable values. Furthermore, it is demonstrated that the conser-
vation laws within the Universe are independent of its energy density. Based on the solution for the
quantum state of the Universe, it is conjectured that the Second Law is incomplete and must be
complemented to a conservation law, which takes into account the growth of the amount of infor-
mation within the Universe. Once the Second Law is complemented to a conservation law, the im-
portance of mass generation within the Universe becomes well pronounced — not only gravitational
effects play the role of an organising force, but also the amount of mass within the Universe defines
both the amount of information within the Universe and the level of the Universe’s complexity.
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1. Introduction

The objective of this study is to demonstrate that a simple line of reasoning based on
the most fundamental concepts of thermodynamics, such as energy conservation (the First
Law), entropy, and temperature, can yield some intriguing results for a better understand-
ing of the processes occurring on a universal scale.

The behaviour of an expanding closed thermodynamic system comprised of radia-
tion and matter has been modelled in this work. For such a system to remain closed over
its entire evolution, its total gravitational mass must increase linearly with time while its
gravitational potential must remain constant. The following section demonstrates that the
rate of mass creation and the gravitational potential are independent of time and uniquely
specified by the gravitational constant G and the speed of light c.

The Second Law of Thermodynamics is discussed in Section 3. If the entropy of an
expanding closed system is always equal to the Bekenstein-Hawking entropy of the cor-
responding black hole [1-2], then the Second Law of Thermodynamics is a direct result of the
ongoing mass generation within such a system. The present value of the Universe's entropy,
as calculated in this study, is in excellent agreement with the number determined by an-
other independent approach. Moreover, it is demonstrated that the Universe's tempera-
ture varies inversely proportional to the square root of time during its entire evolution. A
precise solution for the evolution of temperature has been derived and tested against the
observed temperature of the cosmic microwave background (CMB).

The solution derived for the gravitational potential field of the Universe is combined
with the Schrodinger equation for the probability wave function of the Universe in Section
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4. It is demonstrated that the conservation laws within the Universe are independent of
its energy density. In other words, the conservation laws in the expanding Universe are
independent of both the stress-energy tensor, T,,, and the space-time metrics in Einstein's
field equations.

In the same section, a non-field solution for the quantum state of the universe is ob-
tained. From this solution, it follows that, regardless of the starting geometry of the Uni-
verse, it rapidly flattens with expansion. The non-field solution also explains why the ob-
servable Universe is slightly cooler than what was predicted in Section 3. Moreover, the
non-field solution for the quantum state of the Universe suggests that our Universe may
be a fully reversible thermodynamic process and that information cannot be lost within
our Universe.

In Section 5, the question of incompleteness of the Second Law is discussed in more
detail. It is conjectured that the Second Law is not complete and is to be complemented to a
conservation law in such a form that, within the universe, the rate of entropy generation is
to be equal to the depletion rate of the informational entropy. Once the Second Law is
complemented to a conservation law in such a form, the importance of mass generation
within the Universe becomes well pronounced — not only gravitational effects play the
role of an organising force, but also the amount of mass within the Universe defines both the
amount of information within the Universe and the level of the Universe’s complexity.

In the concluding section of this paper, a comprehensive discussion of all the study's
findings is offered.

2. Perpetual mass generation as the condition of closeness

Consider a thermodynamic system, whose total energy content, E, is in the wave-
corpuscular form; that is, both the radiation (waves) and gravitational mass (corpuscles)
components are always present within the system. Assume that the radiation component
within the system under consideration propagates with speed ¢, which remains constant
during the entire evolution.

For such a system to always remain closed thermodynamically, its total energy may
not change with time, that is,

dE

dt

The latter condition implies that no radiation may escape the system and, hence, the
Schwarzschild radius of the system must be

0. (M

n(e) =200

2)

where G is the gravitational constant and m is the total mass of the system.

