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Chapter 1

INTRODUCTION

Before big data systems were used flexibly, most organizations could not efficiently store or manage

their massive datasets due to the limited storage capacity and rigid management tools. In the past

decades, developing big data applications has become increasingly important since more

organizations from different industries, like healthcare systems and retailing systems, are

increasingly earning benefits from the data extracted from huge datasets [1], [2]. However, with the

explosion of data increases, the technical weaknesses of traditional techniques and platform

efficiency have gradually become prominent, which mainly include slow responsiveness and lack of

scalability, accuracy, and performance [3].

Big data-based systems have also been created and put in use since big data programming has

revolutionized the world as we know it over the past decades with the explosive increase in the

amount of data. In 2005, the Hadoop project was born. Hadoop was originally a project used by

Yahoo to solve the problem of web search. Later, due to the efficiency of the technology, it was

introduced by the Apache Software Foundation and became an open-source application [4]. Hadoop

uses the Hadoop Distributed File System (HDFS) as a reliable data storage service, as well as a

high-performance parallel data processing service using a technology called MapReduce, which

provides a foundation that enables fast and reliable analysis of structured and complex data [5].

1
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The multi-faceted improvement of computer performance has provided significant advancement

for computing system from various prospective, such as edge computing, mobile computing, deep

learning and resource management [6]–[33]. Despite such improvements in computational power,

until 2009, the learning process of deep learning models was still too slow for large-scale applications,

which forced scientists to limit the size of models and training examples [34]. The turning point for

this bottleneck breakthrough occurred when the training process of the neural network was ported to

the GPU for training, which generated an over 35x speed-up by 2012 and made Alexnet a considerable

success in 2012 Imagenet competition [35], [36]. In the training process of Alexnet in 2012, it trained

for 5-6 days by using 2 GPUs [36]. Another extreme example is the machine translation architecture

called ”Evolved Transformer”, which shows consistent improvements over the original Transformer

on four well-established language tasks [37]. In the process of training this model, it cost more than

2 million training hours on GPU with millions of dollars to run [35], [37]. These examples clearly

show that the cost of the researcher’s model training process is increasing.

When the bottleneck of traditional computing is gradually highlighted, the advantages of

computational power in other devices began to appear, including quantum computers. With recent

advanced in quantum hardware, many applications have been proposed to utilize quantum

computers [38]–[45].

A device performing quantum computations exploits the quantum states’ properties like

superposition and entanglement for calculations [46]. The concept of quantum computing was first

proposed by the famous physicist Richard Feynman in 1981 [47]and is arguably the one that

requires developers to make the most significant paradigm shift. In classical computing, bit is

defined as the most basic unit of information [48]; similarly, ”qubit” plays the same role in quantum

computing [46]. Considering the fundamentals of quantum computing, a qubit can produce a

coherent superposition of two logical states: |0〉 and |1〉. That is, a qubit can be in state |0〉, |1〉, or a

combination of both [49]. Considering a memory of N physical bits: in classical computing, devices

can only store one of 2N possible data. If it is a quantum type, it can store 2N data simultaneously.

As N increases, its ability to keep information increases exponentially. For instance, a quantum
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computer with 1024-qubit memory may store up to 21024 data.

Quantum computing has expanded traditional computing based on its most essential features:

quantum superposition and quantum coherence. The transformation implemented by the quantum

computer for each superposition component is equivalent to a classical calculation, which is

completed simultaneously and superimposed according to a certain probability amplitude to give the

output result of the quantum computer [50]. This feature is called quantum parallelism [51]. To

exploit quantum computers’ enormous parallel processing capabilities, scientists were working to

find efficient algorithms for quantum computing. In 1994, Shor discovered the first quantum

algorithm, which could efficiently do factorization for a large integer N [52]. In 1997, Grover

discovered another practical quantum algorithm for traversal search problems, which is suitable for

solving the following problem: finding a unique element with high probability that satisfies a

particular requirement from an unstructured set of N elements [53]. Thinking about the worst-case

in binary tree search in the classical algorithm, where the last element traversed in a set of data is the

target, the complexity is O(N) [54]. Compared with that, the complexity for Grover’s algorithm is

only O(
√
N) [53], which provides a quadratic speed-up.

A simple application is to find a specific name from a phone directory withN names in a random

order [53], [55]. Suppose there are 1 million names in the directory, and names will be searched

one by one with an average of 500,000 searches to find the desired phone number with a 1
2 chance

classically [53]. In Grover’s search algorithm, 1 million numbers are checked simultaneously per

query. Since 1 million qubits are in a superposition state, the effect of quantum interference will

cause the previous result to affect the next quantum operation. After the operation of this interference

generation is repeated 1000 times, i.e.,
√
N , the probability of obtaining the correct answer is 1

2 . With

a few more operations, the odds of finding the desired phone number are close to 1 [53], [55].

In this paper, we propose IQuCS, which tackles the problem from the input size point of view.

It considers a data set of (index, value) pairs and solely utilizes Grover’s algorithm to find the targets.

Based on each Grover’s iteration results, IQuCS attempts to filter out the pairs that are not likely to

be the searching targets and only send the remaining data points to the next iteration. Consequently,
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the input size in each iteration is different, and the required number of qubits would be reduced. With

fewer qubits iteratively, IQuCS provides the potential for a multi-tenant computing environment in

that multiple tasks can share limited qubits. The main contributions of this paper are summarized as

follows:

• We design and implement a quantum search algorithm in a hybrid system for the data set of

(index, value) pairs. It solely relies on Grover’s algorithm.

• With the reduced input size in each iteration, IQuCS is able to use fewer qubits to complete

the search.

• We conduct both simulations with Qiskit and experiments on IBM-Q. The results demonstrate

that it saves qubits consumption by up to 66.2%. Based on the results and analysis, we present

lessons learned.

The remainder of this paper is structured as follows: In section 2, we introduce the related works.

