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Chapter 1

INTRODUCTION

Before big data systems were used flexibly, most organizations could not efficiently store or manage
their massive datasets due to the limited storage capacity and rigid management tools. In the past
decades, developing big data applications has become increasingly important since more
organizations from different industries, like healthcare systems and retailing systems, are
increasingly earning benefits from the data extracted from huge datasets [1], [2]. However, with the
explosion of data increases, the technical weaknesses of traditional techniques and platform
efficiency have gradually become prominent, which mainly include slow responsiveness and lack of

scalability, accuracy, and performance [3].

Big data-based systems have also been created and put in use since big data programming has
revolutionized the world as we know it over the past decades with the explosive increase in the
amount of data. In 2005, the Hadoop project was born. Hadoop was originally a project used by
Yahoo to solve the problem of web search. Later, due to the efficiency of the technology, it was
introduced by the Apache Software Foundation and became an open-source application [4]. Hadoop
uses the Hadoop Distributed File System (HDFS) as a reliable data storage service, as well as a
high-performance parallel data processing service using a technology called MapReduce, which

provides a foundation that enables fast and reliable analysis of structured and complex data [5].
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The multi-faceted improvement of computer performance has provided significant advancement
for computing system from various prospective, such as edge computing, mobile computing, deep
learning and resource management [6]-[33]. Despite such improvements in computational power,
until 2009, the learning process of deep learning models was still too slow for large-scale applications,
which forced scientists to limit the size of models and training examples [34]. The turning point for
this bottleneck breakthrough occurred when the training process of the neural network was ported to
the GPU for training, which generated an over 35x speed-up by 2012 and made Alexnet a considerable
success in 2012 Imagenet competition [35], [36]. In the training process of Alexnet in 2012, it trained
for 5-6 days by using 2 GPUs [36]. Another extreme example is the machine translation architecture
called "Evolved Transformer”, which shows consistent improvements over the original Transformer
on four well-established language tasks [37]. In the process of training this model, it cost more than
2 million training hours on GPU with millions of dollars to run [35], [37]. These examples clearly

show that the cost of the researcher’s model training process is increasing.

When the bottleneck of traditional computing is gradually highlighted, the advantages of
computational power in other devices began to appear, including quantum computers. With recent
advanced in quantum hardware, many applications have been proposed to utilize quantum

computers [38]-[45].

A device performing quantum computations exploits the quantum states’ properties like
superposition and entanglement for calculations [46]. The concept of quantum computing was first
proposed by the famous physicist Richard Feynman in 1981 [47]and is arguably the one that
requires developers to make the most significant paradigm shift. In classical computing, bit is
defined as the most basic unit of information [48]; similarly, “qubit” plays the same role in quantum
computing [46]. Considering the fundamentals of quantum computing, a qubit can produce a
coherent superposition of two logical states: |0) and |1). That is, a qubit can be in state |0), |1), or a
combination of both [49]. Considering a memory of N physical bits: in classical computing, devices
can only store one of 2%V possible data. If it is a quantum type, it can store 2V data simultaneously.

As N increases, its ability to keep information increases exponentially. For instance, a quantum
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computer with 1024-qubit memory may store up to 21924 data.

Quantum computing has expanded traditional computing based on its most essential features:
quantum superposition and quantum coherence. The transformation implemented by the quantum
computer for each superposition component is equivalent to a classical calculation, which is
completed simultaneously and superimposed according to a certain probability amplitude to give the
output result of the quantum computer [50]. This feature is called quantum parallelism [51]. To
exploit quantum computers’ enormous parallel processing capabilities, scientists were working to
find efficient algorithms for quantum computing. In 1994, Shor discovered the first quantum
algorithm, which could efficiently do factorization for a large integer N [52]. In 1997, Grover
discovered another practical quantum algorithm for traversal search problems, which is suitable for
solving the following problem: finding a unique element with high probability that satisfies a
particular requirement from an unstructured set of N elements [53]. Thinking about the worst-case
in binary tree search in the classical algorithm, where the last element traversed in a set of data is the
target, the complexity is O(N) [54]. Compared with that, the complexity for Grover’s algorithm is

only O(v/N) [53], which provides a quadratic speed-up.

A simple application is to find a specific name from a phone directory with N names in a random
order [53], [55]. Suppose there are 1 million names in the directory, and names will be searched
one by one with an average of 500,000 searches to find the desired phone number with a % chance
classically [53]. In Grover’s search algorithm, 1 million numbers are checked simultaneously per
query. Since 1 million qubits are in a superposition state, the effect of quantum interference will
cause the previous result to affect the next quantum operation. After the operation of this interference
generation is repeated 1000 times, i.e., v/ N, the probability of obtaining the correct answer is % With

a few more operations, the odds of finding the desired phone number are close to 1 [53], [S5].

In this paper, we propose IQuCS, which tackles the problem from the input size point of view.
It considers a data set of (index, value) pairs and solely utilizes Grover’s algorithm to find the targets.
Based on each Grover’s iteration results, TQuCS attempts to filter out the pairs that are not likely to

be the searching targets and only send the remaining data points to the next iteration. Consequently,
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the input size in each iteration is different, and the required number of qubits would be reduced. With
fewer qubits iteratively, TQuCS provides the potential for a multi-tenant computing environment in
that multiple tasks can share limited qubits. The main contributions of this paper are summarized as

follows:

* We design and implement a quantum search algorithm in a hybrid system for the data set of

(index, value) pairs. It solely relies on Grover’s algorithm.

* With the reduced input size in each iteration, TQuCS is able to use fewer qubits to complete

the search.

