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Abstract: A simple line of reasoning, based on the most fundamental concepts of thermodynamics, 
yields some intriguing results for a better understanding of the processes occurring in the observa-
ble Universe. Gravitational mass must be continuously generated within an expanding thermody-
namic system for this system to remain closed. The Second Law is a direct consequence of this pro-
duction of mass. Simple expressions for the entropy and temperature of the Universe were obtained 
and the results agree well with observable values. Furthermore, it is demonstrated that the conser-
vation laws within the Universe are independent of its energy density. Based on the solution for the 
quantum state of the Universe, it is conjectured that the Second Law is incomplete and must be 
complemented to a conservation law, which takes into account the growth of the amount of infor-
mation within the Universe. Once the Second Law is complemented to a conservation law, the im-
portance of mass generation within the Universe becomes well pronounced – not only gravitational 
effects play the role of an organising force, but also the amount of mass within the Universe defines 
both the amount of information within the Universe and the level of the Universe’s complexity.       

Keywords: Second Law of thermodynamics; Universe as a closed thermodynamic system; entropy 
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1. Introduction 
The objective of this study is to demonstrate that a simple line of reasoning based on 

the most fundamental concepts of thermodynamics, such as energy conservation (the First 
Law), entropy, and temperature, can yield some intriguing results for a better understand-
ing of the processes occurring on a universal scale.  

The behaviour of an expanding closed thermodynamic system comprised of radia-
tion and matter has been modelled in this work. For such a system to remain closed over 
its entire evolution, its total gravitational mass must increase linearly with time while its 
gravitational potential must remain constant. The following section demonstrates that the 
rate of mass creation and the gravitational potential are independent of time and uniquely 
specified by the gravitational constant G and the speed of light c.  

The Second Law of Thermodynamics is discussed in Section 3. If the entropy of an 
expanding closed system is always equal to the Bekenstein-Hawking entropy of the cor-
responding black hole [1-2], then the Second Law of Thermodynamics is a direct result of the 
ongoing mass generation within such a system. The present value of the Universe's entropy, 
as calculated in this study, is in excellent agreement with the number determined by an-
other independent approach. Moreover, it is demonstrated that the Universe's tempera-
ture varies inversely proportional to the square root of time during its entire evolution. A 
precise solution for the evolution of temperature has been derived and tested against the 
observed temperature of the cosmic microwave background (CMB).  

The solution derived for the gravitational potential field of the Universe is combined 
with the Schrödinger equation for the probability wave function of the Universe in Section 
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4. It is demonstrated that the conservation laws within the Universe are independent of 
its energy density. In other words, the conservation laws in the expanding Universe are 
independent of both the stress-energy tensor, 𝑇𝑇𝜇𝜇𝜇𝜇, and the space-time metrics in Einstein's 
field equations.  

In the same section, a non-field solution for the quantum state of the universe is ob-
tained. From this solution, it follows that, regardless of the starting geometry of the Uni-
verse, it rapidly flattens with expansion. The non-field solution also explains why the ob-
servable Universe is slightly cooler than what was predicted in Section 3. Moreover, the 
non-field solution for the quantum state of the Universe suggests that our Universe may 
be a fully reversible thermodynamic process and that information cannot be lost within 
our Universe.  

In Section 5, the question of incompleteness of the Second Law is discussed in more 
detail. It is conjectured that the Second Law is not complete and is to be complemented to a 
conservation law in such a form that, within the universe, the rate of entropy generation is 
to be equal to the depletion rate of the informational entropy. Once the Second Law is 
complemented to a conservation law in such a form, the importance of mass generation 
within the Universe becomes well pronounced – not only gravitational effects play the 
role of an organising force, but also the amount of mass within the Universe defines both the 
amount of information within the Universe and the level of the Universe’s complexity.    

In the concluding section of this paper, a comprehensive discussion of all the study's 
findings is offered. 