Section 3 presents the background of quantum computing and Grover’s algorithm. In section 4, we

detail to give the system design, and the design of the algorithm is provided in section 5. We provide

the experimental results in Section 6. In section 7, we give a summary of our work.
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Chapter 2

RELATED WORK

Grover’s algorithm, a quantum search algorithm that Lov K. Grover proposed in 1996, has been

increasingly applied to the field of big data in recent years. Scientists have made great efforts to

develop quantum-based applications in big data. In [56], authors introduced the implementation of

data-driven tasks on the IBM Quantum Computers. Their work presented a four qubits Grover’s

Algorithm application and used the testing results to show the current capabilities.

Compared to the original version of Grover’s Algorithm, research on improving Grover’s

Algorithm is also deepening. Grover’s algorithm is applied to the current number of targets in the

disordered quantum database, regardless of the meaning of the differences in each target. When the

targets exceed half of the total items in the dataset, the algorithm will fail. In [57], to solve this

problem, an improvement is proposed based on weighted indicators, in which each indicator is

assigned a weight coefficient according to its weight. With these different weight coefficients, each

will have equal probability with weights as quantum superposition for all target states. Then, make

the phase rotations in both directions the same and determine the inner product of the two states by

the superposition of the target amplitude and the system’s initial state. When the inner product is 1
2

or greater, the probability of finding the target will close to 100% with one Grover iteration.

For application, Grover’s algorithm also has corresponding research in big data. In [58],

5
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authors presented a quantum algorithm based on K-nearest neighbors using Hamming distance and

Grover’s algorithm for the recommendation system. They analyzed the correctness of the proposed

algorithm and pointed out its advantages, including exponential capacity system and response speed,

independent of the classical dataset in the quantum system. Besides, in machine learning, Grover’s

algorithm with a dynamic selection function can be used to build a recommendation system [59]. It

utilizes Hamming distance for item classification and uses Grover’s Algorithm to improve the

quality of recommendations. In addition, QuGAN [43] and QuClassi [38] claim to provide fabulous

performance in terms of model side; however, it is obtained with only 4 dimensional on the IBM-Q

platform, which is because NISQ quantum computers are low-qubits (5-7 publicly available) and

noisy machines.

Variants of quantum counting have been proposed to eliminate QPE [60]–[63], a qubit-expensive

operation. MLQAE [60] attempts to with multiple iterations of Grover’s algorithm that combines

with a maximum likelihood estimation. Wie et al. [61] utilizes Hadamard tests as less expensive

alternatives to QPE. A simplified quantum computing algorithm that works without QPE is proposed

in [62]; however, it introduces a large overhead. A recent effort, IQAE [63], can reduce the overhead

through postprocessing the quantum results iteratively and only relies on Grover’s operator.

IQuCS considers a quantum search problem of (index, value) pairs. From a different

perspective, it focuses on reducing the input data set by filtering out non-solutions iteratively and,

therefore, reducing the number of required qubits.
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Chapter 3

BACKGROUND AND MOTIVATION

3.1 Quantum State

As said, bits mathematically have states 0 and 1 in classical computing [48], and if a bit exists, its

state at some point must be one between them. In physics, bit can be represented as any kind of

physical system, as long as the physical system is always in one of two difference states. Computers

are made up of many bits, and similarly, quantum computers are made up of quantum bits, which are

also called qubits [64]. Like bits, qubits also have states, which can be represented as vectors that

exist in a two-dimensional complex vector space. Theoretically, its state is represented by a column

vector of length 2, and the computational basis state can be written in Eq. (1) as

|0〉 =

 1

0

 |1〉 =
 0

1

 (3.1)

In quantum mechanics, the Bloch sphere, named after physicist Felix Bloch, is a geometric

representation of the space of pure states in a two-state system and is generally used when discussing

qubits. Points on the sphere correspond to the pure states of the system, while the points inside it

correspond to the superposition. Since |0〉 and |1〉 are the computational basis states of the qubits,

7
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i.e., they are a set of basis for the quantum state space, any qubit |e〉 can be expressed in the form

α|0〉 + β|1〉, where α and β are two complex numbers whose sum of squares of the absolute value

equals 1, that is, |α|2 + |β|2 = 1 [46].

For instance, suppose

|q0〉 =

 1√
2

i√
2

 , (3.2)

|q0〉 can be represented by |0〉 and |1〉 as

|q0〉 =
1√
2
|0〉+ i√

2
|1〉 (3.3)

Intuitively, qubits can be considered as a superposition of classical bit.

3.2 Qubits Representation

In quantum computing, Statevector is used to describe the state of a quantum system. Statevector

is a vector which contains elements that representing the probability of finding a certain target in a

certain condition. For instance, in classical computing, representing a target on x-axis at position 6

can be written as x = 6. In quantum computing, the representation is more complicated. Since each

element in the statevector represents the possibility of target appearing, a target at position 6 will be

represented as

Statevectorexample =



0

...

1

...

0


(3.4)

where 1 represents the probability of target being at position 6.
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3.3 Quantum Logic Gates

A quantum gate is fundamental in the computational model of quantum computing, especially

quantum circuits, which operate on a small number of qubits. Like the relationship between

traditional logic gates and digital circuits, quantum logic gates is the basis of quantum circuits.

Quantum gates can modify the state of qubits by taking one or more qubits to transform the state of

them and get the desired output. It is worth noting that the number of inputs and outputs should be

equal. That is, qubits cannot be swallowed. The quantum gates used for designing the algorithm are

introduced below.

3.3.1 Single Qubit Gates

Quantum NOT gate, denoted as X gate, is a generalization of the classical NOT gate, which does the

rotation around x axes of the Bloch sphere and swaps the coefficients of the two basis vectors on a

single qubit.

NOT (α|0〉+ β|1〉) = α|1〉+ β|0〉 (3.5)

In other words, a single input-output quantum gate can be represented by a matrix of 2 × 2.