* We conduct both simulations with Qiskit and experiments on IBM-Q. The results demonstrate
that it saves qubits consumption by up to 66.2%. Based on the results and analysis, we present

lessons learned.

The remainder of this paper is structured as follows: In section 2, we introduce the related works.
Section 3 presents the background of quantum computing and Grover’s algorithm. In section 4, we
detail to give the system design, and the design of the algorithm is provided in section 5. We provide

the experimental results in Section 6. In section 7, we give a summary of our work.
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Chapter 2

RELATED WORK

Grover’s algorithm, a quantum search algorithm that Lov K. Grover proposed in 1996, has been
increasingly applied to the field of big data in recent years. Scientists have made great efforts to
develop quantum-based applications in big data. In [56], authors introduced the implementation of
data-driven tasks on the IBM Quantum Computers. Their work presented a four qubits Grover’s

Algorithm application and used the testing results to show the current capabilities.

Compared to the original version of Grover’s Algorithm, research on improving Grover’s
Algorithm is also deepening. Grover’s algorithm is applied to the current number of targets in the
disordered quantum database, regardless of the meaning of the differences in each target. When the
targets exceed half of the total items in the dataset, the algorithm will fail. In [57], to solve this
problem, an improvement is proposed based on weighted indicators, in which each indicator is
assigned a weight coefficient according to its weight. With these different weight coefficients, each
will have equal probability with weights as quantum superposition for all target states. Then, make

the phase rotations in both directions the same and determine the inner product of the two states by

1

the superposition of the target amplitude and the system’s initial state. When the inner product is 3

or greater, the probability of finding the target will close to 100% with one Grover iteration.

For application, Grover’s algorithm also has corresponding research in big data. In [58],
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authors presented a quantum algorithm based on K-nearest neighbors using Hamming distance and
Grover’s algorithm for the recommendation system. They analyzed the correctness of the proposed
algorithm and pointed out its advantages, including exponential capacity system and response speed,
independent of the classical dataset in the quantum system. Besides, in machine learning, Grover’s
algorithm with a dynamic selection function can be used to build a recommendation system [59]. It
utilizes Hamming distance for item classification and uses Grover’s Algorithm to improve the
quality of recommendations. In addition, QuGAN [43] and QuClassi [38] claim to provide fabulous
performance in terms of model side; however, it is obtained with only 4 dimensional on the IBM-Q
platform, which is because NISQ quantum computers are low-qubits (5-7 publicly available) and

noisy machines.

Variants of quantum counting have been proposed to eliminate QPE [60]—-[63], a qubit-expensive
operation. MLQAE [60] attempts to with multiple iterations of Grover’s algorithm that combines
with a maximum likelihood estimation. Wie et al. [61] utilizes Hadamard tests as less expensive
alternatives to QPE. A simplified quantum computing algorithm that works without QPE is proposed
in [62]; however, it introduces a large overhead. A recent effort, IQAE [63], can reduce the overhead

through postprocessing the quantum results iteratively and only relies on Grover’s operator.

IQuCS considers a quantum search problem of (index, value) pairs. From a different
perspective, it focuses on reducing the input data set by filtering out non-solutions iteratively and,

therefore, reducing the number of required qubits.
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Chapter 3

BACKGROUND AND MOTIVATION

3.1 Quantum State

As said, bits mathematically have states 0 and 1 in classical computing [48], and if a bit exists, its
state at some point must be one between them. In physics, bit can be represented as any kind of
physical system, as long as the physical system is always in one of two difference states. Computers
are made up of many bits, and similarly, quantum computers are made up of quantum bits, which are
also called qubits [64]. Like bits, qubits also have states, which can be represented as vectors that
exist in a two-dimensional complex vector space. Theoretically, its state is represented by a column

vector of length 2, and the computational basis state can be written in Eq. (1) as

0) = 1) = (3.1)

In quantum mechanics, the Bloch sphere, named after physicist Felix Bloch, is a geometric
representation of the space of pure states in a two-state system and is generally used when discussing
qubits. Points on the sphere correspond to the pure states of the system, while the points inside it

correspond to the superposition. Since |0) and |1) are the computational basis states of the qubits,
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i.e., they are a set of basis for the quantum state space, any qubit |e) can be expressed in the form
a|0) + B|1), where « and /3 are two complex numbers whose sum of squares of the absolute value

equals 1, that is, |a|? + |8]? = 1 [46].

For instance, suppose

1
l0) = | V? | (32)
V2
|go) can be represented by |0) and |1) as
o) = —=10) + —=[1) (3

Intuitively, qubits can be considered as a superposition of classical bit.

3.2 Qubits Representation

In quantum computing, Statevector is used to describe the state of a quantum system. Statevector
is a vector which contains elements that representing the probability of finding a certain target in a
certain condition. For instance, in classical computing, representing a target on x-axis at position 6
can be written as x = 6. In quantum computing, the representation is more complicated. Since each
element in the statevector represents the possibility of target appearing, a target at position 6 will be

represented as

Statevectorezampie = |1 (3.4)

0

where 1 represents the probability of target being at position 6.


https://doi.org/10.20944/preprints202209.0358.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 September 2022 doi:10.20944/preprints202209.0358.v1

3.3 Quantum Logic Gates

A quantum gate is fundamental in the computational model of quantum computing, especially
quantum circuits, which operate on a small number of qubits. Like the relationship between
traditional logic gates and digital circuits, quantum logic gates is the basis of quantum circuits.
Quantum gates can modify the state of qubits by taking one or more qubits to transform the state of
them and get the desired output. It is worth noting that the number of inputs and outputs should be
equal. That is, qubits cannot be swallowed. The quantum gates used for designing the algorithm are

introduced below.