2. Perpetual mass generation as the condition of closeness 
Consider a thermodynamic system, whose total energy content, E, is in the wave-

corpuscular form; that is, both the radiation (waves) and gravitational mass (corpuscles) 
components are always present within the system. Assume that the radiation component 
within the system under consideration propagates with speed c, which remains constant 
during the entire evolution.  

For such a system to always remain closed thermodynamically, its total energy may 
not change with time, that is, 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0. (1) 

The latter condition implies that no radiation may escape the system and, hence, the 
Schwarzschild radius of the system must be 

𝑟𝑟𝑠𝑠(𝑡𝑡) =
2𝐺𝐺𝐺𝐺(𝑡𝑡)
𝑐𝑐2

, (2) 

where G is the gravitational constant and m is the total mass of the system. 
Equation (2) infers that, for an expanding system to remain a closed thermodynamic system, 

its total gravitational mass, m, is to increase with time. And since the Schwarzschild radius is 
rs(t) = ct, Eq. (2) renders an expression for m(t) as    

𝑚𝑚(𝑡𝑡) =
𝑐𝑐3𝑡𝑡
2𝐺𝐺

. (3) 

Equation (3) implies that the rate of mass production within an expanding closed 
thermodynamic system has to remain constant and is expressible through the fundamen-
tal constants as 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑐𝑐3

2𝐺𝐺
. (4) 

The gravitational potential of the system in question is now defined as 

𝛷𝛷 =
2𝐺𝐺𝐺𝐺(𝑡𝑡)
𝑟𝑟𝑠𝑠(𝑡𝑡)

= 𝑐𝑐2. (5) 
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 Equation (5) combined with Eq. (3) renders the expression for the corresponding 
gravitational potential field 

𝑈𝑈(𝑡𝑡) = 𝑚𝑚(𝑡𝑡)𝛷𝛷 =
𝑐𝑐5𝑡𝑡
2𝐺𝐺

. (6) 

Notice that Eq. (6) is nothing else but the expression for the total energy of the cor-
puscular part of the system, Em. As can be seen, this energy grows linearly with time. 
Hence, for Eq. (1) to remain valid, the radiation energy of the system, Er, must decrease 
with time at the same rate.     

It is worth noting here also that introducing the gravitational potential is equivalent 
to generalizing the local Maxwell equations for the electromagnetic field to the non-local 
equations by defining the electromagnetic potentials of adjacent charges as electric field 
strength sources [3-6]. 

3. Second Law: entropy and temperature 
The necessity of ongoing mass formation for a thermodynamic system to stay closed 

directly implies the growth of thermodynamic entropy within that system (Second Law). 
In fact, since the size of the system under consideration is always equal to its Schwarz-
schild radius, rs, the amount of entropy in the system equals the Bekenstein-Hawking en-
tropy, which is 

𝑆𝑆𝐵𝐵𝐵𝐵 = 𝜋𝜋𝑘𝑘𝐵𝐵 �
𝑟𝑟𝑠𝑠
𝑙𝑙𝑃𝑃
�
2

, (7) 

  where kB is Boltzmann’s constant and 𝑙𝑙𝑃𝑃 = �𝐺𝐺ℏ/𝑐𝑐3 denotes Planck’s length. 
Combining Eq. (7) with Eqs. (2) and (3) yields the expression for the entropy value 

𝑆𝑆(𝑡𝑡) = 𝜋𝜋𝑘𝑘𝐵𝐵 �
𝑡𝑡
𝑡𝑡𝑃𝑃
�
2

, (8) 

  where 𝑡𝑡𝑃𝑃 = �𝐺𝐺ℏ/𝑐𝑐5 denotes Planck’s time. 
From Eq. (8), the rate of entropy generation within the expanding closed system with 

perpetual mass generation always remains positive and increases with time linearly [1], 
that is, 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 2𝜋𝜋𝑘𝑘𝐵𝐵
𝑡𝑡
𝑡𝑡𝑃𝑃2

> 0. (9) 

Equation (9) is essentially a mathematical statement of the Second Law of Thermodynamics, 
which is not merely postulated here but is a direct consequence of the constant creation of mass 
within the system under consideration.  