After passing through the quantum gate, the state of a quantum gate is determined by multiplying

the quantum state vector left by the value of the quantum gate matrix. The matrix corresponds to the

quantum NOT gate (X gate) is [46]

UX =

0 1

1 0

 (3.6)

Thus, the result of a qubit after NOT gate (X gate) conversion is

UX

α
β

 =

0 1

1 0


α
β

 =

β
α

 (3.7)
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Except for X-gate, single qubit gates also include Y-gate and Z-gate, which rotate around the

Bloch sphere’s y and z axes. Here, Y-gate converts |0〉 to i|1〉 and |1〉 to −i|0〉. Z-gate leaves the

base state |0〉 unchanged and replaces |1〉 to −|1〉. Mathematically, they can be represented as a

superposition of [46]

UY =

 0 −i

i 0

UZ =

 1 0

0 −1

 (3.8)

Hadamard gate (H gate) also acts on individual qubits, which can decompose existing quantum

states by coefficients [46]:

H(α|0〉+ β|1〉) = α+ β√
2
|0〉+ α− β√

2
|1〉 (3.9)

It is represented by matrix as

UH =

√
2

2

1 1

1 −1

 (3.10)

and can convert |0〉 to |0〉+|1〉√
2

and |1〉 to |0〉−|1〉√
2

. Since each column of H-gate matrix is orthogonal,

we have HH∗ = I , where I is the identity matrix and thus H is a unitary matrix [46].

3.3.2 Multi-Qubit Gates

Computer programming is full of conditional statements; in quantum computing, we also expect

qubits to interact with each other, which requires quantum gates involving two or more qubits, where

one or more qubits are considered as control bits for some operation.

One of those representatives is controlled NOT gate (CNOT gate) on two qubits, where the

second qubit performs a NOT operation when the first qubit is |1〉, otherwise remains unchanged.

Mathematically, it can be represented by α|00〉+ β|01〉+ γ|10〉+ θ|11〉, where |00〉, |01〉, |10〉, and
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|11〉 are column vectors of length 4. This also needs to satisfy the normalization condition, that is,

|α|2 + |β|2 + |γ|2 + |θ|2 = 1. Mathematically, CNOT gate can be represented as [46]

CNOT (α|00〉+ β|01〉+ γ|10〉+ θ|11〉) = α|00〉+ β|01〉+ γ|11〉+ θ|10〉 (3.11)

The matrix can represent this gate:

UCNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


(3.12)

Another gate with similar logic to CNOT gate is CCNOT gate, which also called Toffoli gate.

Toffoli gate has 3 qubits as input. If the first two qubits are 1, it will invert the third qubit, otherwise

all qubits remain the same [46]. Same as other quantum gates, Toffoli gate also can be expressed as a

matrix.

UToffoli =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0



(3.13)

SWAP gate, another two-qubit operation, based on the basis |00〉, |01〉, |10〉, and |11〉, can be
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represented by the matrix as [46]:

USWAP =



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


(3.14)

3.3.3 Application: Quantum Half-Full Adder

Different combinations of quantum gates can be used to achieve different effects, and half adder is

one of them. In classical computers, a half-full adder is a logic circuit used to implement addition

operations on two single binary digits, which includes two outputs: Sum (denoted as S) and Carry

(denoted as C). Therefore, the sum of these two single binary digits can be expressed as 2C + S in

decimal system [65]. We designed a simple half adder using an XOR gate to generate S and an AND

gate to generate C with the following steps.

Since classical logic gates, XOR gate and AND gate are not quantum gates, we need to

implement AND gate in the quantum circuit through the quantum operator and then combine them

to implement the quantum half-adder. The exclusive OR gate (XOR gate) in the digit logical circuit

is a gate that implements the following functions: if both inputs are false or true, the output is false;

otherwise, the output is true [66].

Fig. 3.1: Quantum Half-Full Adder Circuit for Input |0〉,|1〉
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The X gate changes the initial states of the quantum half-full adder. As defined, X gate can flip

the quantum state [46]. Since Qiskit’s default qubits are initially in the state |0〉, and the half-adder

inputs require either |0〉 or |1〉, X gate is needed to do this flip. Figure 3.1 shows the circuit to do a

simple quantum half-full adder circuit with inputs are |0〉 and |1〉. Above all, the X gate converts the

initial state of qubit q1 from |0〉 to |1〉.

As noted before, the CNOT gate flips the value on the second qubit depending on the state of

the control bit [46]. If the value of the control bit is 1, we do the flip. Otherwise, the qubit’s value

remains the same. Therefore, in quantum computation, the XOR gate can be implemented directly

through the CNOT gate. Considering AND operation, in this case, AND operation happens between

qubits q0 and q1. The result of AND operation between q0 and q1 is XOR with qubit q2. If the state

of q2 always is |0〉, there is no flip on the AND operation.

Fig. 3.2: Result of Quantum Half-Full Adder Circuit for Input |0〉,|1〉

Finally, we put these gates all into the same circuit, do the measurement, and store the result in

bits c. By repeating this experiment 1024 times, Figure 3.2 shows the bar graph of the measurement

results for input |0〉 and |1〉, where 0 is the carry (C), and 1 is the sum (S).

By changing the value of the input, other results of the half adder can also be calculated, which
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Table 3.1: Quantum Half Adder Performance Results

Inputs Outputs
Input 1 Input 2 C S

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

are listed in Table 3.1.

3.4 Quantum Entanglement

In quantum mechanics, when several particles interact with each other, the properties of each

particle cannot be described individually since the properties of each particle have been integrated

into the overall property. However, the properties of the overall system can be described. This

phenomenon is called quantum entanglement, which only occurs in quantum systems [67]. That is,

through entanglement, if the measurement determines the state of one qubit, the state of the other

qubit can be determined instantaneously. This operation uses ⊗ to represent. With ⊗, the CNOT

gate can be represented as:

UCNOT =

1 0

0 0

⊗
0 0

1 0

 (3.15)

A typical example of an entangle state is the bell state [46]:

|β00〉 =
|00〉+ |11〉√

2
(3.16)

Bell state consists of two quantum registers, which include the direct product of two |1〉 states and

the direct product of two |0〉 states. If doing the measurement of the Bell state, the result can only be

chosen from two. Considering probability, the probability of getting |00〉 state and |11〉 state are both

50%. Mathematically, if a quantum state |φ〉 exists |φ〉 = |a〉 ⊗ |b〉, the state is defined as a separable

state; otherwise, the state is considered as entangled [68]. In bell state, since it is impossible to find
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|a〉 and |b〉 such that |Bell State〉 = |a〉 ⊗ |b〉, it is an entangled state.

