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Simple Summary:The present study introduces a new computational platform 
GATHER to conduct Geostatistical Analysis of Tumor Heterogeneity and Entropy in 
R. GATHER has several distinct advantages such as (a) novel use of single cell specific 
spatial information for kriging to synthesize high-resolution and continuous gene ex-
pression landscapes of a given tumor sample, (b) integration of such landscapes to 
identify and map the enriched regions of pathways of interest, (c) identification of 
genes that have spatial differential expression at locations representing specific phe-
notypic contexts, (d) computation of spatial entropy measures for quantification and 
objective characterization of intratumor heterogeneity, and (e) use of new tools for 
insightful visualization of spatial transcriptomic phenomena. 

Abstract: Intratumor heterogeneity (ITH) is associated with therapeutic resistance 
and poor prognosis in cancer patients, and attributed to genetic, epigenetic, and mi-
croenvironmental factors. We developed a new computational platform, GATHER, 
for geostatistical modeling of single cell RNA-seq data to synthesize high-resolution 
and continuous gene expression landscapes of a given tumor sample. Such landscapes 
allow GATHER to map the enriched regions of pathways of interest in the tumor 
space and identify genes that have spatial differential expressions at locations repre-
senting specific phenotypic contexts using measures based on optimal transport. 
GATHER provides new applications of spatial entropy measures for quantification 
and objective characterization of ITH. It includes new tools for insightful visualization 
of spatial transcriptomic phenomena. We illustrate the capabilities of GATHER using 
real data from breast cancer tumor to study hallmarks of cancer in the phenotypic 
contexts defined by cancer associated fibroblasts. 

Keywords: spatial single-cell analysis; intratumor heterogeneity; kriging; spatial en-
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Introduction 
In their well-known paper in 2010, Hanahan and Weinberg noted that 

tumors exhibit an additional dimension of complexity through their “tumor 
microenvironment” that contributes to the acquisition of the so-called hall-
mark traits of cancer. Indeed, extensive studies over the past decades have 
uncovered a great diversity of cell populations in tumors, thus leading to the 
active research area of intratumor heterogeneity (ITH) (1). It has been found 
to be associated with poor prognosis, therapeutic resistance and treatment 
failure leading to poor overall survival in cancer patients (2-6). ITH is at-
tributed to genetic, epigenetic, and microenvironmental factors (1, 7). Tumors 
can develop a resistance to the treatment due to ITH by new genetic muta-
tions, recovering functionality of previously inactivated genes, phenotypic 
changes, and variations in response to the microenvironment (8, 9). 

The persistence of some of the drug-tolerant intratumor cell populations 
could be attributed to their high phenotypic plasticity. While hierarchies of 
differentiation also exist among normal cells in healthy tissues, the popula-
tions of tumor cells, in contrast, display far greater cell-to-cell variability and 
the resulting phenotypic instability (10, 11). Such ITH could be attributed to 
genetic causes ranging from aneuploidy to spontaneous cell fusions, say, be-
tween cancer and non-cancer cells, in addition to other factors such as com-
plex contextual signals in the highly aberrant tumor microenvironments, or 
even global alterations in cancer cell epigenomes (12). ITH also involves im-
mune cell infiltration, which is of obvious importance for immunotherapies. 
Tumor antigen diversity could be determined by the T cell clonality in the 
different regions of the same tumor (13). Studies have shown spatially com-
plex interactions between tumor microenvironments and the patient’s im-
mune system (14, 15). 

While heterogeneous cell types are prevalent within the tumor microen-
vironment some of which may account for cancer development and progres-
sion, it also contains different non-malignant components, including the can-
cer-associated fibroblasts (CAFs) (16-18). Although the origin and activation 
mechanism of CAFs remains an area of active research (19-22), studies have 
attributed the processes of formation and derivation of CAFs to various pre-
cursor cells (20, 23), which may be the source of the well-known heterogene-
ity among the CAFs (24-27). Indeed, certain tumors, such as in the breast, in 
which the prevalence of CAFs could as high as 80%, they can play both anti- 
as well as pro-tumorigenic roles (28-30). Importantly, CAFs can facilitate 
drug resistance dynamically by altering the cell-matrix interactions that con-
trol the outer layer of cells' sensitivity to apoptosis, producing proteins that 
control cell survival and proliferation, assisting with cell-cell communica-
tions, and activating epigenetic plasticity in neighboring cells (31, 32). 

To understand the spatial heterogeneity of gene expressions, including 
drug targets, different sites of the same tumor were analyzed with multire-
gional RNA sequencing for different cancers (5, 33-35). It was observed, for 
instance, that if HER2+ breast tumors expressed HER2 uniformly across their 
cells, then the known HER2-targeted therapies were highly effective; and if 
not, then such patients were found to have shorter disease-free survival (36). 
In recent years, higher resolution, tissue-specific gene expression analysis is 
made possible by using new platforms such as single-cell RNA sequencing 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 September 2022                   doi:10.20944/preprints202209.0388.v1

https://doi.org/10.20944/preprints202209.0388.v1


3 
 

(scRNA-seq), which has rapidly evolved as a powerful and popular tool (37, 
38). This has led to several scRNA-seq studies of the composition of CAFs in 
different stages of cancer (39-47). For instance, the Human Tumor Atlas Net-
work [https://humantumoratlas.org] is increasingly enriched with data on 
human cancers based on scRNA-seq assays. 

