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Simple Summary: Cardiorespiratory fitness as crucial prerequisite for sustained work ability de-
clines with aging, as does the functionality of the immune system, the latter process termed im-
munosenescence or immune age. We approximated a comprehensive immunosenescence bi-
omarker by just a few flow-cytometry-based parameters using blood samples. Applied to measure-
ments with 597 participants from the Dortmund Vital Study, we could show that immune age, but 
not chronological age, together with obesity and physical inactivity, independently from sex, were 
significant predictors for the probability of low cardiorespiratory fitness. 

Abstract: Cardiorespiratory fitness (CRF) is essential for sustained work ability in good health, but 
declines with aging as does the functionality of the immune system, the latter process commonly 
referred to as immunosenescence. This study aimed to compare the capacity of immunosenescence 
biomarkers with chronological age for predicting low CRF in a cross-sectional sample recruited 
from the regional working population. CRF was determined by submaximal bicycle ergometer test-
ing in a cross-sectional sample of 597 volunteers aged 20–70 years from the ’Dortmund Vital Study’ 
(DVS, ClinicalTrials.gov Identifier: NCT05155397). Low CRF was scored, if the ergometer test was 
not completed due to medical reasons or if the power output projected to a heart rate of 130 bpm 
divided by body mass was below sex-specific reference values of 1.25 W/kg for females and 1.5 
W/kg for males, respectively. In addition to established biomarkers of immunosenescence, we cali-
brated a comprehensive metric of immune age to our data and compared its predictive capacity for 
low CRF to chronological age while adjusting our analysis for the influence of sex, obesity, and level 
of regular physical activity by applying univariate and multiple logistic regression. While obesity, 
low physical activity, chronological and immune age were all associated with increased probability 
for low CRF in univariate analyses, multiple logistic regression revealed that obesity and physical 
activity together with immune age, but not chronological age, were statistically significant predic-
tors of low CRF outcome. Sex was non-significant due to the applied sex-specific reference values. 
These results demonstrate that biological age assessed by our immunological metric can outperform 
chronological age as a predictor for CRF and indicate a potential role for immunosenescence in ex-
plaining the inter-individual variability of the age-related decline in cardiorespiratory fitness. 
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1. Introduction 
Cardiorespiratory fitness (CRF) prevents from cardiovascular disease and premature 

mortality [1-4], and is crucial for sustained work ability in good health [5-9] in both phys-
ically [10,11] and cognitively demanding occupations [12]. CRF exhibits an interdepend-
ent relationship with physical activity and the immune system [8,13-15], where physical 
activity and exercise help improving CRF, inhibiting inflammatory responses [16], thus 
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strengthening and maintaining the functioning of the immune system during aging 
[17,18]. Low levels of CRF appear frequently together with obesity and aging in individ-
uals in western societies, elevating health risks [19], while the age-related CRF decline [20] 
profoundly varies in different groups defined by individual characteristics like sex, body 
composition, obesity, and health status [21,22].  

Hence, the assessment of CRF forms an integral part of the ongoing ’Dortmund Vital 
Study’ (DVS, ClinicalTrials.gov Identifier: NCT05155397), a long-term, combined cross-
sectional and longitudinal interdisciplinary study using as study sample a cohort of 600 
individuals recruited from the regional working population. The DVS aims at investigat-
ing the relationship of aging, working conditions, genetic makeup, stress, metabolic func-
tions, cardiovascular system, immune system, and mental performance over the lifespan 
with an emphasis on healthy working adults. While companion papers describing the de-
tailed study protocol [23] and broad analyses of sociodemographic, biological and envi-
ronmental influences on lifespan work ability [24] are available elsewhere, this report will 
focus on factors contributing to the inter-individual variability in the age-related decline 
of CRF.  

Recently, metrics of ‘biological age’ have gained attention or even outperformed 
chronological age [25,26] as predictors for age-related mortality, health and disease [27-
29], the success of vaccination in the elderly population [30], or declining brain function 
[31]. Likewise, the concept of ’immune age’ or ‘immunosenescence’ aims at quantifying, 
preferably by a one-dimensional marker, the decay in functions of the immune system 
with individually varying progression in the elderly [32,33], which does not necessarily 
parallel chronological age [34,35].  