3.5 Grover’s Algorithm

Grover’s algorithm is a practical quantum search algorithm that quadratic speeds up an unstructured

search problem, which finds the probability of each element. It has the complexity of O(
√
n), where

N represents the number of elements in the search space, and has a quadratic speedup compared

to the classical search O(N) [53]. In short, the framework of Grover’s algorithm is to construct an

easy-to-implement operation G so that the initial state can gradually approach the target state under

the iteration of the operation and then obtain the search result by measuring the target state [46].

Suppose all the data are stored in the database and the number of qubits is n, the index of each

data in the database can be processed. Here, a total of 2n data is represented, which is counted as N .

Suppose there are M data will be obtained from the search. To indicate whether it is the result of our

search, we create a function:

f(x) =


1 for x = x0

0 for x 6= x0

(3.17)

Where x0 is the value of our search target. When we search for our target, our function value f(x) is

set to 1; otherwise, it is 0.

An oracle O is defined as a ”black box” function that can be used as an input for another

algorithm. With oracle, by considering x = (x0, x1, ...xn) as a binary input, oracle is defined as a

classical function f : {0, 1}n → {0, 1}m, which takes input with n-bit binary and generates output

with m-bit binary [69]. In Grover’s algorithm, a quantum oracle can identify the solution of the

search problem by adding a negative phase to the solution state. That is, for every state |x〉:

Uφ|x〉 =


|x〉 for x 6= φ

−|x〉 for x = φ

(3.18)
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where Uφ is a diagonal matrix. In Uφ, the entry corresponding to the target item will have a negative

phase [46].

Amplitude amplification makes the algorithm works. Start with a uniform superposition that

constructed by |s〉 = H⊗n|0〉n and represented as |s〉 = 1√
N

∑N−1
x=0 |x〉, whereN = 2n, the reflection

angle can be calculated. Suppose vectors |φ〉 and |s′〉 are perpendicular, the uniform superposition

can be written as |s〉 = sinθ|φ〉+ cosθ|s′〉. Thus, the reflection angle is

θ = arcsin〈s|φ〉 = arcsin
1√
N

(3.19)

Then, we apply the oracle reflection Uf to the uniform superposition, which corresponds to a

reflection of the state |s〉 about |s′〉. That is, the amplitude in front of |φ〉 because negative. Similarly,

applying another reflection Us to the state |s〉, where Us = 2|s〉〈s| − 1, which maps the state to

UsUf |s〉. After n steps, we will get the state |φn〉, where |φn〉 = (UsUf )
n|s〉 [46].

3.5.1 Grover’s Application: 4 qubits with one marked state |1111〉 from scratch

Considering the case where N = 16. Since N = 2n and the number of qubits is calculated by

n = log2N , we need 4 qubits in this application. For the reflection angle, we have

θ = arcsin
1√
16

=
π

4
(3.20)

After n steps, we have

(UsUφ)
n|s〉 = sinθn|φ〉+ cosθn|s′〉 (3.21)

where θn = (2t+ 1)θ.

Suppose we are looking for the case |φ〉1 = |1111〉, Hadamard gates are needed to apply to the

four registered qubits, which put the qubits into a superposition and make the measurement of |0〉 and
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|1〉 with equal probability.

Uφ|s〉 = Uφ
1√
16

(|0000〉+ |0001〉+ |0010〉+ |0011〉+ |0100〉+ |0101〉+ |0110〉

+ |0111〉+ |1000〉+ |1001〉+ |1010〉+ |1011〉+ |1100〉+ |1101〉+ |1110〉+ |1111〉)

(3.22)

Oracle circuit will be implemented to the oracle circuit after all the qubits are initialized with the

H gate, and state |1111〉 will be marked.

Uφ|s〉 = Uφ
1√
16

(|0000〉+ |0001〉+ |0010〉+ |0011〉+ |0100〉+ |0101〉+ |0110〉

+ |0111〉+ |1000〉+ |1001〉+ |1010〉+ |1011〉+ |1100〉+ |1101〉+ |1110〉 − |1111〉)

(3.23)

The oracle circuit inverts the state’s amplitude of −1
4 and Pauli X gates are needed to apply for

certain qubits. For marked state |1111〉, oracle is created by applying a triple controlled Z gate to

qubit q3. The amplification circuit is created as follows:

• Apply H gates and Pauli X gates to all four qubits

• Apply a triple controlled Z gate to qubit q3

• Apply H gates and Pauli X gates to all four qubits

Through these steps, the full circuit for fining marked state |1111〉 is shown in Figure 3.3.

After run the circuit in Figure 3.3 on the simulator, we got the histogram of measuring the

probability of |1111〉 shown in Figure 3.4.

Considering the states, the state city graphs of the real and imaginary part of the density matrix

are shown in Figure 3.5.
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Fig. 3.3: Quantum Circuit of Measuring |φ〉 = |1111〉

Fig. 3.4: Probability Distribution of Measuring |φ〉 = |1111〉
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Fig. 3.5: State City of Measuring |φ〉 = |1111〉

3.5.2 Grover’s Application: 3 Qubits with the Multiple Marked States

Grover’s algorithm also can be implemented with multiple solutions in Qiskit. Considering an

example when N = 8 with 3 marked states. Again, since N = 2n and the number of qubits needed

is n = 3. Unstructured search with multiple solutions based on Grover’s algorithm is implemented

through the transformation of statevector. Data from the statevector can be a vector, circuit, or

instruction. If the data is a circuit or instruction, the statevector is constructed by assuming all the

qubits are initialized to the zero states. If the target value is found, we will flip the zero state in

statevector into one.