Despite the advancements and efficacy of scRNA-seq, the lack of spatial 
information in scRNA-seq analysis is a significant shortcoming for typical 
scRNA-seq methods to capture cellular heterogeneity. On the other hand, 
while oncologic pathologists have long studied cell signaling within tumors 
by manual scoring of discordance between individuals and variation be-
tween different batches using tissue immunostaining and microscopy, such 
techniques typically allow only a few selected markers to be observed per 
cell, and thus offer a limited reporting of the extent of potential heterogeneity. 
Combining high-resolution gene expression data with spatial coordinates can 
resolve these experimental shortcomings (48). For instance, spatial proximity 
to fibroblasts has been shown to impact molecular features and therapeutic 
sensitivity of breast cancer cells influencing clinical outcomes (49). While im-
aging the transcriptome in situ with high accuracy has been a major challenge 
in single-cell biology, development of high-throughput platforms for sequen-
tial fluorescence in situ hybridization such as RNA seqFISH+ and algorithms 
such as CELESTA can identify cell populations and their spatial organization 
in intact tissues (5, 50).  

In order to approach the conceptualize the diversity in the spatial omic 
information, the concept of a habitat and its locations have been studied in 
association with genetic heterogeneity in a tumor (51, 52). In fact, it was noted 
that the spatial distribution of genetically distinct tumor cell populations may 
correlate with poor clinical outcomes (9). Landscape ecology is, therefore, a 
potentially effective modeling framework which – similar to the modeling of 
an ecosystem’s behaviour in terms of the actions and interactions of individ-
uals and groups of the different constituent species – could be adopted to 
study the spatio-temporally dynamic and heterogeneous system that is often 
represented by a tumor.  

The present study introduces a new computational platform GATHER 
to conduct Geostatistical Analysis of Tumor Heterogeneity and Entropy in R. 
GATHER uses geostatistical modeling and spatial entropy measures for 
quantification and objective characterization of intratumor heterogeneity, 
and to identify different transcriptomic patterns in the molecular landscapes 
of a tissue sample. Geostatistical models provide a well-established theoreti-
cal framework for prediction and interpolation of spatial data. Kriging, for 
example, is a generalized least-square regression approach to predict spatial 
attributes at unobserved locations (53). GATHER applies kriging for estimat-
ing gene-specific, and thereby geneset-specific, expression values at every 
point of the given tumor space. By constructing such continuous molecular 
landscapes, it allows visualization and identification of local and regional 
transcriptomic variations. Further, GATHER provides quantitative character-
ization of ITH based on spatial entropy measures (54). Finally, GATHER ap-
plies a Wasserstein distance based 2-sample test, which is adapted specifi-
cally for use on single cell data (55), to provide 2 different approaches to iden-
tify genes that have spatial differential expression either (i) near a specific 
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location in the tumor space versus elsewhere, or (ii) across different regions 
in which a selected phenotypic context is present at different levels.  

The concept of entropy in Information Theory, as defined on strings of 
symbols by Claude Shannon in 1948 (56), has been adapted and used in var-
ious contexts because of its ability to capture a broad set of notions such as 
information content, unexpectedness, uncertainty, diversity, and contagion 
(54). Indeed, it was shown that the cancer epigenome has higher entropy than 
its normal counterpart (10). In the present study, we are more specifically in-
terested in the spatial entropy of a tumor’s molecular information content. 
Despite early applications of Shannon’s entropy (𝐻𝐻) to evaluate spatial heter-
ogeneity in geographical phenomena (57) and landscape ecology (58), re-
searchers have noted that, while 𝐻𝐻 takes into account the number of symbols 
of each type in a string, it ignores the effect of their spatial arrangement (59). 
This has led to further development of different entropy measures that spe-
cifically include spatial information. In particular, the present study com-
puted Batty’s entropy to measure the spatial heterogeneity of diverse pheno-
types in the tumor space, and Leibovici’s co-occurrence based entropy for 
heterogeneity of a given geneset’s enrichment in a particular phenotypic con-
text. 

In 2020, a paper listed eleven grand challenges in single-cell data science, 
which included the challenge of “finding patterns in spatially resolved meas-
urements” (60). Towards this, many recent efforts have produced computa-
tional methods to analyze spatial information in single-cell studies (61-69). 
The aim of the present study is to address the said challenge using a different 
– geostatistical modeling – approach in comparison to the existing ones. This 
gives GATHER several distinct advantages such as (a) use of single cell spe-
cific spatial information for kriging to synthesize high-resolution and contin-
uous gene expression landscapes of a given tumor sample, (b) integration of 
such landscapes to identify and map the enriched regions of pathways of in-
terest, (c) identification of genes that have spatial differential expression at 
locations representing specific phenotypic contexts, (d) computation of spa-
tial entropy measures for quantification and objective characterization of 
ITH, and (e) use of new tools for insightful visualization of spatial tran-
scriptomic phenomena. In the next section, we describe the data and meth-
ods, followed by the results of real tumor data analysis using GATHER, and 
end with discussion including future work.  

Data and Methods 

Data 
The spatial transcriptomics data were downloaded from the 10x Ge-

nomics online resource [Available at: https://www.10xgenomics.com/re-
sources/datasets/human-breast-cancer-whole-transcriptome-analysis-
1-standard-1-2-0]. The data were generated using the Visium Spatial Gene 
Expression protocol run on an invasive breast cancer tissue sample that is 
Estrogen Receptor (ER) positive, Progesterone Receptor (PR) positive, and 
Human Epidermal Growth Factor Receptor 2 (HER2) negative. RNA se-
quencing data were generated with a paired-end, dual-indexed process using 
Illumina NovaSeq 6000, with a sequencing depth of 72,436 mean reads per 
cell. After filtering the downloaded dataset for average gene expression value 
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>1, the data matrix contained 1,981 rows (genes) and 4,325 columns (single 
cells). Fig. 1 shows the steps of the GATHER workflow which includes spatial 
gene expression analysis. As part of our RNAseq data preprocessing, the zero 
counts were replaced with a small random jitter around zero that would min-
imally affect the remaining gene expression values. We normalized each 
gene’s expression across samples with 10-fold cross-validation based data 
transformation method using bestNormalize package in R software (70).  