The result rendered by Eq. (8) has been compared with the known entropy value of 
the observable Universe obtained independently by other methods [7]. Indeed, for the 
observable Universe, 𝑡𝑡𝑜𝑜 = 4.32 × 1017s, Eq. (8) yields 𝑆𝑆𝑜𝑜 = 0.28 × 10100J/K, which is in an 
excellent accord with the estimated dimensionless value ∼ 10123. Notice here that the di-
mensionless entropy value calculated in [7] 10123 × 𝑘𝑘𝐵𝐵 = 1.38 × 10100J/K calculated in 
this study. Note also that the index ‘o’ refers to the observable (current) state.  

From Eq. (8), it also follows that the temperature of the observable Universe decreases 
inversely proportional to the square root of time, because provided the initial temperature 

of the observable Universe was equal to Planck’s temperature 𝑇𝑇𝑃𝑃 = 1
𝑘𝑘𝐵𝐵
�ℏ𝑐𝑐5

𝐺𝐺
= 1.42 ×

1032K 

𝑇𝑇4(𝑡𝑡)
𝑇𝑇𝑃𝑃4

∼
𝑆𝑆(𝑡𝑡𝑃𝑃)
𝑆𝑆(𝑡𝑡)

. (10) 

The proportionality coefficient, necessary to convert expression (10) into an equality, 
is easily recovered from noticing that the gravitational (corpuscular) energy density of the 
observable Universe varies as 
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𝜀𝜀𝑚𝑚(𝑡𝑡) =
3

8𝜋𝜋𝜋𝜋
1
𝑡𝑡2

, (11) 

whereas the radiation energy density is 

𝜀𝜀𝑟𝑟(𝑡𝑡) =
4𝜎𝜎
𝑐𝑐
𝑇𝑇4(𝑡𝑡), (12) 

where σ is the Stefan-Boltzmann constant, and 𝐸𝐸
·
𝑟𝑟 = −𝐸𝐸

·
𝑚𝑚 = − 𝑐𝑐5

2𝐺𝐺
 must hold. 

Then, the temperature evolution is given by a simple formula 

𝑇𝑇(𝑡𝑡) = 3
16𝜋𝜋

𝑇𝑇𝑃𝑃�
𝑡𝑡𝑃𝑃
𝑡𝑡

. (13) 

Notice that, for the observable Universe, 𝑡𝑡𝑜𝑜 = 4.32 × 1017s , Eq. (12) yields 𝑇𝑇𝑜𝑜 =
2.99 K, which is in an excellent accord with the observable temperature value of 2.725 K. 

A possible reason of why the Universe is slightly cooler that what is predicted by Eq. 
(13) will be discussed in Section 5. 

4. Conservation laws and the quantum state 
The exercise presented in this section may shed some light on the fact why the tem-

perature of the observable Universe is slightly lower than the value predicted by the 
model of the temperature evolution developed in the preceding section. In addition, the 
results of this section provide an argument in favour of the conjecture that the Second Law 
may not be complete. 

Due to the fact that the observable Universe can be seen as a single non-relativistic 
particle of mass m(t) in the potential field given by Eq. (6), the quantum state of the Uni-
verse is given by the Schrödinger equation  

𝑖𝑖ℏ
𝜕𝜕
𝜕𝜕𝜕𝜕
𝜓𝜓(𝒓𝒓, 𝑡𝑡) = −

ℏ2

2𝑚𝑚(𝑡𝑡)
∇2𝜓𝜓(𝒓𝒓, 𝑡𝑡) + 𝜓𝜓(𝒓𝒓, 𝑡𝑡)

𝑐𝑐5𝑡𝑡
2𝐺𝐺

, (14) 

 
in which the potential function 𝑐𝑐

5𝑡𝑡
2𝐺𝐺

 is given by Eq. (6). In Eq. (14), the Schrödinger proba-
bility wave function 𝜓𝜓(𝒓𝒓, 𝑡𝑡) defines the quantum state of the Universe.  