3.3.1 Single Qubit Gates

Quantum NOT gate, denoted as X gate, is a generalization of the classical NOT gate, which does the
rotation around x axes of the Bloch sphere and swaps the coefficients of the two basis vectors on a
single qubit.

NOT(al0) + B]1)) = al1) + 5/0) (3.5)

In other words, a single input-output quantum gate can be represented by a matrix of 2 x 2.
After passing through the quantum gate, the state of a quantum gate is determined by multiplying
the quantum state vector left by the value of the quantum gate matrix. The matrix corresponds to the

quantum NOT gate (X gate) is [46]

0 1
Ux = (3.6)
10
Thus, the result of a qubit after NOT gate (X gate) conversion is
« 0 1| |« 15}
Ux = = (3.7)

154 1 0| (B «
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Except for X-gate, single qubit gates also include Y-gate and Z-gate, which rotate around the
Bloch sphere’s y and z axes. Here, Y-gate converts |0) to ¢|1) and |1) to —i|0). Z-gate leaves the
base state |0) unchanged and replaces |1) to —|1). Mathematically, they can be represented as a

superposition of [46]

Uy = Uy = 3.8)

Hadamard gate (H gate) also acts on individual qubits, which can decompose existing quantum

states by coefficients [46]:

a+ 3
H(a|0) + 5|1 1 3.9
(|0) + B]1)) = ﬂ|> \[|> (3.9)
It is represented by matrix as
211 1
Uy = \2[ (3.10)
1 -1

and can convert |0) to [OFD ang 1) to 19 \/§|1> Since each column of H-gate matrix is orthogonal,

V2
we have H H* = I, where [ is the identity matrix and thus H is a unitary matrix [46].

3.3.2 Multi-Qubit Gates

Computer programming is full of conditional statements; in quantum computing, we also expect
qubits to interact with each other, which requires quantum gates involving two or more qubits, where

one or more qubits are considered as control bits for some operation.

One of those representatives is controlled NOT gate (CNOT gate) on two qubits, where the
second qubit performs a NOT operation when the first qubit is |1), otherwise remains unchanged.

Mathematically, it can be represented by «|00) + 3|01) + ~|10) + 6|11), where |00}, |01), |10), and
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|11) are column vectors of length 4. This also needs to satisfy the normalization condition, that is,

|2 + |B]? + 7|2 + |#]? = 1. Mathematically, CNOT gate can be represented as [46]

CNOT(a|00) + B8]01) + v|10) 4 6]11)) = «|00) + B|01) + ~|11) + 6]10) 3.11)

The matrix can represent this gate:

Ucnor = (3.12)

o o O
S =
o o O

(e}

Another gate with similar logic to CNOT gate is CCNOT gate, which also called Toffoli gate.
Toffoli gate has 3 qubits as input. If the first two qubits are 1, it will invert the third qubit, otherwise

all qubits remain the same [46]. Same as other quantum gates, Toffoli gate also can be expressed as a

matrix. _ -
1 00 0O0O0O0O
0 1 00000
001 00O0O0TO
Urag poi = 00010O0O0TO 3.13)
000O01O0O0TPO
000 O0O0T1TO0TO0
000 O0O0O0TO0?1
000O0O0OO0OT1FPO0

SWAP gate, another two-qubit operation, based on the basis |00), |01), |10), and |11), can be
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represented by the matrix as [46]:
1 0 00
0010
Uswap = (3.14)
0100
0 0 01

3.3.3 Application: Quantum Half-Full Adder

Different combinations of quantum gates can be used to achieve different effects, and half adder is
one of them. In classical computers, a half-full adder is a logic circuit used to implement addition
operations on two single binary digits, which includes two outputs: Sum (denoted as S) and Carry
(denoted as C'). Therefore, the sum of these two single binary digits can be expressed as 2C' + S in
decimal system [65]. We designed a simple half adder using an XOR gate to generate .S and an AND

gate to generate C' with the following steps.

Since classical logic gates, XOR gate and AND gate are not quantum gates, we need to
implement AND gate in the quantum circuit through the quantum operator and then combine them
to implement the quantum half-adder. The exclusive OR gate (XOR gate) in the digit logical circuit
is a gate that implements the following functions: if both inputs are false or true, the output is false;

otherwise, the output is true [66].

do
-5
qz
2 0 1
C

Fig. 3.1: Quantum Half-Full Adder Circuit for Input |0),|1)
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The X gate changes the initial states of the quantum half-full adder. As defined, X gate can flip
the quantum state [46]. Since Qiskit’s default qubits are initially in the state |0), and the half-adder
inputs require either |0) or |1), X gate is needed to do this flip. Figure 3.1 shows the circuit to do a
simple quantum half-full adder circuit with inputs are |0) and |1). Above all, the X gate converts the

initial state of qubit ¢; from |0) to |1).

As noted before, the CNOT gate flips the value on the second qubit depending on the state of
the control bit [46]. If the value of the control bit is 1, we do the flip. Otherwise, the qubit’s value
remains the same. Therefore, in quantum computation, the XOR gate can be implemented directly
through the CNOT gate. Considering AND operation, in this case, AND operation happens between
qubits gp and g;. The result of AND operation between gg and ¢; is XOR with qubit go. If the state

of g2 always is |0), there is no flip on the AND operation.

1000
1.00 1

=
-
wn

Probabilities
o
Ln
(=]

0.25 1

0.00-

S

Fig. 3.2: Result of Quantum Half-Full Adder Circuit for Input |0),|1)

Finally, we put these gates all into the same circuit, do the measurement, and store the result in
bits c. By repeating this experiment 1024 times, Figure 3.2 shows the bar graph of the measurement

results for input |0) and |1), where 0 is the carry (C), and 1 is the sum (S).