 

Fig. 1. The GATHER workflow. It outlines the different analytical steps taken by GATHER starting from single cell 
omic data preparation including normalization and filtering to the generation of krging-predicted gene expression 

landscapes as well as iterative computation of spatial entropy measures. It also illustrates the interactive 3D 
visualization using GATHER of the computed gene- and geneset-specific landscapes defined over the input tissue 

space. 

Constructing Gene Expression Landscape by Kriging 
Our dataset is defined on a 2-dimensional tissue space, with a specified 

coordinate system. We discretized this space using an evenly spaced grid of 
size 80 × 80, i.e., 6400 unique point locations over a rectangular area cover-
ing 50 units below (above) the minimum (maximum) values of x and y coor-
dinates of the cells in our dataset.  

In this study, the geostatistical method of Ordinary Kriging (OK) was 
used for interpolating the expression value of each gene 𝑔𝑔 at each grid-point 
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𝑝𝑝 based on the best linear unbiased prediction (blup) using a weighted aver-
age expression of 𝑔𝑔 in the cells that lie in a given neighborhood of 𝑝𝑝. The 
basic model for the OK predictor (Waller and Gotway 2004) of the expression 
𝑍𝑍(𝑔𝑔, 𝑠𝑠0) of 𝑔𝑔 at a location 𝑠𝑠0 in the given tissue space is computed as  

𝑍̂𝑍(𝑔𝑔, 𝑠𝑠0) =  � 𝜆𝜆𝑔𝑔,𝑖𝑖𝑍𝑍(𝑔𝑔, 𝑠𝑠𝑖𝑖)
𝑁𝑁𝑔𝑔

𝑖𝑖=1
 

where is the measured expression value at the location 𝑠𝑠𝑖𝑖 of cell 𝑖𝑖, 𝜆𝜆𝑔𝑔,𝑖𝑖 
is the weight attributed to the measured expression of 𝑔𝑔 at location 𝑠𝑠𝑖𝑖, and 
𝑁𝑁𝑔𝑔 is the number of available single cell measurements of the expression of 
𝑔𝑔. For OK, we assume stationary 𝑍𝑍(𝑔𝑔,⋅) and a known semivariogram (of 𝑔𝑔). 
The kriging weights that determine the contributions of the measurements 
are defined by an empirical semivariogram function that describes the spatial 
dependence among the single cell expression values of 𝑔𝑔 in terms of inter-
cellular distance (53). Typically, such contribution to the kriged expression 
value at 𝑠𝑠0 decrease for a cell 𝑠𝑠𝑖𝑖  as it gets farther from 𝑠𝑠0. GATHER also 
computes the kriging standard error (71) at the same location 𝑠𝑠0 which gives 
a measure of the uncertainty of the prediction of 𝑍𝑍(𝑔𝑔, 𝑠𝑠0). Thus, GATHER 
constructs gene-specific, continuous transcriptomic landscapes, along with 
the maps of the corresponding standard errors, which could be visualized for 
each gene separately (or as spatially combined for a given geneset) an exam-
ple of which is shown in Fig. 1.  

Test of Spatial Differential Expression of Genes 
Our platform allows us to identify a spatial phenotype in terms of dif-

ferential expression one or more “marker” genes that is known to character-
ize the phenotype. This allows us to demarcate and map the regions in the 
tissue space where the phenotype is significant. To map the co-occurrence of 
more than one phenotype, distinct colors were used. Further, the presence of 
these spatial phenotypes could serve as specific contexts within which certain 
genes of interest may show differential expression. Indeed, we developed 
methods for identifying such genes as well as measuring contextual enrich-
ment of genesets and curated molecular pathways.   

Differentially expressed genes were detected using the semi-parametric 
2-Wasserstein distance test for single cell data (55). In this study, the test was 
applied in a spatially contextualized manner using two different approaches. 
In our first approach, we identified and mapped the significance of local ex-
pression of a given gene at any point of the tissue space, which is systemati-
cally discretized by a well-defined grid (see above). For this purpose, we 
begin by grouping the cells that are local to a given location and distinguish 
them from the group of nonlocal cells that are distant from this location. At 
each point 𝑝𝑝 of the grid, we defined a neighborhood 𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝, 𝑟𝑟) centered at 
𝑝𝑝 based on a circle of radius 𝑟𝑟. The value of 𝑟𝑟 is chosen to be the 25th per-
centile of all pairwise distances between the cells, thus ensuring proximity 
among the cells that lie in 𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝, 𝑟𝑟). The cells that lie in 𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝, 𝑟𝑟) are called 
“local”, and the rest are termed “non-local”. 

In our second approach, the entire tissue space was partitioned into re-
gions according to different levels of enrichment of a phenotype of interest, 
e.g., characterized by expression of markers of cancer associated fibroblasts 
(CAF). The regions of the landscape are thus marked by a pre-determined 𝑙𝑙 
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(=3) discrete levels of the selected phenotype: high (CAF 𝑧𝑧 > 1), mid (CAF 
0.5 < 𝑧𝑧 ≤ 1) and low (CAF 𝑧𝑧 ≤ 0.5). These regions provide the graded spatial 
contexts in which certain genes may express. Thus, we used the 2-Wasser-
stein distance method to compare the single-cell level expression of each gene 
across successive levels of the phenotype, i.e., across (a) the high and the me-
dium regions; and (b) the medium and the low regions. For a selected phe-
notype, the significantly differentially expressed genes are identified by per-
mutation testing (with 100 repetitions) at a pre-determined FDR adjusted q-
value level (say, 0.2) (72).  