It is worth noting here that, in the classical interpretation of the Schrödinger equation, 
the spatial variable 𝒓𝒓 is understood as “external” to the particle. In Eq. (14), however, the 
spatial variable must be treated as “internal”, because the notion of “external” is not ap-
plicable in the case of a closed universe. The latter circumstance should not lead to any 
difficulty here, because the purpose of the following exercise is not to solve Eq. (14) ex-
plicitly, but only to demonstrate that the conservation laws within the Universe are inde-
pendent of its gravitational potential.    

Now, consider Eq. (14) written for the conjugate wave function, that is, 

𝑖𝑖ℏ
𝜕𝜕
𝜕𝜕𝜕𝜕
𝜓𝜓∗(𝒓𝒓, 𝑡𝑡) = −

ℏ2

2𝑚𝑚(𝑡𝑡)
∇2𝜓𝜓∗(𝒓𝒓, 𝑡𝑡) + 𝜓𝜓∗(𝒓𝒓, 𝑡𝑡)

𝑐𝑐5𝑡𝑡
2𝐺𝐺

. (15) 

Multiplying Eq. (14) by 𝜓𝜓∗ and Eq. (15) by 𝜓𝜓, and subtracting the resulting equa-
tions yields 

𝑖𝑖ℏ �𝜓𝜓∗ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜓𝜓
𝜕𝜕𝜓𝜓∗

𝜕𝜕𝜕𝜕
� = −

ℏ2

2𝑚𝑚(𝑡𝑡)
(𝜓𝜓∗∇2𝜓𝜓 − 𝜓𝜓∇2𝜓𝜓 ∗). (16) 

Equation (16) can be written in a compact form as 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ ∇ ⋅ 𝐣𝐣 = 0, (17) 

where the probability density 𝑝𝑝 = 𝜓𝜓𝜓𝜓∗ = |𝜓𝜓|2 and ∇ ⋅ 𝐣𝐣 = 𝑖𝑖ℏ
2𝑚𝑚(𝑡𝑡)

(𝜓𝜓∗∇2𝜓𝜓 − 𝜓𝜓∇2𝜓𝜓 ∗). 
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Equation (17) is nothing else but the most general form of the conservation law. In-
deed, multiplying Equation (17) by various physical quantities yields the conservation 
equations corresponding to these quantities. For instance, multiplying Equation (17) by 
the electric charge of the particle produces the conservation equation of the electric charge, 
whereas multiplying Equation (17) by the particle density, 𝜌𝜌𝑚𝑚, produces the continuity 
equation of fluid mechanics. See the work by Landau and Lifshitz [9] for an alternate, 
more rigorous, derivation of Eq. (17). 

Now, since the Einstein field equations 

𝑅𝑅𝜇𝜇𝜇𝜇 −
1
2
𝑅𝑅𝑔𝑔𝜇𝜇𝜇𝜇 =

8𝜋𝜋𝜋𝜋
𝑐𝑐4

𝑇𝑇𝜇𝜇𝜇𝜇 − 𝛬𝛬𝑔𝑔𝜇𝜇𝜇𝜇 , (18) 

combined with Eq. (5) for the gravitational potential, assume the form 

𝑅𝑅𝜇𝜇𝜇𝜇 −
1
2
𝑅𝑅𝑔𝑔𝜇𝜇𝜇𝜇 =

8𝜋𝜋𝜋𝜋
𝛷𝛷2 𝑇𝑇𝜇𝜇𝜇𝜇 − 𝛬𝛬𝑔𝑔𝜇𝜇𝜇𝜇 , (19) 

it follows from Eq. (17) that the conservation laws within the expanding Universe are in-
dependent of both the stress-energy tensor, 𝑇𝑇𝜇𝜇𝜇𝜇, and the space-time metrics, because Eq. 
(17) does not contain the gravitational potential 𝛷𝛷 and it is the gravitational potential that 
the space-time characteristics.  