By changing the value of the input, other results of the half adder can also be calculated, which
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Table 3.1: Quantum Half Adder Performance Results

Inputs Outputs
Input1 | Input2 | C | S
0 0 01]0
0 1 01
1 0 01
1 1 110

are listed in Table 3.1.

3.4 Quantum Entanglement

In quantum mechanics, when several particles interact with each other, the properties of each
particle cannot be described individually since the properties of each particle have been integrated
into the overall property. However, the properties of the overall system can be described. This
phenomenon is called quantum entanglement, which only occurs in quantum systems [67]. That is,
through entanglement, if the measurement determines the state of one qubit, the state of the other
qubit can be determined instantaneously. This operation uses ® to represent. With ®, the CNOT

gate can be represented as:

Ucnor = ® (3.15)

A typical example of an entangle state is the bell state [46]:

|00) + |11)

|Boo) = /3

(3.16)

Bell state consists of two quantum registers, which include the direct product of two |1) states and
the direct product of two |0) states. If doing the measurement of the Bell state, the result can only be
chosen from two. Considering probability, the probability of getting |00) state and |11) state are both
50%. Mathematically, if a quantum state |¢) exists |¢) = |a) ® |b), the state is defined as a separable

state; otherwise, the state is considered as entangled [68]. In bell state, since it is impossible to find
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|a) and |b) such that |Bell State) = |a) ® |b), it is an entangled state.

3.5 Grover’s Algorithm

Grover’s algorithm is a practical quantum search algorithm that quadratic speeds up an unstructured
search problem, which finds the probability of each element. It has the complexity of O(y/n), where
N represents the number of elements in the search space, and has a quadratic speedup compared
to the classical search O(N) [53]. In short, the framework of Grover’s algorithm is to construct an
easy-to-implement operation G so that the initial state can gradually approach the target state under

the iteration of the operation and then obtain the search result by measuring the target state [46].

Suppose all the data are stored in the database and the number of qubits is n, the index of each
data in the database can be processed. Here, a total of 2™ data is represented, which is counted as V.
Suppose there are M data will be obtained from the search. To indicate whether it is the result of our
search, we create a function:

1 for z=ux
flz) = (3.17)
0 for =z # xg

Where x is the value of our search target. When we search for our target, our function value f(x) is

set to 1; otherwise, it is 0.

An oracle O is defined as a “black box” function that can be used as an input for another
algorithm. With oracle, by considering * = (z¢, z1, ...Z,) as a binary input, oracle is defined as a
classical function f : {0,1}" — {0, 1}, which takes input with n-bit binary and generates output
with m-bit binary [69]. In Grover’s algorithm, a quantum oracle can identify the solution of the

search problem by adding a negative phase to the solution state. That is, for every state |z):

|x)  for x#¢
Uylz) = (3.18)

—lz) for z=4¢
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where Uy, is a diagonal matrix. In Uy, the entry corresponding to the target item will have a negative

phase [46].

Amplitude amplification makes the algorithm works. Start with a uniform superposition that
constructed by |s) = H®™|0)™ and represented as |s) = LN Zf;(} |z), where N = 2", the reflection
angle can be calculated. Suppose vectors |¢) and |s') are perpendicular, the uniform superposition

can be written as |s) = sinf|¢) + cosf|s’). Thus, the reflection angle is

1
0 = arcsin(s|¢) = arcsin—— (3.19)

VN

Then, we apply the oracle reflection Uy to the uniform superposition, which corresponds to a
reflection of the state |s) about |s"). That is, the amplitude in front of |¢) because negative. Similarly,
applying another reflection Uy to the state |s), where Us = 2|s)(s| — 1, which maps the state to

UsUy|s). After n steps, we will get the state |¢,,), where |¢,,) = (UsUy)"|s) [46].

3.5.1 Grover’s Application: 4 qubits with one marked state [1111) from scratch

Considering the case where N = 16. Since N = 2" and the number of qubits is calculated by

n = loga N, we need 4 qubits in this application. For the reflection angle, we have

1 s
0 = arcsin—— = — 3.20
6 4 (3.20)
After n steps, we have
(UsUy)"|s) = sinby,|p) + cosby|s’) (3.21)

where 0,, = (2t + 1)6.

Suppose we are looking for the case |¢); = |1111), Hadamard gates are needed to apply to the

four registered qubits, which put the qubits into a superposition and make the measurement of |0) and
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|1) with equal probability.
1
Uyls) = U¢\/T>6(’0000> +]0001) + |0010) + |0011) 4 |0100) + |0101) + |0110)
+]0111) + |1000) + [1001) + |1010) + |1011) + |1100) + |1101) + |1110) + [1111))
(3.22)

Oracle circuit will be implemented to the oracle circuit after all the qubits are initialized with the

H gate, and state |1111) will be marked.

Uyls) (10000) 4 ]0001) -+ [0010) + [0011) + |0100) + [0101) + [0110)

1
= Uy——

¢ /16
4 [0111) + |1000) + |1001) -+ |1010) + |1011) + [1100) + [1101) + [1110) — [1111))

(3.23)

The oracle circuit inverts the state’s amplitude of —i and Pauli X gates are needed to apply for
certain qubits. For marked state |1111), oracle is created by applying a triple controlled Z gate to
qubit g3. The amplification circuit is created as follows:

* Apply H gates and Pauli X gates to all four qubits

* Apply a triple controlled Z gate to qubit g3

* Apply H gates and Pauli X gates to all four qubits

Through these steps, the full circuit for fining marked state [1111) is shown in Figure 3.3.