Spatial Analysis of Hallmark Genesets of Cancer  
Geneset enrichment landscape construction: 

Let 𝐿𝐿 be the list of genes whose expressions are measured (and thus 
available as spatial z-scores) in the present study.  

For a geneset 𝑆𝑆, we computed the spatial enrichment z-score, 𝑆𝑆𝑆𝑆𝑆𝑆(𝑆𝑆, 𝑝𝑝), 
at each grid point 𝑝𝑝 using the Stouffer’s sum of the spatial z-scores, 𝑆𝑆𝑆𝑆(𝑔𝑔, 𝑝𝑝), 
of expressions of the genes in 𝑆𝑆 and 𝐿𝐿 at 𝑝𝑝 as follows:   

𝑆𝑆𝑆𝑆𝑆𝑆(𝑆𝑆, 𝑝𝑝) =  ∑ 𝑆𝑆𝑆𝑆(𝑔𝑔, 𝑝𝑝)𝑔𝑔𝑔𝑔𝑔𝑔∩𝐿𝐿 /√|𝑆𝑆 ∩ 𝐿𝐿|. 
This allows us to construct a geneset enrichment landscape, which ex-

tends the idea of single gene expression landscape.  

Cancer Hallmark Geneset Enrichment: 
We downloaded from the Molecular Signatures Database (MSigDB) 

genesets (Table S1) that represent commonly known “hallmarks” of cancer 
(73). To ensure their relevance as well as non-redundancy, we selected 8 of 
those hallmark genesets that have at least 25% overlap with the expressed 
genes (see above text on preprocessing) but mutual geneset overlap of less 
than 10%.  

Spatial Entropy of a Tumor Sample 
Calculating phenotypic diversity: 

Given our interest to characterize the heterogeneity of a given tumor 
sample in terms of the spatial phenotypes therein, Batty’s entropy measure 
was computed to evaluate the distribution of a candidate phenotype over the 
given tissue area by allowing for partitioning the same into subareas of dif-
ferent sizes and shapes. Let a tissue area of size 𝐴𝐴 partitioned into G subareas 
of size 𝐴𝐴𝑔𝑔,𝑔𝑔 = 1, …𝐺𝐺 . If a phenotype of interest 𝐹𝐹  occurs in 𝐴𝐴, and in 𝐴𝐴𝑔𝑔 
with probability 𝑝𝑝𝑔𝑔, then ∑ 𝑝𝑝𝑔𝑔 = 1𝐺𝐺

𝑔𝑔=1 . The phenotype intensity in 𝐴𝐴𝑔𝑔is given 
by 𝜆𝜆𝑔𝑔 =  𝑝𝑝𝑔𝑔 𝐴𝐴𝑔𝑔⁄ .  

Batty’s spatial entropy for phenotype 𝐹𝐹 occurring over a tissue area 𝐴𝐴 
that is randomly partitioned into 𝐺𝐺 subareas is defined as:  

𝐻𝐻𝐵𝐵(𝐹𝐹) = ∑ 𝑝𝑝𝑔𝑔log (1 𝜆𝜆𝑔𝑔⁄ )𝐺𝐺
𝑔𝑔=1 .  

The maximum value of spatial entropy is log(𝐴𝐴) when 𝐹𝐹 occurs with 
equal intensity (𝜆𝜆𝑔𝑔 = 1 𝐴𝐴⁄ ) over all 𝐺𝐺 subareas partitioning the tissue area of 
size 𝐴𝐴. The spatial entropy attains a minimum value of log (𝐴𝐴𝑔𝑔∗) when the 
entire 𝐹𝐹 is concentrated in the smallest subarea of size 𝐴𝐴𝑔𝑔∗. Since the location 
and size of such subareas are unknown for the occurrence of an arbitrary 
phenotype, we randomly partitioned the landscape of the tumor for compu-
ting Batty’s entropy over different values of 𝐺𝐺 (𝐺𝐺 = 2,3 … 12), and repeated 
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the partitioning process (𝑁𝑁 = 100 times for each value of 𝐺𝐺) to output the 
median 𝐻𝐻𝐵𝐵(𝐹𝐹) as the final measure of spatial heterogeneity of 𝐹𝐹 over 𝐴𝐴. 

 

Heterogeneity of geneset enrichment in a phenotypic context: 
Batty’s spatial entropy of a variable 𝑋𝑋 can be extended to a co-occur-

rence based entropy measure defined using a new categorical variable Z that 
takes values in the form of ordered pairs (𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) of 𝑋𝑋 that is considered co-
occurrent if their distance is less than or equal to a pre-determined threshold 
𝑑𝑑. Given 𝐼𝐼 categories of 𝑋𝑋, there are 𝐼𝐼2categories of 𝑍𝑍. As noted by Altieri et 
al. (2018) (74), an entropy measure based on Z is useful when the variable of 
interest has multiple categories and the aim is to understand how a spatial 
context (e.g., a local phenotype’s enrichment in a tumor) may influence its 
neighborhood outcomes (say, a selected molecular pathway’s expression). 
The discretized levels of a given (phenotype, geneset) pair (a realization of 
𝑍𝑍) at the observed locations could be viewed as multicategorical point data 
and their co-occurrence based Leibovici’s spatial entropy (Leibovici et al. 
2009) (75) is defined as follows: 

𝐻𝐻𝐿𝐿(𝑍𝑍|𝑑𝑑) = ∑ 𝑝𝑝(𝑧𝑧𝑟𝑟|𝑑𝑑)𝐼𝐼2
𝑟𝑟=1 log(1 𝑝𝑝(𝑧𝑧𝑟𝑟|𝑑𝑑)⁄ ). 