Note that the value of the cosmological constant, Λ, related to the presence of dark 
energy is not discussed here. This is because, in order to reach all the results provided in 
this work, no dark energy assumptions are required. 

From the mathematics point of view, Eq. (14) is nothing else but the diffusion (heat) 
equation with the imaginary diffusion coefficient, 𝐷𝐷(𝑡𝑡) = 𝑖𝑖ℏ

2𝑚𝑚(𝑡𝑡)
, which depends on time 

only. Upon introducing a new variable 

𝜏𝜏 =
𝑖𝑖ℏ
2
∫𝑡𝑡𝑃𝑃
𝑡𝑡 𝑑𝑑𝑑𝑑
𝑚𝑚(𝜁𝜁)

, (20) 

Eq. (17) can be treated by the non-field method, which renders relations between the local 
values of the intensive properties (probability density, p, in this case) and the correspond-
ing gradient (flux) of that intensive property (in this case, probability flux, j) [10]. 

Noticing that ∇2= 𝜕𝜕2

𝜕𝜕𝜕𝜕
+ 𝛾𝛾

𝑟𝑟
𝜕𝜕
𝜕𝜕𝜕𝜕

, where the parameter 0 ≤ 𝛾𝛾 ≤ 1 characterises the do-
main geometry, the resulting non-field solution becomes 

𝑝𝑝(𝑟𝑟, 𝜏𝜏) = 𝑝𝑝(𝑟𝑟, 0) +
1
√𝜋𝜋

∫0
𝜏𝜏 𝑗𝑗(𝑟𝑟, 𝜁𝜁)𝑑𝑑𝑑𝑑

�𝜏𝜏 − 𝜁𝜁
−

𝛾𝛾
𝑟𝑟 ± 𝑟𝑟𝑠𝑠

∫0
𝜏𝜏𝑗𝑗(𝑟𝑟, 𝜁𝜁)𝑑𝑑𝑑𝑑, 0 ≤ 𝑟𝑟 ≤ 𝑟𝑟𝑠𝑠 , (21) 

where γ = 0 corresponds to the domain with the flat geometry (no curvature); γ =  ±1 rep-
resents the spherical case with the convex and concave boundary, respectively; whereas 
γ =  ±1/ 2 describes the cylinder whose boundary is either convex (γ =1/2) or concave (γ = 
−1/2). The sign in front of rs must be the same as the one of γ. 

It is important to reiterate here that the non-field solution (21) relates the local values 
of the probability density and the corresponding probability flux. The solution is valid in 
all locations within the Universe including its boundary. Hence, neither the value of r nor 
its meaning in terms of “externality” or “internality” are unimportant. What really matters 
in the non-field solution is the temporal variable 𝜏𝜏, which, by its definition given by Eq. 
(20), includes the gravitational effects.     

As is easily seen from the non-field solution given by Eq. (21), the coefficient in front 
of the second integral on the right-hand side rapidly becomes negligibly small, because 
𝑟𝑟𝑠𝑠 = 𝑐𝑐𝑐𝑐. This implies that, in almost every location 0 ≤ 𝑟𝑟 ≤ 𝑟𝑟𝑠𝑠, the expanding Universe flat-
tens very fast, so that the solution behaves as if γ = 0. 

It is important to note, however, that, according to Eq. (21), the space-time curvature 
must be considered for small values of τ, i.e., for typical time intervals on the order of tP 
or in the vicinity of enormous masses. In all other respects, space-time can be considered 
flat. 
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Finally, Eq. (21) also provides some clue, why the temperature of the observable Uni-
verse is slightly lower than the value predicted by the model of the temperature evolution 
developed in Section 3. Indeed, the difference can be explained by the presence of the 
second integral on the right-hand side of Eq. (21). If p represents the temperature (radia-
tion energy density), then j in Eq. (21) corresponds to the heat flux. The minus sign in front 
of the integral indicates that the cooling rate of the Universe was slightly higher in the 
very beginning of its evolution. Hence, the resulting CMB temperature must be slightly 
smaller than the one predicted by Eq. (13).  