Equation (2) infers that, for an expanding system to remain a closed thermodynamic system,
its total gravitational mass, m, is to increase with time. And since the Schwarzschild radius is
rs(t) = ct, Eq. (2) renders an expression for m(t) as

3t
m(t) = —- ®)
) =--

Equation (3) implies that the rate of mass production within an expanding closed
thermodynamic system has to remain constant and is expressible through the fundamen-
tal constants as

dm ¢3
= (4)
dt  2G
The gravitational potential of the system in question is now defined as
2Gm(t
= Q) =2, )

7s(t)
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Equation (5) combined with Eq. (3) renders the expression for the corresponding
gravitational potential field

3t ©)
U) =m()® = >

Notice that Eq. (6) is nothing else but the expression for the total energy of the cor-
puscular part of the system, En. As can be seen, this energy grows linearly with time.
Hence, for Eq. (1) to remain valid, the radiation energy of the system, E;, must decrease
with time at the same rate.

It is worth noting here also that introducing the gravitational potential is equivalent
to generalizing the local Maxwell equations for the electromagnetic field to the non-local
equations by defining the electromagnetic potentials of adjacent charges as electric field
strength sources [3-6].

3. Second Law: entropy and temperature

The necessity of ongoing mass formation for a thermodynamic system to stay closed
directly implies the growth of thermodynamic entropy within that system (Second Law).
In fact, since the size of the system under consideration is always equal to its Schwarz-
schild radius, rs, the amount of entropy in the system equals the Bekenstein-Hawking en-
tropy, which is

1 \2
o = s () )
P
where ks is Boltzmann’s constant and [, = /Gh/c3 denotes Planck’s length.
Combining Eq. (7) with Egs. (2) and (3) yields the expression for the entropy value

2

S(t) = mhy (é) , ®)

where tp = ./Gh/c5 denotes Planck’s time.

From Eq. (8), the rate of entropy generation within the expanding closed system with
perpetual mass generation always remains positive and increases with time linearly [1],
that is,

gt = ks 7 >0 9)

Equation (9) is essentially a mathematical statement of the Second Law of Thermodynamics,
which is not merely postulated here but is a direct consequence of the constant creation of mass
within the system under consideration.

The result rendered by Eq. (8) has been compared with the known entropy value of
the observable Universe obtained independently by other methods [7]. Indeed, for the
observable Universe, t, = 4.32 x 10'7s, Eq. (8) yields S, = 0.28 x 10'°°J/K, which is in an
excellent accord with the estimated dimensionless value ~ 10'%3. Notice here that the di-
mensionless entropy value calculated in [7] 1023 x kz = 1.38 x 10'°°J /K calculated in
this study. Note also that the index ‘0’ refers to the observable (current) state.

From Eq. (8), it also follows that the temperature of the observable Universe decreases
inversely proportional to the square root of time, because provided the initial temperature

5
of the observable Universe was equal to Planck’s temperature Tp = ki h% =1.42 X
B
10%2K

T*(t) S(tp)

RO (10)

The proportionality coefficient, necessary to convert expression (10) into an equality,
is easily recovered from noticing that the gravitational (corpuscular) energy density of the
observable Universe varies as
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=—— 11
en(®) = 5= a1
whereas the radiation energy density is
40
er(t) =— T*(¢), (12)
i : 5
where 0 is the Stefan-Boltzmann constant, and E, = —E,, = — ;—G must hold.

Then, the temperature evolution is given by a simple formula

T(t) = =Ty \/% (13)

Notice that, for the observable Universe, t, = 4.32 x 10'”s, Eq. (12) yields T, =
2.99 K, which is in an excellent accord with the observable temperature value of 2.725 K.

A possible reason of why the Universe is slightly cooler that what is predicted by Eq.
(13) will be discussed in Section 5.

4. Conservation laws and the quantum state

The exercise presented in this section may shed some light on the fact why the tem-
perature of the observable Universe is slightly lower than the value predicted by the
model of the temperature evolution developed in the preceding section. In addition, the
results of this section provide an argument in favour of the conjecture that the Second Law
may not be complete.