 

R libraries 
All statistical analyses were performed in R version 4.0.4. We used the 

Seurat package (76) for data preparation, bestNormalize (77) for normalization; 
automap (78) for making a standard grid and applying Ordinary Kriging; 
waddR (79) to detect differentially expressed genes based on the 2-Wasser-
stein distance test and SpatEntropy package (74) for Batty’s and Leibovici’s 
spatial entropy calculations. The 3-dimensional and interactive plots were 
generated with plot3D and plotly packages (80, 81). 

Results 
The present study yields a new computational tool, GATHER, for geo-

statistical modeling and heterogeneity analysis of molecular landscapes in 
tumors and tissue samples. The different modules of GATHER are outlined 
in Fig. 1. These include (1) gene-specific expression landscape construction 
via kriging based geostatistical prediction, (2) estimating a measure of uncer-
tainty associated with the kriging predictions, (3) computing the spatial gen-
eset enrichment score, (4) identifying genes with spatial differential expres-
sion at selected phenotypic contexts, (5) identifying genes with spatial differ-
ential expression at selected locations, (6) computing Batty’s spatial entropy 
to measure phenotypic heterogeneity, and (7) computing Leibovici’s co-oc-
currence based entropy to quantify the heterogeneity of a selected geneset’s 
enrichment in a given phenotypic context. Furthermore, GATHER provides 
tools for insightful visualization such as 2D and 3D normalized gene expres-
sion landscapes and the corresponding maps of standard errors, spatial en-
richment surface of a geneset as well as spatial entropy associated diagrams. 

We begin with an illustration of the gene-specific expression landscape 
construction via kriging based geostatistical prediction. In a past study of 100 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 September 2022                   doi:10.20944/preprints202209.0388.v1

https://doi.org/10.20944/preprints202209.0388.v1


9 
 

breast tumors to understand the complexity of intratumor genetic heteroge-
neity, driver mutations were observed in several cancer genes (82). For in-
stance, TBX3, which encodes for the transcription factor T-box 3 (TBX3), was 
found to be overexpressed in different types of carcinomas, including breast 
cancer. TBX3, a mostly cytoplasmic protein in both normal and breast cancer 
tissues, is significantly overexpressed in the latter, and thus, could serve as a 
potential diagnostic marker of breast cancer cells (83). Yet, TBX3 localizes dif-
ferently depending on its role and the cell cycle phase (84). To gain insights 
into the possible spatial distribution, we used GATHER to construct the ex-
pression landscape of TBX3, which, along with the corresponding standard 
errors of the local kriging predictions, are mapped and shown in Fig. 2.  

 
 

 
 

C 
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Fig. 2. Gene expression landscape generated by geostatistical modeling. Taking the gene TBX3 as an example, plots 
(A) and (B) show kriging predicted value 𝑍𝑍 of gene expression at each point of the tissue space and the associated 
standard error respectively. Plot (C) is a snapshot of the interactive 3D visualization of the plot (A). The x- and y-
dimensions define the tissue space while the z-dimension in plot (C) represents the kriging predicted expression. 

Notably, the geostatistical modeling based transcriptomic landscapes 
could also be viewed using the 3D interactive visualization tool of GATHER 
(Fig. 2C). Using a grid of evenly spaced points defined on the input tissue 
space, the 𝑧𝑧-dimension depicts the level of predicted gene expression at each 
point (x,y) of the synthesized landscape. The interactive 3D visualization tool 
could be useful for operations such as zooming in to identify and localize 
regions of phenotypic interest (say, to molecular oncologic pathologists), 
alignment of the landscapes of different genes for comparing their spatial ex-
pression signatures, demarcate those areas that reveal gene expression above 
(or below) a certain level for focused molecular analysis (e.g., test for specific 
hallmarks of cancer), and characterize overall intratumor diversity. The in-
teractive version of all the 3D plots are available at the Landscape-Project 
GitHub webpage [https://mortezahaji.github.io/Landscape-Project/]. 

GATHER analyzes spatial differential gene expression in single cell tran-
scriptomic data using 2 different approaches. An illustrative example is pro-
vided using a selected set of 5 CAF phenotypes, which were represented by 
the expression of the corresponding marker genes (the respective phenotypes 
are noted in parentheses): CXCL12 (CAF-S1), FBLN1 (mCAFs), C3 (inflamma-
tory CAFs), S100A4 (sCAFs), and COL11A1, which is a fibroblast-specific “re-
markable biomarker” that codes for collagen 11-α1 and shows expression 
gain in CAFs (85). For details on the CAF markers, see reviews, e.g., (86, 87). 

In the first approach, at each point 𝑝𝑝 of the tumor space, GATHER com-
putes the differential expression of each of the above CAF genes between 2 
sets of samples drawn from spatial neighborhoods that are (i) near to 𝑝𝑝 ver-
sus (ii) distant from 𝑝𝑝 using a semi-parametric 2-sample test for single cell 
data based on the 2-Wasserstein distance (55). It outputs p-values obtained 
from the test, which are then adjusted for False Discovery Rate (FDR) by the 
Benjamini-Hochberg method. This allows GATHER to map the locally signif-
icant CAF phenotypes Fig. 3 shows a 3D snapshot of the differentially ex-
pressed CAF genes at each point. For the list of all differentially expressed 
genes based on the above approach, see Table 1.  

Table 1: Differentially expressed genes in five different CAF phenotypic contexts and their spatial entropy. 