Several immunosenescence biomarkers have been proposed, like memory/naïve sub-
populations of CD4+ and CD8+ T-cells, the CD4/CD8-ratio, or the number of CD28– T-cells 
with application in predicting age-related morbidity and mortality [36-44]. More recently, 
these biomarkers were complemented by attempts to define composite scores aiming at a 
comprehensive assessment of the aging immune system [35,45,46]. 

The immune age metric IMM-AGE [35] was recently built from longitudinally fol-
lowing the immune status of 135 healthy volunteers for up to nine years employing multi-
omics techniques to a high dimensional set of parameters, comprising blood cell pheno-
types, functional tests with stimulated cells and gene-expression analyses. Thus, IMM-
AGE has been widely recognized as a cutting-edge biomarker comprehensively covering 
the processes related to immunosenescence [25,34,47-53]. However, applications to epide-
miological and clinical settings are scarce, because a one-to-one implementation of the 
published procedure would not only demand advanced and extensive analytics, but also 
require to mimic the longitudinal sampling scheme, as illustrated by corresponding com-
plaints in a recent study concerning SARS-CoV-2 [54]. Even in the original study [35], 
IMM-AGE had to be approximated by a compatible set of gene expression parameters for 
demonstrating its applicability to cardiovascular health data from the Framingham co-
hort. 

In order to apply such advanced immunosenescence biomarkers for investigating the 
relation of cardiorespiratory fitness with the aging immune system in the DVS, we present 
a simplified method to determine a novel metric for immune age using a limited set of 
flow cytometry-based immune parameters. To do so, we scrutinized the immune data 
published with the original IMM-AGE study [35] for compatibility with the immune pa-
rameters measured in the DVS. For calibrating the comprehensive IMM-AGE metric to 
our data, we used this set of compatible variables to determine an approximate score for 
application as predictor within the DVS. In order to distinguish the novel marker from the 
original metric, we termed the approximation IMMAX (IMMune Age indeX). The present 
analysis compares the capacity of IMMAX with chronological age for predicting low CRF 
in the DVS when adjusting for sex, obesity and physical activity. 

2. Materials and Methods 
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2.1. DVS sample 
The DVS (ClinicalTrials.gov Identifier: NCT05155397) is conducted with approval 

from the local Ethics Committee of the IfADo [23]. It is designed as combined cross-sec-
tional and longitudinal study comprising a baseline and up to three follow-up examina-
tions separated by five-year intervals with a projected completion of data collection by 
end of 2035. Here, we analyzed cross-sectional data of the baseline examinations per-
formed between 2016 and 2021 consisting of observations from 368 females and 229 males 
aged 20–70 years. From measured body mass (in kg) and height (in m), body composition 
(obesity) was assessed by the body-mass index (BMI = mass/height2) and scored as normal 
for BMI <25 kg/m2, as overweight for 25 kg/m2 ≤ BMI ≤ 30 kg/m2 and as obese for 
BMI > 30 kg/m2, respectively [55]. Regular physical activity was assessed by the Lüden-
scheid Physical Activity Questionnaire [56], an instrument with well-proven utility in re-
cent studies [57-59]. This questionnaire consists of 13 items about physical activity during 
work and leisure time, which are summarized into a four-level score with respect to pre-
venting health risks associated with inactivity (1:(too) low, 2:still acceptable, 3:satisfactory, 
4:high). Table 1 presents the DVS sample distribution of individual characteristics to-
gether with covariates and outcomes as described below. 

Table 1. Sample characteristics stratified by sex, and summarized by mean (SD) for continuous data 
and by frequency (percentage) for categorical observations, respectively. 