5. Incompleteness of the Second Law: information and complexity 
In Section 3, it has been shown that in an expanding closed thermodynamic system, 

the Second Law is a direct consequence of the perpetual growth of the total amount of 
gravitational mass. The rate of entropy generation increases with time linearly. The latter 
circumstance poses the question about the loss of information within the system [11]. 

On the other hand, in the preceding section, it has been shown that the quantum state 
of the Universe is uniquely determined by its initial state, 𝑝𝑝(𝑟𝑟, 0) (see Eq. (21)). And, 
hence, information about the entire history of the Universe should be recoverable in prin-
ciple.   

Note also that, because the diffusivity in the Schrödinger equation, 𝐷𝐷(𝑡𝑡) = 𝑖𝑖ℏ
2𝑚𝑚(𝑡𝑡)

, is 
an imaginary value, the seemingly Gaussian kernel (Green’s function of the diffusion 
equation), 𝜓𝜓(𝑟𝑟, 𝑡𝑡) ∼ exp �− 𝑟𝑟2

𝑡𝑡𝑡𝑡(𝑡𝑡)
�, in fact, produces non-decaying (actually time-independ-

ent, steady) solutions, 𝜓𝜓(𝑟𝑟, 𝑡𝑡) ∼ cos(𝑟𝑟/𝑙𝑙𝑃𝑃)2 + 𝑖𝑖sin(𝑟𝑟/𝑙𝑙𝑃𝑃)2 , which indicates that the Uni-
verse must be a fully reversible thermodynamic process. This is another strong argument 
in favour of the fact that the Second Law is not complete and its effects on the Universe’s 
evolution should be somehow compensated. In fact, there is some experimental evidence 
that the Second Law may not be complete [12-13]. 

The seeming contradiction described here is due to the fact that the Second Law is 
usually considered separately from the perpetual mass creation within the Universe. Ac-
tually, gravitational effects associated with the mass produced cannot be disregarded, be-
cause they play the role of an organising force, which provides the possibility for for-
mation of more and more complex structures within the Universe. In fact, the more mass 
is created within the Universe, the more possibilities arise for formation of complex struc-
tures, for which mass corpuscles play the role of building blocks. 

As has been shown in Sections 2 and 3, the processes of entropy generation and mass 
creation within the Universe go hand in hand. To reconcile the effects of these two pro-
cesses, it is conjectured here that the Second Law is not complete and is to be complemented to 
a conservation law in the form  

𝑑𝑑(𝑆𝑆 + 𝐻𝐻)
𝑑𝑑𝑑𝑑

= 0, (22) 

where S denotes the thermodynamic (Boltzmann’s) entropy and H is the informational 
entropy understood in the same sense as Shannon’s entropy [14].  

Equation (22), once compared with Eq. (9), implies that, as the amount of the thermo-
dynamic entropy within the Universe increases, the amount of the informational (Shan-
non’s) entropy decreases as 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −2𝜋𝜋𝑘𝑘𝐵𝐵
𝑡𝑡
𝑡𝑡𝑃𝑃2

. (23) 

In other words, the amount of information, 𝐼𝐼(𝑡𝑡) = 𝛥𝛥𝐻𝐻(𝑡𝑡) = 𝐻𝐻(𝑡𝑡𝑃𝑃) − 𝐻𝐻(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) −
𝑆𝑆(𝑡𝑡𝑃𝑃), generated within the Universe in the course of time, is 

𝐼𝐼(𝑡𝑡) = 𝜋𝜋𝑘𝑘𝐵𝐵 ��
𝑡𝑡
𝑡𝑡𝑃𝑃
�
2
− 1�. (24) 
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Thus, from Eq. (8), the amount of information in the observable Universe, 𝑡𝑡𝑜𝑜 =
4.32 × 1017s, should be ∼ 10123 bit.  