CAF Marker 
High CAF 

Z≥1 
N 

Medium CAF 
0.5<Z<1 

N 

Low CAF 
Z≤0.5 

N 

The top 20 most common expressed genes in 100-times permutation at 
q<0.2 (N=50 random samples for all groups) Median of Batty's 

Spatial Entropy  High CAF Vs. Medium CAF Medium CAF Vs. Low CAF 

COL11A1 190 3,600 535 

MMP11, COL1A2, FN1, DCN, S100A6, 
CTSK, COL3A1, COL1A1, TIMP3, 

LUM, SDC1, B2M, S100A4, COL10A1, 
LGALS1, COL5A2, SERPINF1, SPARC, 

HLA.A, CTSD 

COL1A2, ASPN, DCN, SDC1, 
LGALS1, COL1A1, SPARC, 
TAGLN, HTRA3, POSTN, 
COL5A1, PRSS23, AEBP1, 
CALD1, ACTA2, COL5A2, 

PTMS, FN1, COL6A2, FSTL1 

0.983 

S100A4 223 3,600 502 

LGALS1, S100A6, COL3A1, ACTB, 
HTRA1, S100A10, TAGLN, COL6A3, 

CD74, CRABP2, POSTN, TMSB10, 
HLA.DRB1, PALLD, CLU, SPARC, 
COL1A1, PTMS, COL6A1, SDC1 

FSTL1, SERPING1, COL3A1, 
COL6A2, FTL, ISLR, LGALS1, 
S100A6, SPARC, TAGLN, C1S, 
CILP, COL1A1, COL6A1, DCN, 
FLNA, HLA.DPA1, HLA.DPB1, 

PCOLCE, PTMS 

0.982 

CXCL12 141 3,553 631 COL6A2, DCN, MMP2, HSPG2, NBL1, 
SERPING1, SERPINF1, COL6A1, ISLR, 

ACTB, ASPN, BGN, CALD1, 
CILP, COL1A1, COL3A1, 0.983 
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AEBP1, ASPN, SPARC, LUM, COL5A2, 
THY1, LRP1, COL1A1, 

MMP11, COL3A1, RARRES2 

COL5A1, COL6A2, DCN, FLNA, 
FN1, FSTL1, HTRA3, LGALS1, 
LUM, S100A6, SDC1, SPARC, 

TAGLN 

C3 206 3,501 618 

HLA.DRA, FTL, CYBA, HLA.DPB1, 
APOE, HLA.DPA1, CD74, A2M, RPL13, 

IFI27, LAPTM5, TYROBP, 
CTSB, VIM, ACTB, HLA.E, SERPING1, 

HLA.DRB1, PSAP, TMSB10 

APOE, COL5A1, FSTL1, SPARC, 
BGN, COL5A2, GPRC5A, PRCP, 

AP2M1, EDF1, HLA.DPA1, 
PITX1, ARHGAP1, COL6A1, 
COL6A2, CYB561, ATP5IF1, 

CD81, COL1A1, COL1A2 

0.983 

FBLN1 288 3,449 588 

LUM, COL3A1, COL6A2, FTL, C3, 
IFI27, COL1A1, COL1A2, MMP2, 

SERPING1, COL6A1, LRP1, SERPINF1, 
COL6A3, LGALS1, SPARC, FN1, 

ACTB, HTRA1, IFITM3 

COL3A1, DCN, SPARC, CILP, 
COL5A1, FN1, LGALS1, MYL9, 
ACTB, ASPN, CALD1, COL1A1, 

COL6A2, MMP11, POSTN, 
S100A6, TAGLN, TPM4, 

COL1A2, COL6A1 

0.982 

 

 
 

 

Fig. 3 A 3D plot of gene-specific continuous transcriptomic landscapes of marker genes of different CAF phenotypes. 
The name of each CAF gene appears over its plot. The x- and y-dimensions define the tissue space while the z-

dimension represents the kriging predicted expression value (𝑍𝑍) at each point of the tissue space. 

In the second approach, GATHER partitions the tissue space into regions 
according to different levels of enrichment of a phenotype of interest, and 
identifies all genes that are expressed differentially across these regions. The 
regions of the landscape are characterized by 𝑙𝑙 = 3 discrete levels of each 
CAF phenotype: high (CAF 𝑧𝑧 > 1), mid (CAF 0.5 < 𝑧𝑧 ≤ 1) and low (CAF 
𝑧𝑧 ≤ 0.5). The levels provide graded spatial contexts in which certain genes 
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may express differentially. Again, we used the 2-Wasserstein distance 
method to identify the differentially expressed genes across (a) the high CAF 
versus the medium CAF regions; and (b) the medium CAF versus the low 
CAF regions. Table 2 lists the genes that were thus found to be significantly 
differentially expressed across the spatial levels of CAF phenotypes. 

Table 2: The hallmark genesets of cancer selected for the study. 