Due to the fact that the observable Universe can be seen as a single non-relativistic
particle of mass m(t) in the potential field given by Eq. (6), the quantum state of the Uni-
verse is given by the Schrédinger equation

2

" 2m(b)

Ly ) = V06 + i (14)
i Elp r, )_ lp(r' ) 1!’(7”, )Ei

. . . . St .. v 1
in which the potential function S¢ is given by Eq. (6). In Eq. (14), the Schrédinger proba-
bility wave function ¥(r,t) defines the quantum state of the Universe.

It is worth noting here that, in the classical interpretation of the Schrodinger equation,
the spatial variable r is understood as “external” to the particle. In Eq. (14), however, the
spatial variable must be treated as “internal”, because the notion of “external” is not ap-
plicable in the case of a closed universe. The latter circumstance should not lead to any
difficulty here, because the purpose of the following exercise is not to solve Eq. (14) ex-
plicitly, but only to demonstrate that the conservation laws within the Universe are inde-
pendent of its gravitational potential.

Now, consider Eq. (14) written for the conjugate wave function, that is,

2

" 2m(t)

‘hi* t) = V2 (r,t * tc—st (15)
l atlp (r,)— ¢(r,)+¢(r,)2G

Multiplying Eq. (14) by 3" and Eq. (15) by ¥, and subtracting the resulting equa-
tions yields

ey ey R
”‘(lp E*‘Pw)—‘m(t)

Equation (16) can be written in a compact form as

WV — YV ). (16)

0
a—IZ +V-j=0, (17)
where the probability density p = Yy* = [|? and V-j = th

S VR — YR ).
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Equation (17) is nothing else but the most general form of the conservation law. In-
deed, multiplying Equation (17) by various physical quantities yields the conservation
equations corresponding to these quantities. For instance, multiplying Equation (17) by
the electric charge of the particle produces the conservation equation of the electric charge,
whereas multiplying Equation (17) by the particle density, p,,, produces the continuity
equation of fluid mechanics. See the work by Landau and Lifshitz [9] for an alternate,
more rigorous, derivation of Eq. (17).

Now, since the Einstein field equations

1 8nG
Ruv - ERguv = C—4Tuv - Aguv' (18)

combined with Eq. (5) for the gravitational potential, assume the form

1 8nG
Ry, — ERguv =97

it follows from Eq. (17) that the conservation laws within the expanding Universe are in-
dependent of both the stress-energy tensor, T,,, and the space-time metrics, because Eq.
(17) does not contain the gravitational potential @ and it is the gravitational potential that
the space-time characteristics.

Note that the value of the cosmological constant, A, related to the presence of dark
energy is not discussed here. This is because, in order to reach all the results provided in
this work, no dark energy assumptions are required.

From the mathematics point of view, Eq. (14) is nothing else but the diffusion (heat)

Tuv - Aguv: (19)

equation with the imaginary diffusion coefficient, D(t) = which depends on time

ih
2m(t)
only. Upon introducing a new variable
t d¢

ih
= ey

Eq. (17) can be treated by the non-field method, which renders relations between the local
values of the intensive properties (probability density, p, in this case) and the correspond-
ing gradient (flux) of that intensive property (in this case, probability flux, j) [10].

(20)

2
Noticing that V*= Z—r+ %:—r, where the parameter 0 <y < 1 characterises the do-
main geometry, the resulting non-field solution becomes

L ojr9dd v
p(r,7) = p(r,0) + nf" it Tn
where v =0 corresponds to the domain with the flat geometry (no curvature); y = £1 rep-
resents the spherical case with the convex and concave boundary, respectively; whereas
Y = %1/ 2 describes the cylinder whose boundary is either convex (y =1/2) or concave (y =
-1/2). The sign in front of s must be the same as the one of .