Equation (24) implies that, in the course of its evolution, the Universe becomes more 
complex. Indeed, the older the Universe becomes, the longer texts (codes) are needed to 
describe all structures available within it – the said codes may, for example, use protons 
and electrons and, in general, mass generated within the Universe – as their “letters”.  

Indeed, if the Kolmogorov descriptive complexity, K, is used as a quantitative meas-
ure of the Universe’s complexity, then   

𝐾𝐾(𝑡𝑡) =
𝑚𝑚(𝑡𝑡)
𝑚𝑚𝑃𝑃

=
𝑡𝑡
𝑡𝑡𝑃𝑃

, (25) 

where Planck’s mass, 𝑚𝑚𝑃𝑃, is chosen as the description unit (“letter”) to make the initial 
complexity value equal to one unit [15].  

A simple comparison of Eqs. (24) and (25) shows that, within the Universe, the 
amount of accumulated information and complexity level of that information are not in-
dependent, but related as 

𝐾𝐾(𝑡𝑡) = �1 +
𝐼𝐼(𝑡𝑡)
𝜋𝜋𝑘𝑘𝐵𝐵

. (26) 

To conclude this section, it is worth noting that, as can be seen, once the Second Law 
is complemented to a conservation law, the importance of mass generation within the 
Universe becomes well pronounced – not only gravitational effects play the role of an 
organising force, but also the amount of mass within the Universe defines both the 
amount of information within the Universe and the level of the Universe’s complexity.   

6. Discussion 
For an expanding thermodynamic system, whose energy content consists of both ra-

diation (waves) and mass (corpuscles), to remain closed at every moment of its evolution, 
no radiation may escape this system. Hence, the spatial size of such a system must equal 
its Schwarzschild radius at every time moment, or else that system cannot be treated as a 
fully closed thermodynamically. Because the spatial size of the system grows as ct due to 
the presence of the radiation (wave) component, the total gravitational mass of the system 
must increase with time, too. The latter is necessary to equate the size of the expanding 
system to its Schwarzschild radius. 

In such an expanding closed thermodynamic system, the Second Law is a direct con-
sequence of the perpetual growth of the total amount of gravitational mass.  

In addition, it has been shown that, despite the perpetual growth of its gravitational 
mass, the geometry of the system flattens very rapidly, so that the space-time curvature is 
to be considered only either for characteristic time spans of the order of Planck’s time or 
in the vicinity of huge masses. 

To validate the model presented in this study, the initial (Planck’s) and current (ob-
servable) states of our Universe were used as the points of reference. It has been shown 
that the amount of entropy within the observable Universe, predicted by the model, is 
close to the value estimated by another independent method.  

In addition, the solution for the temperature evolution of the observable Universe 
has been obtained. It has been shown that the temperature change obeys a simple power 
law, namely: is inversely proportional to the square root of time. The temperature of the 
observable Universe was calculated from the solution thus obtained with the initial con-
dition of Planck’s temperature and compared with the current CMB temperature. The 
temperature, calculated in this study, is by 0.265 K larger than the observable CMB tem-
perature. This difference can be explained by the presence of the second integral on the 
right hand side of Eq. (21). The minus sign in front of the integral indicates that the cooling 
rate of the Universe was slightly higher in the very beginning of its evolution. Hence, the 
resulting CMB temperature must be slightly smaller than the one predicted by Eq. (13).  
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Furthermore, it has been shown that, although the rate of entropy generation within 
the Universe increases with time linearly, the quantum state of the Universe is uniquely 
determined by its initial state. The latter circumstance indicates that the Universe as a 
whole must be a fully reversible thermodynamical process, which is a strong argument in 
favour of the fact that the Second Law is not complete and should be complemented to a 
conservation law. The latter must be related to the question about the loss of information 
within the Universe [11]. 

Once the Second Law is complemented to a conservation law, the importance of mass 
generation within the Universe becomes well pronounced – not only gravitational effects 
play the role of an organising force, but also the amount of mass within the Universe de-
fines both the amount of information within the Universe and the level of the Universe’s 
complexity.  
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