Gene sets 
Number of 

genes in 
geneset 

Overlap with 
the gene list of 
the study (%) 

Overlap among the 8 hallmark gene sets 

1 2 3 4 5 6 7 8 

1 
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSI

TION 201 81 (40%) - 2% <1% <1% 0 0 <1% <1% 

2 HALLMARK_ANGIOGENESIS 37 12 (32%) 2% - 0 0 0 0 0 0 
3 HALLMARK_ESTROGEN_RESPONSE_EARLY 201 64 (32%) <1% 0 - 8% <1% 0 <1% <1% 
4 HALLMARK_ESTROGEN_RESPONSE_LATE 201 62 (31%) 0 0 8% - 0 0 <1% 1% 
5 HALLMARK_DNA_REPAIR 151 42 (28%) 0 0 <1% 0 - 0 0 <1% 
6 HALLMARK_PI3K_AKT_MTOR_SIGNALING 106 28 (26%) 0 0 0 0 0 - 0 <1% 
7 HALLMARK_FATTY_ACID_METABOLISM 159 41 (26%) <1% 0 <1% <1% 0 0 - <1% 
8 HALLMARK_P53_PATHWAY 201 50 (25%) <1% 0 <1% 1% <1% <1% <1% - 

 
Furthermore, we used GATHER to compute the spatial enrichment z-

scores {𝑆𝑆𝑆𝑆𝑆𝑆(𝑆𝑆, 𝑝𝑝)|𝑆𝑆𝑆𝑆𝑆𝑆} for a collection 𝐶𝐶 of hallmark genesets of cancer as 
shown in Table 2. For the given tumor, the landscapes defined by the enrich-
ment scores of each selected hallmark of cancer are described in 3D in Fig. 4. 
In addition, the pointwise dominant hallmark, i.e., the geneset in 𝐶𝐶 having 
the highest spatial enrichment z-score at any given point, was determined 
and their distribution is depicted in 3D in Fig. 5.  

 
 
 

Fig. 4. A 3D snapshot of the spatial enrichment z-scores for different hallmark genesets of cancer. The x- and y-
dimensions define the tissue space while the z-dimension represents the spatial enrichment z-score (𝑆𝑆𝑆𝑆𝑆𝑆) at a given 

point. The name of each hallmark geneset appears over its plot. 
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Fig. 5. A 3D snapshot of the pointwise dominant hallmark genesets of cancer. The x- and y-dimensions define the 
tissue space while the z-dimension represents the maximum spatial enrichment z-score (𝑆𝑆𝑆𝑆𝑆𝑆) at a given point among 

the selected hallmarks. One such point where PI3K_AKT_MTOR hallmark is dominant is shown as an example. 

GATHER computes Batty’s spatial entropy index with variable parti-
tioning of the tissue space to output a quantitative measure of ITH. The tissue 
space is randomly partitioned into a fixed number of (𝐺𝐺) polygons multiple 
(𝑁𝑁 = 100) times. For each iteration, the spatial entropy is computed, which 
results in a barplot for each choice of 𝐺𝐺. This is shown in Fig. 6 for the spatial 
entropy of the expression of the gene TBX3 in the given tumor sample. While 
the median spatial entropy tends to decrease as the heterogeneity is likely to 
reduce within smaller polygons generated by higher values of 𝐺𝐺, we select 
the first value of 𝐺𝐺 for which the median entropy appears to flatten out as 
the optimal number of partitions. For the present example, the partition into 
𝐺𝐺∗ = 7 polygons is selected, and thus, GATHER outputs Batty’s spatial en-
tropy measure 𝐻𝐻𝐵𝐵(TBX3) as 0.942. 
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Fig. 6. Batty’s spatial entropy as a measure of intratumor heterogeneity of gene (TBX3) expression. For different 
number of partitions (x-axis) of the tissue space, 𝑁𝑁 = 100 spatial entropy values are calculated (y-axis) and shown 

with a boxplot. The trend of the median entropy values is shown with a black line. 

Importantly, spatial heterogeneity of molecular signatures may be more 
insightful in the presence of a particular phenotypic context in a given tumor. 
To capture this with a quantitative measure, GATHER also computes spatial 
co-occurrence based Leibovici’s entropy measure.  It allows the user to de-
fine phenotypic contexts within which selected genes or genesets may ex-
press significant expression. We illustrate this using 6 contexts as defined by 
5 CAF phenotypes (as described above) and a 6th context (namely, “None”) 
where none of those phenotypes occur significantly. We test their co-occur-
rence with the enrichment of the selected hallmarks of cancer. 

At each point 𝑝𝑝 of the tissue space, the thresholds for the expression 
𝑍𝑍(𝐶𝐶, 𝑝𝑝) of the dominant CAF phenotype 𝐶𝐶 as well as 𝑆𝑆𝑆𝑆𝑆𝑆(𝐺𝐺, 𝑝𝑝) of the hall-
mark geneset 𝐺𝐺 were set at 0.5. Taking combinations of the different CAF 
marker genes and cancer hallmark genesets, the spatial heterogeneity of their 
co-occurrence is mapped. At each point, the combination with the most dom-
inant phenotype is depicted. The map in Fig. 7 uses the following colors to 
represent the (CAF, hallmark) pairs:  red (FBlN1, PI3K_AKT_MTOR), blue 
(C3, Angiogenesis), purple (COL11A1, PI3K_AKT_MTOR), and grey (no sig-
nificant CAF phenotype). The regional diversity of co-occurrence is clearly 
visible, which could be further analyzed by selecting other combinations with 
the platform’s interactive 3D visualization tool. 
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Fig 7: The co-occurrence based Leibovici’s spatial entropy index. Taking combinations of the different CAF 
phenotypic contexts and cancer hallmark genesets, the spatial heterogeneity of their co-occurrence is described. At 
each point, the combination with the most dominant phenotype is depicted. The colors used to represent the (CAF 
marker, Hallmark geneset) pairs are red (FBlN1, PI3K_AKT_MTOR), blue (C3, Angiogenesis), purple (COL11A1, 

PI3K_AKT_MTOR), and grey (no significant CAF phenotype). 