After run the circuit in Figure 3.3 on the simulator, we got the histogram of measuring the

probability of [1111) shown in Figure 3.4.

Considering the states, the state city graphs of the real and imaginary part of the density matrix

are shown in Figure 3.5.

d0i:10.20944/preprints202209.0358.v1
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Fig. 3.3: Quantum Circuit of Measuring |¢) = [1111)
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Im[p]

Fig. 3.5: State City of Measuring |¢) = [1111)

3.5.2 Grover’s Application: 3 Qubits with the Multiple Marked States

Grover’s algorithm also can be implemented with multiple solutions in Qiskit. Considering an
example when N = 8 with 3 marked states. Again, since N = 2" and the number of qubits needed
is n = 3. Unstructured search with multiple solutions based on Grover’s algorithm is implemented
through the transformation of statevector. Data from the statevector can be a vector, circuit, or
instruction. If the data is a circuit or instruction, the statevector is constructed by assuming all the
qubits are initialized to the zero states. If the target value is found, we will flip the zero state in

statevector into one.

Suppose the marked state is [000),

101), and |110), the transformation of the statevector can be
represented as:

[0,0,0,0,0,0,0,0] — [1,0,0,0,0,1,1,0] (3.24)
The histogram for this example is shown in Figure 3.6.
States can be visualized by Figure 3.7.

The number of iterations is another factor that affects Grover’s algorithm’s performance.

Suppose the size of the searching database is /V and the number of marked states is ¢, the number of
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Fig. 3.7: State City of Measuring Multiple Marked States
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iterations that gives the best results is marked as %(%)% [70]. However, more iterations do not mean
better results for Grover’s algorithm. Figure 3.8 shows the histogram for the same marked states but
with different iterations. Even though the number of iterations has increased from 1 to 4, the
performance of Grover’s Algorithm has become worse. With more iterations, the distribution of

probabilities has become more even, making it challenging to find the marked states.

0.37 | - rterat!unszl
lterations=4
0.24 1
4]
£
=
R 0.16 -
£
Lo
0.08
0.00 - . . . . .
] ~ o ~ =] ~ =] ~
8§ § & & < < ~ ~

Fig. 3.8: Comparison of Different Iterations
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Chapter 4

SYSTEM DESIGN

This chapter discusses the problem setting and system architecture of IQuCS that includes its

framework, design logic and functionalities of key modules.

In IQuCs, we consider a given set of initial values as inputs, {v1, ...v;...,v,} € I. For each
value, it is associated with its index. Therefore, the data set container (index, value) pairs. Specified
by the users, some of the values, {v;,...v;} € GS, are defined as searching targets. The goal is to

find the indexes of targets. Therefore, both indexes and values will be involved.

We utilize Grover’s search algorithm to complete the task. However, the original algorithm only
amplifies the amplitude of the targeted states. It fails to determine and output the targets and indexes
directly. Additionally, since both indexes and values need to be encoded, the qubit requirement is
larger than value-only searches. Thus, our objective is to output the targeted (index, value ) pairs and

reduce the number of required qubits.

Figure 4.1 illustrates the architecture of the proposed system. As a quantum-classic hybrid
system, it consists of two main components, the classical computer side, and the quantum computer
side. The data join the system from the classical component, where the Index Generation module is

responsible for indexing the unstructured raw data (Algorithm 1). In the first iteration, the generated

22
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Fig. 4.1: System Architecture

indexes are designated as original indexes. Next, the data is sent to Value Generation module. It
basically maps original data points to their new values in each iteration (Algorithm 2). In our design,
the values update iteratively while the search goes on. Then, the (index, value) pairs are encoded onto
qubits in the Data Encoder module, and then the quantum circuit is generated for the current iteration

on the classical computer.

This circuit is passed to a quantum computer, where Grover’s search algorithm is conducted with
a given number of amplitude amplification. The quantum states are measured and transferred back to

the classical component for further processing at the end of the search.

Upon receiving the results, Quantum State Analysis module is activated to perform Algorithm 3.
If the algorithm finds all solutions, their original indexes will be returned. Otherwise, it conducts
the filtering to ensure that only the potential solutions enter the next iteration. With this feature,
the problem set is reduced in when Index Generation and Value Generation modules are called in
the second and following rounds. Therefore, less number of qubits are required to continue the
search. Meanwhile, the mappings between current indexes and original indexes and current values

and original values are maintained.


https://doi.org/10.20944/preprints202209.0358.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 September 2022 doi:10.20944/preprints202209.0358.v1

Chapter 5

SOLUTIONS

Table 5.1: Notation Table

I Input data.
GS The set contains searching targets.
v The i values in the data set.
V; The input data set at iteration j.
G; The input [index, value] set at iteration .
NS; The set that stores nonsolutions at iteration <.
PS; The set that stores potential solutions at iteration <.
(0J) The original index function that returns indexes of V.
ov The original value function that returns value of V7.
NI The new index function that stores latest indexes of v;.
NV The new value function that stores latest values of v;.
Mpal | Mappings between original indexes and current indexes.
MpaV | Mappings between original values and current values.
Ry, The quantum state fidelity of v;.
T The filtering threshold.