Characteristic 
Overall 
N = 597 

Females 
N = 368 

Males 
N = 229 

Age (years) 44 (14) 43 (14) 46 (14) 
Body height (m) 1.73 (0.09) 1.68 (0.07) 1.82 (0.07) 
Body mass (kg) 77 (17) 70 (15) 88 (16) 

#missing 3 2 1 
BMI category    

normal 323 (54%) 228 (62%) 95 (42%) 
overweight 181 (30%) 90 (25%) 91 (40%) 
obese 90 (15%) 48 (13%) 42 (18%) 
#missing 3 2 1 

Physical activity score    
low 268 (47%) 181 (51%) 87 (39%) 
still acceptable 174 (30%) 101 (29%) 73 (33%) 
satisfactory 79 (14%) 42 (12%) 37 (17%) 
high 53 (9%) 29 (8%) 24 (11%) 
#missing 23 15 8 

PWC130 (W/kg) 1.61 (0.47) 1.52 (0.42) 1.77 (0.50) 
#missing 92 59 33 

low CRF events 211 (37%) 122 (35%) 89 (40%) 
#missing 25 20 5 

Immunosenescence biomarker    
IMMAX 0.43 (0.12) 0.40 (0.11) 0.47 (0.13) 
log NK/T -1.81 (0.55) -1.91 (0.53) -1.64 (0.54) 
log CD4/CD8 1.31 (0.59) 1.32 (0.55) 1.31 (0.64) 
log CD8 mem/naive 0.06 (1.03) -0.11 (0.94) 0.35 (1.12) 
log CD4 mem/naive 0.57 (0.68) 0.45 (0.64) 0.75 (0.69) 
logit CD8 CD28- -1.26 (0.88) -1.36 (0.83) -1.11 (0.94) 
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Characteristic 
Overall 
N = 597 

Females 
N = 368 

Males 
N = 229 

BMI: body-mass index; PWC130: power output from the physical working capacity 
test on the bicycle ergometer at 130 bpm standardized for body mass; CRF: cardi-
orespiratory fitness; #missing: number of missing observations; IMMAX: approxi-
mation to IMM-AGE metric [35] by principal component regression, termed IM-
Mune Age indeX; NK: %natural killer cells; T: %T cells; CD4: %CD4-positive T cells; 
CD8: %CD8-positive T cells; mem: %memory T cells; naïve: %naïve T cells; CD8 
CD28-: %CD28-negative CD8-positive T cells; log: natural logarithm; logit: transfor-
mation of a percentage (%p) by logit(%p) = log(%p/(100%-%p)) 

2.2. Cardiorespiratory fitness assessment 
CRF was operationalized by the result of the physical working capacity test PWC130 

[60], a submaximal incremental testing procedure on a bicycle ergometer. Following 
standard recommendations [60,61], the participants cycled with a cadence of 60 rpm (rev-
olutions per minute) starting with 25 W required power output, which was increased 
every 2 minutes by 25 W, until the participants’ heart rate as recorded by electrocardiog-
raphy (ECG) exceeded 130 bpm. The PWC130 outcome was defined as the power output 
projected to a heart rate of 130 bpm divided by body mass (in W/kg). PWC130 outcome 
was missing for more than 15% of the observations (Table 1), with only less than one third 
being attributable to technical issues with the equipment or to non-availability of medical 
supervision. The majority of missing observations was associated with non-performing or 
stopping the test prematurely, i.e. before reaching the projected heart rate of 130 bpm due 
to medical reasons, like abnormal ECG recordings, hemodynamic changes, being ex-
hausted or medical contraindications [60,62]. As these missing observations were indica-
tive for low CRF and thus considered non-ignorable, CRF was quantified by dichotomi-
zation of the PWC130 outcome. Low CRF was scored, if the participant could not complete 
the test due to medical reasons, or if the PWC130 outcome was below a sex-specific refer-
ence value of 1.25 W/kg for females and 1.5 W/kg for males, respectively [63]; otherwise, 
high CRF was scored. This approach reduced the number of missing observations consid-
erably (Table 1). 