Discussion 
In the 19th century, Rudolph Virchow, the “father of modern pathology”, 

had observed pleomorphism of cancer cells within tumors.  In the 1970s, 
G.H. Heppner, I.J. Fidler and others showed the existence of distinct subpop-
ulations of cancer cells within tumors, which differed in terms of their tumor-
igenicity, their resistance to treatment, and their ability to metastasize. ITH 
has been shown to be associated with poor outcome and decreased response 
to cancer treatment multiple human cancer types implying a universal role 
in therapeutic resistance (88, 89). Yet, quantitative assessment of cell-to-cell 
variation in the expression of a therapeutic target at the protein level is still a 
challenging task, which partly explains why explicit measures of ITH are not 
yet commonly used for guiding clinical decisions.  

As noted above, GATHER has many practical advantages. The kriging 
estimates are based on a geostatistical model that allows GATHER to predict 
the expression value of a gene at any point of the transcriptomic landscape, 
which allows it to be represented as a surface that is both high-resolution and 
continuous. Thus, such landscapes can be visualized by an isopleth or con-
tour map. Importantly, GATHER also computes and maps the standard er-
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rors of the gene-specific kriging estimates. Further, as the gene-specific land-
scapes are synthesized over a common grid, they can be aligned easily and 
systematically combined to produce surfaces that can depict spatial enrich-
ment of genesets or pathways of interest. Moreover, a quantitative measure 
of error associated with the kriging predictions is available as a spatial meas-
ure of quality – and mappable at every location – of the transcriptomic land-
scape. As yet another advantage, since the kriging prediction at any point is 
based on every available observation in any given neighborhood, the synthe-
sis of a gene’s expression landscape by GATHER is not affected in general by 
the missing value problem that commonly afflicts single cell RNAseq data. 

Invasive and metastatic tumors often have thorough tissue disorganiza-
tion leading to a microenvironment defined by cellular and paracrine inter-
actions that allow for selection and diversification of certain phenotypes that 
are not observed otherwise. For instance, blood and lymphatic vasculature in 
tumors are disorganized with significant functional, spatial, and temporal 
heterogeneity (90, 91). The resulting variability in nutrients, oxygenation, 
growth factors, and pH (92) can lead to various abnormal contextual signals 
that are absent in healthy normal tissues. While spatial phenotypic contexts 
have been challenging to capture precisely with traditional approaches, high-
resolution landscapes constructed by GATHER allow easy demarcation of 
such regions with the expression levels – above a selected cutoff – of the often 
well-characterized markers of these contexts.  

In the present study, we used different CAF phenotypes as illustrative 
examples. The significance of such phenotypes could be understood from 
several experimental models of breast cancer and human tumors that reveal 
spatial separation of the CAF subtypes attributable to different origins, in-
cluding the peri-vascular niche, the mammary fat pad and the transformed 
epithelium. Indeed, not only do the cancer cells and CAFs share location-spe-
cific signaling pathways, the gene expression profiles for each CAF subtype 
indicate distinctive functional programs and hold independent prognostic 
capability in clinical cohorts by association to metastatic disease. GATHER is 
able to effectively identify at single cell level the genes with significant differ-
ential expression across the diverse spatial contexts as defined by the com-
plex phenotypes that occur in heterogeneous tumor microenvironments. 

Notably, an innovative quantitative feature of GATHER is its use of spa-
tial entropy measures to evaluate ITH in a given tumor sample. It computed 
Batty’s entropy to evaluate the distribution of a particular phenotype, as de-
termined by the expression of the corresponding markers, over a given tissue 
area. Furthermore, as a tissue area could provide the locations for more than 
one phenotypes or the expressions of multiple markers of a complex pheno-
type, GATHER also computes a co-occurrence based spatial entropy measure 
due to Leibovici. The randomization over the tissue space allows the result-
ing spatial entropy to yield a robust measure of ITH. 

Next-generation genetically engineered mouse models can more accu-
rately mimic human cancers (93), new multiplex immunostaining techniques, 
digital pathology, and specialized computational platforms are able to pro-
vide more accurate quantitative assessment of ITH. New approaches such as 
MIBI (94) and cycIF (95) conduct assays on intact tissue samples thereby 
maintaining tumor topology and cellular contexts. New computational ap-
proaches have also been developed to use next-generation sequencing data 
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to assess ITH and infer clonal evolution of a tumor. Although such techniques 
could be used for identifying the different subpopulations of cells in a tu-
mor’s microenvironment using a “parts-list” approach, it is much harder to 
clearly dissect the complex phenotypes of tumor cells in terms of their corre-
sponding spatial contexts. Towards this, GATHER provides an efficient so-
lution by substituting the approach of clustering discrete cells each with their 
stochastically variable gene expressions with constructing continuous tran-
scriptomic landscapes via a long-established geostatistical modeling ap-
proach.  

We note that our present work has some limitations. The assumption of 
stationary mean by Ordinary Kriging may not always hold in real data, alt-
hough the method is known to yield relatively unbiased estimates despite 
non-stationarity (96). Alternatively, other approaches such as Universal 
Kriging may be implemented in future work. GATHER does not explicitly 
group the cell subtypes as clusters like some of the other scRNAseq analysis 
tools, although the expression landscapes of known markers for different cell 
subtypes could be used to demarcate the regions that are enriched above a 
certain threshold and thus yield the cells therein. In our earlier papers, we 
have developed a Linear Combination Test (LCT) that can rigorously test for 
enrichment of expression of genes in a pathway against multivariate, contin-
uous phenotypes of samples as opposed to univariate, binary outcomes used 
for traditional geneset analysis (97-99). Recently, we extended LCT to con-
duct single cell geneset expression analysis but without using spatial pheno-
types (100). In our future work, we will extend LCT to test the enrichment of 
pathways across complex spatial phenotypes based on the capability of 
GATHER to analyze tissue heterogeneity in a given sample.    
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