Suppose the marked state is |000〉,|101〉, and |110〉, the transformation of the statevector can be

represented as:

[0, 0, 0, 0, 0, 0, 0, 0]→ [1, 0, 0, 0, 0, 1, 1, 0] (3.24)

The histogram for this example is shown in Figure 3.6.

States can be visualized by Figure 3.7.

The number of iterations is another factor that affects Grover’s algorithm’s performance.

Suppose the size of the searching database is N and the number of marked states is t, the number of
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Fig. 3.6: Histogram of Measuring Multiple Marked States

Fig. 3.7: State City of Measuring Multiple Marked States
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iterations that gives the best results is marked as π
4 (

N
t )

1
2 [70]. However, more iterations do not mean

better results for Grover’s algorithm. Figure 3.8 shows the histogram for the same marked states but

with different iterations. Even though the number of iterations has increased from 1 to 4, the

performance of Grover’s Algorithm has become worse. With more iterations, the distribution of

probabilities has become more even, making it challenging to find the marked states.

Fig. 3.8: Comparison of Different Iterations
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Chapter 4

SYSTEM DESIGN

This chapter discusses the problem setting and system architecture of IQuCS that includes its

framework, design logic and functionalities of key modules.

In IQuCS, we consider a given set of initial values as inputs, {v1, ...vi..., vn} ∈ I . For each

value, it is associated with its index. Therefore, the data set container (index, value) pairs. Specified

by the users, some of the values, {vi, ...vj} ∈ GS, are defined as searching targets. The goal is to

find the indexes of targets. Therefore, both indexes and values will be involved.

We utilize Grover’s search algorithm to complete the task. However, the original algorithm only

amplifies the amplitude of the targeted states. It fails to determine and output the targets and indexes

directly. Additionally, since both indexes and values need to be encoded, the qubit requirement is

larger than value-only searches. Thus, our objective is to output the targeted (index, value ) pairs and

reduce the number of required qubits.

Figure 4.1 illustrates the architecture of the proposed system. As a quantum-classic hybrid

system, it consists of two main components, the classical computer side, and the quantum computer

side. The data join the system from the classical component, where the Index Generation module is

responsible for indexing the unstructured raw data (Algorithm 1). In the first iteration, the generated
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Fig. 4.1: System Architecture

indexes are designated as original indexes. Next, the data is sent to Value Generation module. It

basically maps original data points to their new values in each iteration (Algorithm 2). In our design,

the values update iteratively while the search goes on. Then, the (index, value) pairs are encoded onto

qubits in the Data Encoder module, and then the quantum circuit is generated for the current iteration

on the classical computer.

This circuit is passed to a quantum computer, where Grover’s search algorithm is conducted with

a given number of amplitude amplification. The quantum states are measured and transferred back to

the classical component for further processing at the end of the search.

Upon receiving the results, Quantum State Analysis module is activated to perform Algorithm 3.

If the algorithm finds all solutions, their original indexes will be returned. Otherwise, it conducts

the filtering to ensure that only the potential solutions enter the next iteration. With this feature,

the problem set is reduced in when Index Generation and Value Generation modules are called in

the second and following rounds. Therefore, less number of qubits are required to continue the

search. Meanwhile, the mappings between current indexes and original indexes and current values

and original values are maintained.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 September 2022                   doi:10.20944/preprints202209.0358.v1

https://doi.org/10.20944/preprints202209.0358.v1


Chapter 5

SOLUTIONS

Table 5.1: Notation Table

I Input data.
GS The set contains searching targets.
vi The ith values in the data set.
Vj The input data set at iteration j.
Gi The input [index, value] set at iteration i.
NSi The set that stores nonsolutions at iteration i.
PSi The set that stores potential solutions at iteration i.
OI The original index function that returns indexes of V1.
OV The original value function that returns value of V1.
NI The new index function that stores latest indexes of vi.
NV The new value function that stores latest values of vi.
MpaI Mappings between original indexes and current indexes.
MpaV Mappings between original values and current values.
Rvi The quantum state fidelity of vi.
Ts The filtering threshold.

5.0.1 IQuCS Algorithms

Searching for indexes of targeted values is a common task. Algorithm 1 assigns indexes for the

given dataset iteratively and keeps mapping the original index with its current value. In the first

iteration, the system calls OI , a function that stores Original Indexes, to set their initial values to −1,

which indicates the not-available status (Lines 1-3). For every data point in V1, starting from 0, it

24

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 September 2022                   doi:10.20944/preprints202209.0358.v1

https://doi.org/10.20944/preprints202209.0358.v1


25

Algorithm 1 Generating Indexes, GenI(Vi)
1: Inputs: Vi, j = 0

2: if i = 1 for Vi then
3: OI(V1) = −1
4: for all vj ∈ V1 do
5: OI(vj) = j
6: MapI ← [j, j]
7: Call GenV(vi);
8: j ++
9: end for

10: else if i 6= 1 then
11: for all vi ∈ Vi do
12: if OI(vi) 6= −1 then
13: NI(vi) = j
14: MapI ← [i, j]
15: Call GenV(vi, j);
16: j ++
17: end if
18: end for
19: end if

incrementally sets indexes, stores mapping of current indexes with its original values in MapI , and

calls Algorithm 2 to pair each index with its corresponding data value (Lines 4-9).

Due to the data filtering process, the system requires regenerating indexes in the following

iterations. In the ith iteration, the algorithm neglects invalid data points that indicate by negative

indexes in the previous round. For valid data points, it regenerates indexes incrementally, updates the

mapping of the original index, i, with its latest value, j, in MapI , and assigns them to NI (Lines

10-14).