2.3. Immune parameters 
Eighty ml peripheral venous blood were collected from DVS participants and ana-

lyzed by flow cytometry to determine a set of relative blood cell frequencies [64]. Periph-
eral blood mononuclear cells (PBMC) were isolated from heparinized blood by Ficoll den-
sity gradient centrifugation (PAN-Biotech, Germany) and stored at −170 °C for 1–6 
months. Antibody panels were set up to provide an overview over the general lympho-
cyte and monocyte subpopulations and to analyze the lymphocytes for markers associ-
ated with aging and senescence such as NK/T cell ratio, CD4/CD8 T cell ratio, memory/na-
ïve sub-populations of CD4+ and CD8+ T cells, and CD28– T cells. All antibodies were in-
dividually titrated to determine the optimal dilution. All antibodies and dilutions are 
listed in the Supplemental Material by Table S1. Gating strategy is shown in Figure S1 and 
Figure S2. PBMC were used immediately after thawing and were kept on ice during the 
staining procedure. For each panel, 0.2 × 106 cells were stained with the indicated antibody 
cocktails for 20 min at 4 °C in the dark and then washed with FACS buffer (PBS / 2% FCS). 
Cells were resuspended in FACS buffer and kept on ice until analysis at the same day on 
a BD LSRFortessa. Data were analyzed using the FlowJo software (FlowJo LLC, USA).. 

Accounting for the compositional structure of related relative cell frequencies, e.g. 
memory and naïve CD8 T-cells, which inherently exhibit a negative correlation because 
their sum is limited by 100%, we transformed such pairs to their log-ratio, while single 
percentage cell frequencies (%p) were transformed to their logit(%p) = log(%p/(100%-%p)) 
[65]. 
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2.4. Approximating IMM-AGE by IMMAX 
We obtained 434 values of the IMM-AGE metric normalized to the range between 

zero and one from the published supplemental data files [35], which were merged with 
chronological age and raw cellular relative frequencies of 65 variables listed in Table S2, 
whereas the data did not contain any information about the sex of the participants. 

We screened our set of immune parameters from the DVS for compatibility with the 
original study and compared the distribution of these candidate variables between the 
two studies. We adjusted our analyses for chronological age by linear regression after 
transforming the candidate variables to their log-ratio or logit as before and subsequently 
evaluated the correlation coefficients and regression lines. The set of comparable immune 
parameters, as identified according to this procedure, were then used as predictors of 
IMM-AGE in a principal component regression model fitted by the package pls [66] using 
R version 4.2.1 [67]. The resulting predicted scores were termed IMMAX (IMMune Age 
indeX), a one dimensional metric to describe the immune age. Before fitting the regression 
model, we transformed the dependent variable to its logit, thus ensuring that IMMAX 
stayed between 0 and 1 just as IMM-AGE [68]. 

2.5. Statistical analysis of cardiorespiratory fitness 
In the DVS sample we analyzed the capacity of sex, obesity, physical activity, age and 

various immunosenescence biomarkers (IMMAX plus its predictors from the principal 
component regression model) for predicting the probability of low CRF by fitting univari-
ate and multiple logistic regression models using the R function glm [69]. Only the 547 
records with complete observations for the covariates and CRF, which comprised 199 low 
CRF events, and were included in the analyses. The estimated coefficients were expressed 
as odds ratios (OR) with 95%-confidence intervals (CI). For comparison purposes, the con-
tinuous predictors (age and immunosenescence biomarkers) were z-standardized to zero 
mean and unit variance prior to analyses; with in such a way standardized ORs represent-
ing the effect of 1 SD increase in the predictor. Model fit was assessed by Pearson’s corre-
lation coefficient (R), the root mean squared prediction error (RMSE) and Akaike’s infor-
mation criterion AIC [70]. 

3. Results 

3.1. IMM-AGE approximation 
To simplify the determination of a comprehensive immune age metric we first scru-

tinized the list of raw cell frequency variables of the original IMM-AGE study [35] for 
compatibility with our immune parameters from the DVS and identified 16 candidates for 
further inspection (Table S2), with several variables showing considerable correlation 
with IMM-AGE in the original data (Figure S3). Comparing the distribution of these var-
iables between the two studies revealed significant differences for many immune param-
eters (Figure S4). However, also the chronological age differed significantly between the 
two studies. The IMM-AGE study included two distinct age groups, young adults (20–36 
years) and older adults (63–97 years), whereas participants in the DVS ranged from 20–70 
years (Figure 1A). Hence, after excluding variables with a high proportion of missing val-
ues (Figure S4), we adjusted our analyses for chronological age by applying linear regres-
sion models. The comparison of age-dependent regression lines and correlation coeffi-
cients between the two studies for the remaining twelve candidate predictors (Figure S5) 
suggested a reduced set of compatible peripheral blood mononuclear cell sub-populations 
(NK-cells, T cells, total and memory/naïve sub-populations of CD4 and CD8 T-cells, 
CD8 CD28– T-cells). From these, we calculated five immunosenescence biomarkers on a 
log-ratio or logit scale (Figure 1B), which were then used as predictors in the principal 
component regression model. The estimated coefficients (Table S3) allowed for calculat-
ing a simplified score for the immunological age, which we termed IMMAX (Immune Age 
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Applied). IMMAX was determined not only for the original sample [35], but also for the 
DVS [23,24]. 