It is important to reiterate here that the non-field solution (21) relates the local values
of the probability density and the corresponding probability flux. The solution is valid in
all locations within the Universe including its boundary. Hence, neither the value of r nor
its meaning in terms of “externality” or “internality” are unimportant. What really matters
in the non-field solution is the temporal variable 7, which, by its definition given by Eq.
(20), includes the gravitational effects.

As is easily seen from the non-field solution given by Eq. (21), the coefficient in front
of the second integral on the right-hand side rapidly becomes negligibly small, because
1, = ct. This implies that, in almost every location 0 < r < r;, the expanding Universe flat-
tens very fast, so that the solution behaves as if v = 0.

It is important to note, however, that, according to Eq. (21), the space-time curvature
must be considered for small values of 1, i.e., for typical time intervals on the order of ¢»

or in the vicinity of enormous masses. In all other respects, space-time can be considered
flat.

[ei@,0ds,  o0<r<mn, ()
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Finally, Eq. (21) also provides some clue, why the temperature of the observable Uni-
verse is slightly lower than the value predicted by the model of the temperature evolution
developed in Section 3. Indeed, the difference can be explained by the presence of the
second integral on the right-hand side of Eq. (21). If p represents the temperature (radia-
tion energy density), then jin Eq. (21) corresponds to the heat flux. The minus sign in front
of the integral indicates that the cooling rate of the Universe was slightly higher in the
very beginning of its evolution. Hence, the resulting CMB temperature must be slightly
smaller than the one predicted by Eq. (13).

5. Incompleteness of the Second Law: information and complexity

In Section 3, it has been shown that in an expanding closed thermodynamic system,
the Second Law is a direct consequence of the perpetual growth of the total amount of
gravitational mass. The rate of entropy generation increases with time linearly. The latter
circumstance poses the question about the loss of information within the system [11].

On the other hand, in the preceding section, it has been shown that the quantum state
of the Universe is uniquely determined by its initial state, p(r,0) (see Eq. (21)). And,
hence, information about the entire history of the Universe should be recoverable in prin-
ciple.

ih
2m(t)
an imaginary value, the seemingly Gaussian kernel (Green’s function of the diffusion

is

Note also that, because the diffusivity in the Schrédinger equation, D(t) =

equation), Y(r,t) ~ exp [— #(Zt)], in fact, produces non-decaying (actually time-independ-

ent, steady) solutions, (r,t) ~ cos(r/lp)? + isin(r/lp)?, which indicates that the Uni-
verse must be a fully reversible thermodynamic process. This is another strong argument
in favour of the fact that the Second Law is not complete and its effects on the Universe’s
evolution should be somehow compensated. In fact, there is some experimental evidence
that the Second Law may not be complete [12-13].

The seeming contradiction described here is due to the fact that the Second Law is
usually considered separately from the perpetual mass creation within the Universe. Ac-
tually, gravitational effects associated with the mass produced cannot be disregarded, be-
cause they play the role of an organising force, which provides the possibility for for-
mation of more and more complex structures within the Universe. In fact, the more mass
is created within the Universe, the more possibilities arise for formation of complex struc-
tures, for which mass corpuscles play the role of building blocks.

As has been shown in Sections 2 and 3, the processes of entropy generation and mass
creation within the Universe go hand in hand. To reconcile the effects of these two pro-
cesses, it is conjectured here that the Second Law is not complete and is to be complemented to
a conservation law in the form

d(S+H) 0

a7

where S denotes the thermodynamic (Boltzmann’s) entropy and H is the informational
entropy understood in the same sense as Shannon’s entropy [14].