Next, it invokes GenV function to pair the new index with its corresponding data value (Lines

12-18). In our system, OI always stores original indexes of filtered data points in V1 and NI is

updated iteratively to store the latest indexes. With this design, the volumn of indexes decreases as

the search process continues. With fewer indexes, the required number of qubits is consequently

reduced.
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Our system utilized Algorithm 2 to further reduce the qubit requirement by mapping original

data values to their new values iteratively. When GenI function calls it for the first time, GenV

pairs each value vi in V1 with its corresponding value j. The paired data is stored in G1, which

serves as the input for the quantum search algorithm (Lines 1-7). For the following iterations, it

checks original indexes for each data point. If −1 is found, it means that this data point is marked

as a nonsolution and has been filtered out in the previous round. GenV ignores nonsolutions. For

remaining data points with positive indexes, they are potential solutions and GenV adds them to set

PSi (Lines 8-11). Next, the system searches for vj’s original value vo by using the function OV that

stores the original mapping in v1 (Line 12). Then, a rank function is employed to generate new values

based on its original value, vo. This rank function maps the values of potential solutions to their new

values in a fixed-length according to the number of elements in PSi. The new values are stored in

NV . Furthermore, Mapv updates vo’s latest value to NV (vo) (Line 13-15). Finally, the new index j

along with its corresponding new value (NV (vo)) is inserted to Gi that serves as the input of the next

iteration (Lines 16-18).

Based on the previous steps of GenI and GenV , Algorithm 3 performs an iterative quantum

search. Initially, the input dataset is sent to GenI , which calls GenV to generate the paired input set

G1. It only happens in the first iteration, when i = 1 (Lines 1-2).

Next, the system invokes Grover’s search with Gi as the input and GS as the searching targeted

set. When i is an odd number, iteration is set to 1; otherwise, it is set to 2. This means that the

Grover’s operator will be invoked either 1 or 2 times depending on the value i. (Line 4-5). Please

note that Gi consists of both values and indexes in their quantum states. The resulting quantum state

fidelities are stored in R (Lines 6). By analyzing results, there are two scenarios.

• We first define the mean value to be the average of all possible data points in Gi, which

deternines by the number of encoding qubits dlog2 |Gi|e. When the state fidelity of vj is lower

than the mean value multiplied by a threshold, Ts, of all possible data points in Gi, which

deternines by the number of encoding qubits dlog2 |Gi|e, it indicates that vj is unlikely to be

the solution. Therefore, the algorithm adds it to the nonsolution set NS and resets its index
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Algorithm 2 Generating Values (GenV)
1: Inputs: V, j = 0

2: if i = 1 for Vi then
3: for all vj ∈ V1 do
4: OV (vi) = vi
5: MapV ← [vi, vi]
6: G1 ← [j, vi]
7: end for
8: Return Gi;

9: else if i 6= 1 then
10: for all vj ∈ Vi do
11: if OI(vj) 6= −1 then
12: PSi ← vj
13: vo = OV (vj)
14: NV (vo) = Rank(vo)
15: MapV ← [vo, NV (vo)]
16: Gi ← [j, NV (vo)]
17: end if
18: Return Gi
19: end for
20: end if

value to −1. A negative index value suggests that this data point has been filtered out and will

not get involved in the further iterations (Lines 7-10).

• When the state fidelity of vj is higher than the mean value, the corresponding data point is a

potential solution. In this case, it will be added to the PSi set for further processing (Lines

11-14).

Next, potential solutions of the current iteration is compared with the previous iteration. There

are two cases of comparison.

• If they are identical, it means that the algorithm has converged. Then, the current indexes of

all vi ∈ PSi are inserted to S. With S, the algorithm finds out original indexes of all solutions

(Lines 15-19).

• When they have the difference, it suggests that the results are not stable. The algorithm will
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Algorithm 3 Iterative Quantum Search
1: Initialization: I = Initial Inputs
2: G1 = GenI(I)
3: i = 1

4: while true do
5: GroversSearch(Gi, GS, (i+ 1) mod 2 + 1)
6: Update quantum state fidelities in R
7: for vj ∈ {Gi} do
8: if Rvj <

1
2dlog2 |Gi|e

× Ts then
9: NSi ← vj

10: OI(vj) = −1
11: else
12: PSi ← vj
13: end if
14: end for
15: if PSi = PSi−1 then
16: for all vi ∈ PSi do
17: S ← Gi(vi)
18: end for
19: Return MapI(S)
20: else
21: Vi = Vi −NSi
22: Gi = GenI(Vi)
23: i = i+ 1
24: end if
25: end while

eliminate nonsolutions from the input. Then, it invokesGenI for the next iteration on a reduced

dataset (Lines 20-25).
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Chapter 6

EVALUATION

This section presents our IQuCS implementation details and results from intensive Qiskit simulations

and experiments on IBM-Q.

6.1 Experimental Framework and Evaluation Metrics

We implement IQuCS with Python 3.8 and IBM Qiskit Quantum Computing simulator package.

The Aer simulator is used as the backend to simulate a noise-free environment. The Grover’s search

module is constructed from Qiskit’s amplitude amplifiers APIs. We set the number of shots to 12,000

and set threshold, Ts = 0.85.

The most common words in English [71] are encoded with their ranks into binaries, which act

as values in our evaluation. For each data point, its initial index is the same as its value. Therefore,

our workload is a data set of (key, value) pairs.

We consider two types of search scenarios, (1) The values in the data set are unique; (2) There

are duplicates in the data set. Both single- and multiple-target settings are involved.

The results are compared with the original Grover’s search algorithm. To presume the best
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performance, we use optimal num iterations method to calculate the iteration number that requires

knowing the number of targets beforehand. Please note that this information is NOT available to

IQuCS. To determine the targets, it utilizes the same filter as IQuCS. For a specific value, if its

probability is higher than the mean value (Line 8 in Algorithm 3 when i = 1) multiplies Ts, we

assume it is a target. In the rest of this section, we use GSearch to represent this solution.

To analyze the results, we consider two metrics: (1) Accuracy; (2) Number of invocations of

Grover’s operator, which is called repeatedly for amplitude amplification; (3) Qubit-Virtualized

Consumption (QVC); The QVC for original Grover’s algorithm is straightforward since it only has

one round of Grover’s operator invocations. QV C = Nq × I , where Nq is the number of qubits to

execute the algorithm, and I is the calculated optimal number of Grover’s operator invocations. The

VCR is defined by the equation, QV C =
∑i=n

i=1 Ci ×Nqi , where i is the iteration number, Ci is the

number of Grover’s operator invocations at iteration i and Nqi is the number of qubits at iteration i.