For the sample from the original study [35], our IMMAX score approximated the pri-
mary IMM-AGE values with acceptable accuracy, as indicated by high Pearson’s correla-
tion R = 0.84 and moderate typical prediction error RMSE = 10% (Figure 1C). The regres-
sion lines with chronological age agreed well for IMM-AGE and IMMAX from the original 
study and were in line with the regression function of the approximation for the DVS 
(IMMAX.DVS), which nicely filled the gap in the bimodal age distribution (Figure 1D). 
Figure 1E presents the regression lines with age separately for females and males in the 
DVS, which were parallel, as indicated by a non-significant interaction term (page*sex = 0.97), 
increased by 0.43% per year and were shifted downwards for females by 5.1%, corre-
sponding to a horizontal shift of approximately 12 years (5.1% / 0.43%/year). Similar re-
sults demonstrating that females are immunologically younger compared to males with 
the same chronological age had been reported for the Framingham cohort in the original 
study [35], thus pointing to the validity of our approximation. 

 
Figure 1. Calibration of the IMM-AGE metric [35] to cell-frequency data from the Dortmund Vital 
Study DVS [23]. (A) Box plots of the age distributions in the IMM-AGE sample and the DVS. (B) 
Compatibility between IMM-AGE and DVS for five biomarkers of immune age (NK- to T-cell ratio, 
CD4:CD8 ratio, memory-to-naive ratios for CD8 and CD4 T-cells, CD28- CD8 cells) in relation to 
chronological age assessed by linear regression and Pearson correlation coefficients (R). The anal-
yses used the logarithms of ratios and the logits of percentages, respectively. (C) Goodness-of-fit in 
comparison to dashed line of identity assessed by Pearson correlation coefficient and root-mean-
squared error (RMSE) of the approximation to the IMM-AGE metric in the original data [35] calcu-
lated by principal component regression (IMMAX) with the five biomarkers from (B) as predictors. 
(D) Age-depending linear regression lines for the IMM-AGE metric and its approximation (IM-
MAX) in the original data from (C) compared to the approximations calculated for the DVS data 
(IMMAX.DVS). (E) Linear regression and correlation with age of the approximated IMM-AGE met-
ric in the DVS (IMMAX.DVS) for females and males. 
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3.2. Associations with cardiorespiratory fitness 
3.2.1. Univariate Analyses 

In the DVS sample, obesity status, a low level of physical activity, chronological age, 
and the immune age metric IMMAX, as well as the ratio of memory to naïve CD8 cells 
and CD8 CD28– cells correlated positively with low CRF as illustrated by Figure 2 and 
assessed in the univariate analyses corrected for multiple testing presented by Table 2. 
Notably, the ratios of NK- to T-cells, of CD4 to CD8 cells, and of memory to naïve CD4 
cells showed no associations with low CRF. Although males reached higher relative 
power output compared to females in the PWC130 (Table 1), sex was not associated with 
low CRF, which could be expected since the dichotomization was based on sex-specific 
reference values [63]. 

Table 2. Bivariate associations assessed by odds ratios from univariate logistic regression models 
predicting the probability of low CRF by sex, obesity (BMI category), physical activity level, and by 
chronological age and six immune age metrics. The continuous predictors had been z-standardized 
to zero mean and unit variance prior to analysis, which was performed for the subsample of 547 
complete observations with 199 low CRF events. 