5.0.1 IQucCs Algorithms

Searching for indexes of targeted values is a common task. Algorithm 1 assigns indexes for the
given dataset iteratively and keeps mapping the original index with its current value. In the first
iteration, the system calls O1, a function that stores Original Indexes, to set their initial values to —1,

which indicates the not-available status (Lines 1-3). For every data point in Vj, starting from 0, it

24
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Algorithm 1 Generating Indexes, Genl(V;)

1: Inputs: V;,5 =0

if i = 1 for V; then

O1(V1) = -1

forall v; € V1 do
OI(vj) = j
Mapl + [j, )
Call GenV(v;);
J++

end for

R e A U S ol

10: else if i # 1 then
11: forall v; € V; do
12 if OI(v;) # —1 then

13: NI(v;)) =3

14: MapI « [i, j]
15: Call GenV(v;, j);
16: J++

17: end if

18:  end for

19: end if

incrementally sets indexes, stores mapping of current indexes with its original values in Mapl, and

calls Algorithm 2 to pair each index with its corresponding data value (Lines 4-9).

Due to the data filtering process, the system requires regenerating indexes in the following
iterations. In the i*" iteration, the algorithm neglects invalid data points that indicate by negative
indexes in the previous round. For valid data points, it regenerates indexes incrementally, updates the
mapping of the original index, ¢, with its latest value, j, in Mapl, and assigns them to NI (Lines

10-14).

Next, it invokes GenV function to pair the new index with its corresponding data value (Lines
12-18). In our system, OI always stores original indexes of filtered data points in V; and N is
updated iteratively to store the latest indexes. With this design, the volumn of indexes decreases as
the search process continues. With fewer indexes, the required number of qubits is consequently

reduced.
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Our system utilized Algorithm 2 to further reduce the qubit requirement by mapping original
data values to their new values iteratively. When Genl function calls it for the first time, GenV
pairs each value v; in V; with its corresponding value j. The paired data is stored in (71, which
serves as the input for the quantum search algorithm (Lines 1-7). For the following iterations, it
checks original indexes for each data point. If —1 is found, it means that this data point is marked
as a nonsolution and has been filtered out in the previous round. GenV ignores nonsolutions. For
remaining data points with positive indexes, they are potential solutions and GenV adds them to set
PS; (Lines 8-11). Next, the system searches for v;’s original value v, by using the function OV that
stores the original mapping in v; (Line 12). Then, a rank function is employed to generate new values
based on its original value, v,. This rank function maps the values of potential solutions to their new
values in a fixed-length according to the number of elements in P.S;. The new values are stored in
NV. Furthermore, M apv updates v,’s latest value to NV (v,) (Line 13-15). Finally, the new index j
along with its corresponding new value (N'V (v,)) is inserted to G; that serves as the input of the next

iteration (Lines 16-18).

Based on the previous steps of Genl and GenV', Algorithm 3 performs an iterative quantum
search. Initially, the input dataset is sent to Genl, which calls GenV to generate the paired input set

G'1. It only happens in the first iteration, when ¢ = 1 (Lines 1-2).

Next, the system invokes Grover’s search with G; as the input and G'S' as the searching targeted
set. When ¢ is an odd number, iteration is set to 1; otherwise, it is set to 2. This means that the
Grover’s operator will be invoked either 1 or 2 times depending on the value ¢. (Line 4-5). Please
note that G; consists of both values and indexes in their quantum states. The resulting quantum state

fidelities are stored in R (Lines 6). By analyzing results, there are two scenarios.

* We first define the mean value to be the average of all possible data points in G;, which
deternines by the number of encoding qubits [log, |G;||. When the state fidelity of v; is lower
than the mean value multiplied by a threshold, 75, of all possible data points in G;, which
deternines by the number of encoding qubits [logy |G;|], it indicates that v; is unlikely to be

the solution. Therefore, the algorithm adds it to the nonsolution set V.S and resets its index
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Algorithm 2 Generating Values (GenV)
1: Inputs: V,j =0

2: if i = 1 for V; then

3 for all v; € V1 do
4 OV (v;) =v;

5: MapV < [v;, vj]
6 G+ [j, Ul']

7 end for

8 Return G;;

9: else if 7 # 1 then
10: forallv; € V; do

11: if OI(vj) # —1 then

12: PS; + Vj

13: vo = OV (v;)

14: NV (vo) = Rank(v,)
15: MapV « [vy, NV (v,)]
16: Gi < [j, NV (v,)]

17: end if

18: Return G;

19:  end for

20: end if

value to —1. A negative index value suggests that this data point has been filtered out and will

not get involved in the further iterations (Lines 7-10).

e When the state fidelity of v; is higher than the mean value, the corresponding data point is a
potential solution. In this case, it will be added to the PS; set for further processing (Lines

11-14).

Next, potential solutions of the current iteration is compared with the previous iteration. There

are two cases of comparison.

* If they are identical, it means that the algorithm has converged. Then, the current indexes of
all v; € PSS, are inserted to .S. With .S, the algorithm finds out original indexes of all solutions

(Lines 15-19).

* When they have the difference, it suggests that the results are not stable. The algorithm will
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Algorithm 3 Iterative Quantum Search

1: Initialization: I = Initial Inputs
2: G1 = Genl(1)
i=1

4: while true do
5. GroversSearch(G;, GS, (i+1) mod 2+ 1)
6:  Update quantum state fidelities in R
7. forv; € {G;} do
. 1
8 if R’Uj < SMogs 1GATT X Ts then
9

: NSZ V5
10: OI(UJ) =-1
11: else
12: PS; + ]
13: end if
14:  end for
15: if PS; = PS;_1 then
16: for all v; € PS; do
17: S+ Gi(vi)
18: end for
19: Return MapI(S)
20:  else
21: Vi=V;—NS;
22: G; = Genl(V;)
23: 1=1+1
24:  end if

25: end while

eliminate nonsolutions from the input. Then, it invokes GGen! for the next iteration on a reduced

dataset (Lines 20-25).
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Chapter 6

EVALUATION

This section presents our IQuCS implementation details and results from intensive Qiskit simulations

and experiments on IBM-Q.