6.2 Dataset: 10 Entries - 3 Unique Marked State

By filtering data points, iterations can be ended in three rounds. Because of redundancy, the

statevector prepared for Grover’s circuits is a list of zeros with a length of 28, and the number of

qubits needed for Grover’s circuit is 8. If the target was found, the statevector represents this target

will flip from |0〉 to |1〉. Figure 6.1 illustrates the probability changes in three rounds. Each bar in the

figure represents the probability of a key-value pair, where the highest three bars in this case

represent the marked states. To get the best experimental results, we set the iterations of Grover’s

operator invoked as 1, 2, 1, respectively. After filtering in the first round, there are 4 data points left

in the dataset. The remaining data point will be re-encoded and run in the constructed Grover’s

circuit again. In this case, the number of qubits has been reduced by 2. Since the marked states are

found in the second round, only one more round of iteration is needed to do the verification.

As said, Grover’s algorithm implements the unstructured search through amplitude

amplification. Figure 6.2 illustrates the probability distribution of invocation = 4 and
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(a) Iteration 1 - Invocation 1

(b) Iteration 2 - Invocation 3

(c) Iteration 3 - Invocation 4

Fig. 6.1: Dataset: Length of 10 - 3 Marked States (Created)
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invocation = 7, which calls Grover’s operator 4 and 7 times respectively. Note that the optimal

invocation number is 7, which generates Figure 6.2 (b), where the target’s probabilities are more

than 300x times more than others. In Figure 6.1 (c), the difference is much smaller, where the

non-solution with the highest probability is 2.5x times lower than the lowest one among the targets.

(a) Iteration 1 - Invocation 4

(b) Iteration 1 - Invocation 7 (Optimal)

Fig. 6.2: Dataset: Length of 10 - 3 Marked States (Original)
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6.3 Dataset: 100

We expanded the amount of data to conduct similar experiments and evaluated the algorithm. Here,

the data size is 10x larger than in the previous experiment.

6.3.1 20 Marked States

Marked states are 20 duplicated numbers. In the first iteration, 14 qubits are needed for the key-value

pair encoding, and the length of the statevector is 214. In the last iteration, the number of qubits

will be reduced to 10. With a running constructed circuit through 12,000 repetitions, 16 states are

found after filtering, matched with the target states. Figure 6.3 shows the probability distribution in

different iterations. In this experiment, 17 data points are found, including 1 false-positive error and

4 false-negative errors.

In the first iteration, the data points after filtering are 65 since the other 35 data points are

excluded. By this time, the remained data contains all 20 solutions. The same situation happens in

iterations 2-4, an additional 43 of the remaining data points are filtered out, all non-solutions.

However, at iteration 5, another 5 data points including 3 marked states are excluded.

Figure 6.4 gives the probability distribution of invocation as 9 and 22 respestively. With the

optimal invocation, invocation = 22, Grover’s operator is called by 22 times. The number of

targets found is 20, which matches the expected marked states. In terms of accuracy, our algorithm

gains 97%, and the original Grover’s algorithm achieves 100%. Consider QVC, GSearch’s QVC is

14× 22 = 308 and IQuCS’s QVC is 14× 1 + 14× 2 + 12× 1 + 10× 2 + 10× 1 + 10× 2 = 104,

which is a 66.2% reduction.
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(a) Iteration 1 - Invocation 1 (b) Iteration 2 - Invocation 3

(c) Iteration 3 - Invocation 4 (d) Iteration 4 - Invocation 6

(e) Iteration 5 - Invocation 7 (f) Iteration 6 - Invocation 9

Fig. 6.3: Dataset: Length of 100 - 20 Duplicated Marked States (Created)
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(a) Iteration 1 - Invocation 9

(b) Iteration 1 - Invocation 22 (Optimal)

Fig. 6.4: Dataset: Length of 100 - 20 Duplicated Marked States (Original)
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6.3.2 40 Marked States

In this section, we replaced the marked states with 40 duplicates. Again, in the first iteration, 14

qubits are required for encoding and preparing a statevector of length 214. Figure 6.5 (d) and

Figure 6.6 (b) shows that both algorithms can successfully find all 40 targets. Consider the original

Grover’s algorithm, which requires 1 iteration, the optimal invocation number 15 makes it call

Grover’s operator 15 times. Comparing with our created algorithm: Since it terminates at iteration 4

and performs 6 invocations (1,2,1,2 respectively), it can reduce 60% of the invocations.

Figure 6.6 gives the iterative process of the original Grover algorithm. Figure 6.6 (a) shows the

results after the 6th invocation, which can allocates 41 targets. Compared with Figure 6.5, 15 non-

solutions are filtered out after the first iteration, and the problem set is reduced to 85 for the encoding

in the second iteration, and it is further reduced to 50 at the end of the second iteration. In the third

iteration, the algorithm successfully finds all the 40 marked states. However, the system has no clues

to decide the number of correct solutions. Based on Algorithm 3, the fourth iteration is performed,

and the same 40 marked states are returned, which determines that these 40 marked states are all

targets and the search stops.

In these experiments, both of them obtain 100% accuracy. Considering the qubits consumption,

the number of qubits used will be reduced to 12 in the 4th iteration in our algorithm. The QVC of

the original Grover’s search is 14 × 15 = 210 (it calls Grover’s operator 15 times, and every time it

utilizes 14 qubits, 7 qubits are used for key and value respectively). For the created algorithm, the

QVC is 14×1 + 14×2 + 12×1 + 12×2=78, which gains a 62.9% reduction.
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(a) Iteration 1 - Invocation 1 (b) Iteration 2 - Invocation 3

(c) Iteration 3 - Invocation 4 (d) Iteration 4 - Invocation 6

Fig. 6.5: Dataset: Length of 100 - 40 Duplicated Marked States (Created)

6.3.3 50 Marked States

In this experiment, the marked states are set to be 50. In the first iteration, same as the 40 duplicates

experiment, 14 qubits are required for encoding and preparing a statevector of length 214. Figure 6.7

(d) and Figure 6.8 (b) shows that both algorithms can successfully find all 50 marked states.