Predictor ORa 95% CIa P-value q-valueb 
Sex   0.22 0.24 

Femalesc — —   
Males 1.25 0.88 – 1.78   

BMI category   <0.001 <0.001 
normalc — —   
overweight 2.09 1.39 – 3.14   
obese 7.38 4.34 – 12.9   

Physical activity    <0.001 0.001 
lowc — —   
still acceptable 0.66 0.44 – 0.99   
satisfactory 0.37 0.20 – 0.66   
high 0.34 0.16 – 0.67   

Age (standardized) 1.25 1.05 – 1.50 0.012 0.020 
Immune age metric (standardized)     

IMMAX 1.37 1.15 – 1.64 <0.001 0.001 
log CD8 mem/naive 1.36 1.14 – 1.64 <0.001 0.001 
logit CD8 CD28- 1.28 1.07 – 1.52 0.006 0.013 
log NK/T 1.15 0.96 – 1.37 0.12 0.17 
log CD4 mem/naive 1.13 0.95 – 1.35 0.17 0.21 
log CD4/CD8 1.10 0.92 – 1.31 0.29 0.29 

a OR = Odds Ratio, CI = Confidence Interval for OR;  
b False discovery rate correction for multiple testing; 
c Reference category. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 September 2022                   doi:10.20944/preprints202209.0377.v1

https://doi.org/10.20944/preprints202209.0377.v1


 8 of 15 
 

 

 
Figure 2. Bivariate associations of low cardiorespiratory fitness (CRF) with (A) categorical and (B) 
continuous predictors for the subsample of 547 complete observations from the DVS with 199 low 
CRF events. 

3.2.2. Multivariate Analyses 
Figure 3A presents the outcome of the multiple logistic regression analyses focusing 

on the contrast between chronological age with the immune age metrics in terms of the 
standardized odds ratios and the AIC for model comparison, while the detailed results 
comprising all covariates are shown by Table S4. They revealed that obesity and level of 
regular physical activity together with immune age, but not chronological age, were sta-
tistically significant predictors of low CRF. Remarkably, the ratio of memory to naïve CD8 
cells was competitive to the comprehensive metric IMMAX concerning predictive capac-
ity, as indicated by a slightly higher standardized OR accompanied by a lowered AIC 
(Figure 3A), which, however, showed an absolute difference below 2 (Table S4) indicating 
a comparable fit for the two models [70]. 
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Figure 3B presents the corresponding outcomes from fitting a slightly modified series 
of models separately including age and the six immune age metrics as predictors, but 
omitting the non-significant factor sex from the analyses. Detailed information for all co-
variates are provided in Table S5 and confirmed the previous results. In particular, chron-
ological age became a non-significant predictor when adjusting for covariates, while the 
immune age metric IMMAX as well as the ratio of memory to naïve CD8 cells and 
CD8 CD28– cells persisted as significant predictors for low CRF, while the metrics involv-
ing CD4 or NK cells were non-significant, which agreed with the univariate analysis (Fig-
ure 2). Note that omitting sex and age as non-significant predictors in the models involv-
ing immunosenescence biomarkers lowered the corresponding AIC values compared to 
the analyses presented by Figure 3A, thus improved the model fit. 

 
Figure 3. Multiple logistic regression results comparing chronological age with different immune 
age metrics as predictors of low CRF by standardized odds ratios with 95%-CI (left panels, with 
vertical dashed reference lines indicating null effect) and by Akaike’s information criterion AIC with 
lower values indicating improved model fit (right panels), respectively. (A) Results using different 
immune age metrics as predictors in separate models in addition to chronological age, adjusting the 
analyses for sex, obesity and physical activity. (B) Results using either chronological age or different 
immune age metrics as predictor in separate models, adjusting for obesity and physical activity, but 
excluding sex as covariate. 

4. Discussion 
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4.1. Calibrated Immune Age Metric IMMAX 
For our study, we adopted the advanced immune age metric IMM-AGE [35] through 

approximation by a set of peripheral blood mononuclear cell frequencies from flow cy-
tometry to determine the IMMAX metric, which showed a reasonable prediction error of 
10%. This approximation exhibited a relationship with chronological age for the DVS data 
that was in line with corresponding relations from the original study. Additionally, it re-
vealed a 5% reduction in immune age for females compared to males of identical chrono-
logical age, which corresponded to a 12-years shift, thus confirming earlier findings of 
lower immune age for females [35,43]. These outcomes point to the validity of our approx-
imation, which was then applied to predict low CRF in comparison to established im-
munosenescence biomarkers and to chronological age. 