Equation (22), once compared with Eq. (9), implies that, as the amount of the thermo-

dynamic entropy within the Universe increases, the amount of the informational (Shan-
non’s) entropy decreases as

(22)

dn _ 2k ! 23
dt_ T[Btg' ( )

In other words, the amount of information, I(t) = AH(t) = H(tp) — H(t) = S(t) —
S(tp), generated within the Universe in the course of time, is

1(t) = mkg [(é)z - 1]. (24)
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Thus, from Eq. (8), the amount of information in the observable Universe, t, =
4.32 x 1017s, should be ~ 1023 bit.

Equation (24) implies that, in the course of its evolution, the Universe becomes more
complex. Indeed, the older the Universe becomes, the longer texts (codes) are needed to
describe all structures available within it — the said codes may, for example, use protons
and electrons and, in general, mass generated within the Universe — as their “letters”.

Indeed, if the Kolmogorov descriptive complexity, K, is used as a quantitative meas-
ure of the Universe’s complexity, then

m(t) t

K(t) = mp E, (25)

where Planck’s mass, mp, is chosen as the description unit (“letter”) to make the initial
complexity value equal to one unit [15].

A simple comparison of Egs. (24) and (25) shows that, within the Universe, the
amount of accumulated information and complexity level of that information are not in-
dependent, but related as

k@) = |1+©. (26)
kg

To conclude this section, it is worth noting that, as can be seen, once the Second Law
is complemented to a conservation law, the importance of mass generation within the
Universe becomes well pronounced — not only gravitational effects play the role of an
organising force, but also the amount of mass within the Universe defines both the
amount of information within the Universe and the level of the Universe’s complexity.

6. Discussion

For an expanding thermodynamic system, whose energy content consists of both ra-
diation (waves) and mass (corpuscles), to remain closed at every moment of its evolution,
no radiation may escape this system. Hence, the spatial size of such a system must equal
its Schwarzschild radius at every time moment, or else that system cannot be treated as a
fully closed thermodynamically. Because the spatial size of the system grows as ct due to
the presence of the radiation (wave) component, the total gravitational mass of the system
must increase with time, too. The latter is necessary to equate the size of the expanding
system to its Schwarzschild radius.

In such an expanding closed thermodynamic system, the Second Law is a direct con-
sequence of the perpetual growth of the total amount of gravitational mass.

In addition, it has been shown that, despite the perpetual growth of its gravitational
mass, the geometry of the system flattens very rapidly, so that the space-time curvature is
to be considered only either for characteristic time spans of the order of Planck’s time or
in the vicinity of huge masses.

To validate the model presented in this study, the initial (Planck’s) and current (ob-
servable) states of our Universe were used as the points of reference. It has been shown
that the amount of entropy within the observable Universe, predicted by the model, is
close to the value estimated by another independent method.

In addition, the solution for the temperature evolution of the observable Universe
has been obtained. It has been shown that the temperature change obeys a simple power
law, namely: is inversely proportional to the square root of time. The temperature of the
observable Universe was calculated from the solution thus obtained with the initial con-
dition of Planck’s temperature and compared with the current CMB temperature. The
temperature, calculated in this study, is by 0.265 K larger than the observable CMB tem-
perature. This difference can be explained by the presence of the second integral on the
right hand side of Eq. (21). The minus sign in front of the integral indicates that the cooling
rate of the Universe was slightly higher in the very beginning of its evolution. Hence, the
resulting CMB temperature must be slightly smaller than the one predicted by Eq. (13).
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Furthermore, it has been shown that, although the rate of entropy generation within
the Universe increases with time linearly, the quantum state of the Universe is uniquely
determined by its initial state. The latter circumstance indicates that the Universe as a
whole must be a fully reversible thermodynamical process, which is a strong argument in
favour of the fact that the Second Law is not complete and should be complemented to a
conservation law. The latter must be related to the question about the loss of information
within the Universe [11].

Once the Second Law is complemented to a conservation law, the importance of mass
generation within the Universe becomes well pronounced — not only gravitational effects
play the role of an organising force, but also the amount of mass within the Universe de-
fines both the amount of information within the Universe and the level of the Universe’s
complexity.
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