6.1 Experimental Framework and Evaluation Metrics

We implement TQuCS with Python 3.8 and IBM Qiskit Quantum Computing simulator package.
The Aer simulator is used as the backend to simulate a noise-free environment. The Grover’s search
module is constructed from Qiskit’s amplitude amplifiers APIs. We set the number of shots to 12,000

and set threshold, T, = 0.85.

The most common words in English [71] are encoded with their ranks into binaries, which act
as values in our evaluation. For each data point, its initial index is the same as its value. Therefore,

our workload is a data set of (key, value) pairs.

We consider two types of search scenarios, (1) The values in the data set are unique; (2) There

are duplicates in the data set. Both single- and multiple-target settings are involved.

The results are compared with the original Grover’s search algorithm. To presume the best

29
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performance, we use optimal_num_iterations method to calculate the iteration number that requires
knowing the number of targets beforehand. Please note that this information is NOT available to
IQuCs. To determine the targets, it utilizes the same filter as TQuCS. For a specific value, if its
probability is higher than the mean value (Line 8 in Algorithm 3 when ¢ = 1) multiplies T, we

assume it is a target. In the rest of this section, we use GSearch to represent this solution.

To analyze the results, we consider two metrics: (1) Accuracy; (2) Number of invocations of
Grover’s operator, which is called repeatedly for amplitude amplification; (3) Qubit-Virtualized
Consumption (QVC); The QVC for original Grover’s algorithm is straightforward since it only has
one round of Grover’s operator invocations. QVC = N, x I, where N, is the number of qubits to
execute the algorithm, and [ is the calculated optimal number of Grover’s operator invocations. The
VCR is defined by the equation, QVC' = szf C; x Ng,, where i is the iteration number, C; is the

number of Grover’s operator invocations at iteration ¢ and Ny, is the number of qubits at iteration i.

6.2 Dataset: 10 Entries - 3 Unique Marked State

By filtering data points, iterations can be ended in three rounds. Because of redundancy, the
statevector prepared for Grover’s circuits is a list of zeros with a length of 2%, and the number of
qubits needed for Grover’s circuit is 8. If the target was found, the statevector represents this target
will flip from |0) to |1). Figure 6.1 illustrates the probability changes in three rounds. Each bar in the
figure represents the probability of a key-value pair, where the highest three bars in this case
represent the marked states. To get the best experimental results, we set the iterations of Grover’s
operator invoked as 1, 2, 1, respectively. After filtering in the first round, there are 4 data points left
in the dataset. The remaining data point will be re-encoded and run in the constructed Grover’s
circuit again. In this case, the number of qubits has been reduced by 2. Since the marked states are

found in the second round, only one more round of iteration is needed to do the verification.

As said, Grover’s algorithm implements the unstructured search through amplitude

amplification.  Figure 6.2 illustrates the probability distribution of invocation = 4 and
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invocation = 7, which calls Grover’s operator 4 and 7 times respectively. Note that the optimal
invocation number is 7, which generates Figure 6.2 (b), where the target’s probabilities are more
than 300x times more than others. In Figure 6.1 (c), the difference is much smaller, where the

non-solution with the highest probability is 2.5x times lower than the lowest one among the targets.
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6.3 Dataset: 100

We expanded the amount of data to conduct similar experiments and evaluated the algorithm. Here,

the data size is 10x larger than in the previous experiment.

6.3.1 20 Marked States

Marked states are 20 duplicated numbers. In the first iteration, 14 qubits are needed for the key-value
pair encoding, and the length of the statevector is 2'4. In the last iteration, the number of qubits
will be reduced to 10. With a running constructed circuit through 12,000 repetitions, 16 states are
found after filtering, matched with the target states. Figure 6.3 shows the probability distribution in
different iterations. In this experiment, 17 data points are found, including 1 false-positive error and

4 false-negative errors.

In the first iteration, the data points after filtering are 65 since the other 35 data points are
excluded. By this time, the remained data contains all 20 solutions. The same situation happens in
iterations 2-4, an additional 43 of the remaining data points are filtered out, all non-solutions.

However, at iteration 5, another 5 data points including 3 marked states are excluded.

Figure 6.4 gives the probability distribution of invocation as 9 and 22 respestively. With the
optimal invocation, invocation = 22, Grover’s operator is called by 22 times. The number of
targets found is 20, which matches the expected marked states. In terms of accuracy, our algorithm
gains 97%, and the original Grover’s algorithm achieves 100%. Consider QVC, GSearch’s QVC is
14 x 22 =308 and TQuCS’s QVCis 14 x 1 + 14 x2+12x14+10x2+10x 1410 x 2 =104,

which is a 66.2% reduction.
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6.3.2 40 Marked States

In this section, we replaced the marked states with 40 duplicates. Again, in the first iteration, 14
qubits are required for encoding and preparing a statevector of length 2'4. Figure 6.5 (d) and
Figure 6.6 (b) shows that both algorithms can successfully find all 40 targets. Consider the original
Grover’s algorithm, which requires 1 iteration, the optimal invocation number 15 makes it call
Grover’s operator 15 times. Comparing with our created algorithm: Since it terminates at iteration 4

and performs 6 invocations (1,2,1,2 respectively), it can reduce 60% of the invocations.

Figure 6.6 gives the iterative process of the original Grover algorithm. Figure 6.6 (a) shows the

results after the 6"

invocation, which can allocates 41 targets. Compared with Figure 6.5, 15 non-
solutions are filtered out after the first iteration, and the problem set is reduced to 85 for the encoding
in the second iteration, and it is further reduced to 50 at the end of the second iteration. In the third
iteration, the algorithm successfully finds all the 40 marked states. However, the system has no clues
to decide the number of correct solutions. Based on Algorithm 3, the fourth iteration is performed,

and the same 40 marked states are returned, which determines that these 40 marked states are all

targets and the search stops.