Considering the original Grover’s algorithm, it calls Grover’s operator 15 times since its optimal

invocation number is 14. Comparing with our created algorithm: Since it terminates at iteration 4

and performs 6 invocations (1,2,1,2 respectively), it is able to reduce 57.14% of the invocations.

Figure 6.8 gives the iterative process of the original Grover algorithm. Figure 6.8 (a) illustrates

the results after the 6th invocation, which can allocates 50 targets. Compared with Figure 6.7, 16 non-

solutions are filtered out after the first iteration, and the problem set is reduced to 84 for the encoding

in the second iteration, and it is further reduced to 57 at the end of the second iteration. In the third

iteration, the algorithm successfully finds all the 50 marked states. Since the system is unable to
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(a) Iteration 1 - Invocatioin 6

(b) Iterations 1 - Invocation 22 (Optimal)

Fig. 6.6: Dataset: Length of 100 - 40 Duplicated Marked States (Original)
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determine the targets found are marked states, we performed the fourth iteration. Since targets found

after the fourth iteration are exactly the same as the third iteration, we said these 50 data points found

are the marked states and the loop terminated.

To evaluate the algorithm based on these experiments, both obtain 100% accuracy. Considering

the qubits consumption, the number of qubits used will be reduced to 12 in the 4th iteration in our

algorithm. The QVC of the original Grover’s search is 14× 14 = 196 since it calls Grover’s operator

14 times and every time it utilizes 14 qubits, 7 qubits are used for key and value respectively. For the

created algorithm, the QVC is 14×1 + 14×2 + 12×1 + 12×2=78, which gains a 60.2% reduction.

(a) Iteration 1 - Invocation 1 (b) Iteration 2 - Invocation 3

(c) Iteration 3 - Invocation 4 (d) Iteration 4 - Invocation 6

Fig. 6.7: Dataset: Length of 100 - 50 Duplicated Marked States (Created)

Figure 6.9 presents the IQuCS qubits consumption for three sets of experiments, in relative to

GSearch, of each invocation. We assume the consumption of GSearch is 1. At the first Grover’s

operator invocation, the consumption is always the same of both IQuCS and GSearch since they

have the same initial input size. GSearch’s input set remains as the algorithms proceed, and only the

probability of the individual data point updates after each call. The input set reduces with
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(a) Iteration 1 - Invocation 6

(b) Iterations 1 - Invocation 15 (Optimal)

Fig. 6.8: Dataset: Length of 100 - 50 Duplicated Marked States (Original)
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Table 6.1: Experiments on IBM-Q

Machines GSearch IQuCS
Belem 4.38/4.43/4.92 4.31/9.11/13.51
Lima 6.28/6.73/7.15 6.36/12.62/19.21
Quito 4.21/4.56/4.75 4.47/8.42/13.04

Jakarta 5.85/6.14/6.16 6.01/11.72/16.98

IQuCS since it filters out data points iteratively. Therefore, it may require fewer qubits in the next

iteration. The shadowed spaces on the figure show the saved qubit resources of IQuCS.

Fig. 6.9: Qubits Consumption Comparison

6.4 IBM-Q Experiments

We conduct the experiments on IBM-Q quantum computers with 5-qubits, Belem, Lima, and Quito,

and 7-qubits Jakarta. The value-only data is considered due to limited qubits. In these experiments,

we focus on the execution time and set the number of invocations to 1,3, and 5, the number of targets

to 1. Table 6.1 presents the results in seconds. When invocation is 1, they perform similarly since

both of them have only 1 iteration. GSearch’s time cost is stable and IQuCS grows. The reason is

that IQuCS requires multiple queries to the quantum computer, which has to compile and initialize

the circuits for each query that generates significant overhead. While the total number of invocations

reduces, the saved time cost fails to overcome the loss of multiple initialization phases.
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Chapter 7

CONCLUSION

This project studies a quantum index search problem within a quantum-classical system. Based on

the original Grover’s algorithm, we propose IQuCS that queries quantum computer iteratively and

process the quantum results on the classical part. With the assistance of classical computers,

IQuCS can reduce the problem set for each query. Due to this reduction, IQuCS requires fewer

qubits. Through the iterative management, IQuCS achieves a reduction of qubit visualized

consumption, up to 66.2%, with reasonable accuracy. However, depending on the threshold value,

IQuCS may suffer from true negative scenarios, where targets are filtered out without a recovery

mechanism.

Our work provides a general step forward in quantum resource management for the future hybrid

quantum cloud era. With the improved consumption, the qubits can be shared with other users. There

is, however, still significant progress to be made in this domain. Depending on the threshold value,

IQuCS may suffer from true negative scenarios, where targets are filtered out without a recovery

mechanism. In addition, the initialization of each quantum iteration is an expensive operation in

the current NISQ era. Efficient collaboration and task distribution between quantum and classical

computers in a hybrid cluster should be investigated.
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[67] F. Laloë, Do we really understand quantum mechanics? Cambridge University Press, 2019.

[68] L. Gurvits, “Classical deterministic complexity of edmonds’ problem and quantum

entanglement,” in Proceedings of the thirty-fifth annual ACM symposium on Theory of

computing, 2003, pp. 10–19.

[69] A. Gilyén, S. Arunachalam, and N. Wiebe, “Optimizing quantum optimization algorithms via

faster quantum gradient computation, 2017,” arXiv preprint arXiv:1711.00465,

[70] M. Boyer, G. Brassard, P. Høyer, and A. Tapp, “Tight bounds on quantum searching,”

Fortschritte der Physik: Progress of Physics, vol. 46, no. 4-5, pp. 493–505, 1998.

[71] Most common words, https://en.wikipedia.org/wiki/Most_common_words_

in_English.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 September 2022                   doi:10.20944/preprints202209.0358.v1

https://en.wikipedia.org/wiki/Most_common_words_in_English
https://en.wikipedia.org/wiki/Most_common_words_in_English
https://doi.org/10.20944/preprints202209.0358.v1