4.2. Cardiorespiratory Fitness and Immune Age 
The mean PWC130 outcomes in our study exceeded sex-specific reference values ap-

plied in sports medicine [63] and approximately corresponded to the 75th percentiles re-
ported recently for a German cohort aged 45 to 64 years [71]. However, this does not nec-
essarily indicate above-average physical working capacity, because our sample did also 
include younger persons, and in addition showed a considerable number of tests not com-
pleted due to medical reasons or contraindications. Low CRF was therefore assessed by 
dichotomization in order to avoid the bias potentially introduced by ignoring informative 
missing observations. 

While sex showed no significant effect due to the applied sex-specific reference val-
ues [63], our results are confirmative concerning the well-established detrimental influ-
ence of obesity and low physical activity on CRF [21,22]. 

The age-related increase in the probability for low CRF, which was observed in uni-
variate analyses, vanished when adjusting for the covariates, while the statistical signifi-
cance of the approximated advanced immune age metric IMMAX persisted. In particular, 
replacing chronological age by immune age as predictor for low CRF lowered the AIC, i.e. 
increased the predictive capacity of the models (Figure 3). These findings are in line with 
previous reports on markers of ‘biological age’ superseding chronological age as predictor 
for morbidity and mortality in aging populations [25,28,35]. Remarkably, concerning the 
predictive capacity for low CRF, the ratio of memory to naïve CD8 cells performed on an 
equal level as the advanced metric IMMAX. This confirms the role of the age-related de-
crease of peripheral naïve cells accompanied by the accumulation of memory T-cells, es-
pecially in the CD8 subpopulation, as established markers of immunosenescence 
[38,40,72,73]. This is also supported by the high correlation between naïve CD8 cells and 
the IMM-AGE metric in the original study (Figure S3). As the downregulation of costim-
ulatory molecule CD28 with age leading to progressive expansion of CD28− cells has been 
considered as a ‘compensation’ for the reduction of naïve CD8 cells [40] and a hallmark of 
senescence [37], this may explain the somewhat lower, but significant associations found 
for CD8 CD28– cells. No significant associations with cardiorespiratory fitness occurred 
for markers involving CD4 or NK cell subpopulations, although associations with CD4 
cells had been reported before [15], as well as acute exercise effects on NK cell frequency 
and function [18,74]. 

Though we found that memory/naïve CD8 T cell ratio and the new IMMAX metric 
have comparable predictive capacity, this does not necessarily imply a direct link between 
the functions of CD8 T cells and cardiorespiratory fitness. More likely, the same factors 
influencing memory T cells (infections and other immune challenges) will have a negative 
impact, e.g. on general health status and age-related morbidity [44], which in turn may 
influence the level of physical activity and cardiorespiratory fitness in an interdependent 
manner [13-15]. While the likelihood of such immune challenges increases with chrono-
logical age, our immune age metric is a more direct measure of these events, possibly 
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explaining why immune age is a better predictor than chronological age for cardiorespir-
atory fitness in our study. 

4.3. Outlook 
The ongoing longitudinal examinations within the DVS cohort will allow for the ver-

ification of our cross-sectional results considering that the intertwined relationships be-
tween cardiorespiratory fitness, physical activity and the immune system will advocate 
for longitudinal studies [8, 13, 27]. In addition, with this study providing a simple assay 
system to determine IMMAX as a comprehensive metric for immunological health, this 
opens up the possibility to assess the immune age in future studies and enables studying 
correlations of immune age with other physiological and psychological outcomes [23, 24]. 

5. Conclusions 
In conclusion, our results indicate a potential role for the immune age in explaining 

the inter-individual variability of the age-related decline in cardiorespiratory fitness. This 
may have implications for work ability and prevention concerns in occupational health 
and safety practice, e.g. for CRF assessment in physical employment standards [6]. Here, 
our approach might be instructive on how to approximate or even replace advanced im-
munosenescence biomarkers by less expensive methods involving cell subset frequencies, 
e.g. of naïve and memory CD8 cells. 
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