In these experiments, both of them obtain 100% accuracy. Considering the qubits consumption,
the number of qubits used will be reduced to 12 in the 4'h iteration in our algorithm. The QVC of
the original Grover’s search is 14 x 15 = 210 (it calls Grover’s operator 15 times, and every time it
utilizes 14 qubits, 7 qubits are used for key and value respectively). For the created algorithm, the

QVCis 14x1 + 14x2 + 12x1 + 12x2=78, which gains a 62.9% reduction.
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6.3.3 50 Marked States

In this experiment, the marked states are set to be 50. In the first iteration, same as the 40 duplicates
experiment, 14 qubits are required for encoding and preparing a statevector of length 2!, Figure 6.7
(d) and Figure 6.8 (b) shows that both algorithms can successfully find all 50 marked states.
Considering the original Grover’s algorithm, it calls Grover’s operator 15 times since its optimal
invocation number is 14. Comparing with our created algorithm: Since it terminates at iteration 4

and performs 6 invocations (1,2,1,2 respectively), it is able to reduce 57.14% of the invocations.

Figure 6.8 gives the iterative process of the original Grover algorithm. Figure 6.8 (a) illustrates
the results after the 6" invocation, which can allocates 50 targets. Compared with Figure 6.7, 16 non-
solutions are filtered out after the first iteration, and the problem set is reduced to 84 for the encoding
in the second iteration, and it is further reduced to 57 at the end of the second iteration. In the third

iteration, the algorithm successfully finds all the 50 marked states. Since the system is unable to
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determine the targets found are marked states, we performed the fourth iteration. Since targets found
after the fourth iteration are exactly the same as the third iteration, we said these 50 data points found

are the marked states and the loop terminated.

To evaluate the algorithm based on these experiments, both obtain 100% accuracy. Considering
the qubits consumption, the number of qubits used will be reduced to 12 in the 4'A iteration in our
algorithm. The QVC of the original Grover’s search is 14 x 14 = 196 since it calls Grover’s operator
14 times and every time it utilizes 14 qubits, 7 qubits are used for key and value respectively. For the

created algorithm, the QVCis 14x1 + 14x2 + 12x 1 + 12x2=78, which gains a 60.2% reduction.
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Fig. 6.7: Dataset: Length of 100 - 50 Duplicated Marked States (Created)

Figure 6.9 presents the TQuCS qubits consumption for three sets of experiments, in relative to
GSearch, of each invocation. We assume the consumption of GSearch is 1. At the first Grover’s
operator invocation, the consumption is always the same of both TQuCS and GSearch since they
have the same initial input size. GSearch’s input set remains as the algorithms proceed, and only the

probability of the individual data point updates after each call. The input set reduces with
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Table 6.1: Experiments on IBM-Q

Machines GSearch IQuCs
Belem | 4.38/4.43/4.92 | 4.31/9.11/13.51
Lima 6.28/6.73/7.15 | 6.36/12.62/19.21
Quito 4.21/4.56/4.75 | 4.47/8.42/13.04
Jakarta | 5.85/6.14/6.16 | 6.01/11.72/16.98

TIQuCs since it filters out data points iteratively. Therefore, it may require fewer qubits in the next

iteration. The shadowed spaces on the figure show the saved qubit resources of TQuCS.

GSearch

Relative Qubits Consumption

Data-10-Target-3

Data-100-Target-20

2 3 4 5 6 7 1 2 3 4 5 6 7 6 % 11 1213 W 5k U BB DA 2z I 23 4 5 6 7 6 90U LB LB

Data-100-Target-40

Number of Grover's Operator Invoked

Fig. 6.9: Qubits Consumption Comparison

6.4 1IBM-Q Experiments

We conduct the experiments on IBM-Q quantum computers with 5-qubits, Belem, Lima, and Quito,

and 7-qubits Jakarta. The value-only data is considered due to limited qubits. In these experiments,

we focus on the execution time and set the number of invocations to 1,3, and 5, the number of targets

to 1. Table 6.1 presents the results in seconds. When invocation is 1, they perform similarly since

both of them have only 1 iteration. GSearch’s time cost is stable and IQuCS grows. The reason is

that TQuCS requires multiple queries to the quantum computer, which has to compile and initialize

the circuits for each query that generates significant overhead. While the total number of invocations

reduces, the saved time cost fails to overcome the loss of multiple initialization phases.
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Chapter 7

CONCLUSION

This project studies a quantum index search problem within a quantum-classical system. Based on
the original Grover’s algorithm, we propose IQuCS that queries quantum computer iteratively and
process the quantum results on the classical part. With the assistance of classical computers,
IQuCsS can reduce the problem set for each query. Due to this reduction, IQuCS requires fewer
qubits. Through the iterative management, TQuCS achieves a reduction of qubit visualized
consumption, up to 66.2%, with reasonable accuracy. However, depending on the threshold value,
IQuCs may suffer from true negative scenarios, where targets are filtered out without a recovery

mechanism.

Our work provides a general step forward in quantum resource management for the future hybrid
quantum cloud era. With the improved consumption, the qubits can be shared with other users. There
is, however, still significant progress to be made in this domain. Depending on the threshold value,
IQuCs may suffer from true negative scenarios, where targets are filtered out without a recovery
mechanism. In addition, the initialization of each quantum iteration is an expensive operation in
the current NISQ era. Efficient collaboration and task distribution between quantum and classical

computers in a hybrid cluster should be investigated.
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