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Abstract: Low-grade glioma (LGG) is a highly aggressive disease in the skull. On the other hand, 
anoikis, a specific form of cell death induced by the loss of cell contact with the extracellular matrix, 
plays a key role in cancer metastasis. In this study，anoikis-related genes (ANRGs) were used to 
identify LGG subtypes and to construct a prognostic model for LGG patients. In addition, we ex-
plored the immune microenvironment and enrichment pathways between different subtypes. We 
constructed an anoikis-related gene signature using the TCGA cohort and investigated the differ-
ences in clinical features, mutational landscape, immune cell infiltration, etc. between different risk 
groups. Kaplan-Meier analysis showed that the characteristics of ANRGs in the high-risk group 
were associated with poor prognosis in LGG patients. The risk score was identified as an independ-
ent prognostic factor. The high-risk group had higher immune cell infiltration, tumor mutation load, 
immune checkpoint gene expression, and ICB treatment response. Functional analysis showed that 
these high- and low-risk groups had different immune statuses and drug sensitivity. Risk scores 
were used together with LGG clinicopathological features to construct a nomogram, and DCA anal-
ysis showed that the model could enable patients to benefit from clinical treatment strategies. 
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1. Introduction 
Glioma is a relatively common primary tumor in the brain that originates mainly 

from glial cells in the brain tissue, and low-grade gliomas (LGG) account for about one-
third of all gliomas[1]. Low-grade glioma (LGG) is a diffusely infiltrating, slow-growing 
glial brain tumor that tends to have extensive genetic and transcriptional heterogeneity[2]. 
According to the Cancer Genome Atlas Project classification, "low-grade glioma" has 
taken the place of the phrase "lower grade glioma," which was formerly often used to refer 
to grade 2 gliomas[3]. LGG is usually considered to have a benign course, however, dif-
fuse low-grade gliomas (LGG) naturally transform into malignant high-grade gliomas, 
and once recurring and progressing to high-grade gliomas, they can greatly limit patient 
survival[4]. The poor prognosis and mortality associated with glioma are mainly due to 
the highly aggressive and mobile nature of the tumor cells, which can spread and spread 
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widely into the surrounding brain tissue[5]. To date, the molecular mechanisms of glioma 
invasion and migration are not fully understood[6]. The epithelial-mesenchymal transi-
tion (EMT) of glioma cells is a significant component contributing to the aggressiveness 
of high-grade gliomas. For prompt clinical interventions to halt the growth of the disease, 
more novel biomarkers are urgently required at an early stage to predict the prognosis of 
glioma patients. 

In the absence of extracellular matrix (ECM) attachment or when cells adhere to in-
appropriate sites, cells undergo a specific type of apoptosis called anoikis[7,8]. anoikis acts 
as an important defense for the organism by preventing shedding cells from re-adhering 
to incorrect locations and preventing their growth[7,9]. anoikis is becoming a hallmark of 
cancer cells and contributes to the formation of metastases in distant organs[10,11]. How-
ever, few studies have focused on the relationship between the process of anoikis and 
distant metastasis of LGGs. 

As a result, we created a prognostic scoring model based on ANRGs and concen-
trated on investigating the prognostic significance of anoikis-related genes (ANRGs) in 
LGG in this work. Further research was done on the variations in tumor microenviron-
ment across patients with this risk score. We evaluated the prognostic and immunological 
properties of various risk grouping groups using the 7-ANRGs signature that was created. 
The mechanisms underlying anoikis in LGG, as well as possible prognostic biomarkers 
for developing logical therapy regimens, may be better understood as a result of our find-
ings, we are confident. 

2. Materials and Methods 
2.1. Gene Expression and Clinical Data Acquisition 

Gene expression profiles of TCGA-LGG were downloaded from the UCSC Xena web-
site (https://xena.ucsc.edu/). 529 LGG tissue samples were available in the TCGA cohort. 
Gene expression profile data for the 443 patients with low-grade gliomas in the validation 
model were obtained from the China Glioma Genome Atlas (CGGA) data portal 
(http://www.cgga.org.cn/). In addition, normal control samples were obtained from The 
Genotype-Tissue Expression (GTEx) website (https://www.gtexportal.org/). FPKM data 
was finally transformed into transcript per million (TPM). Batch correction and integra-
tion of the two sets of gene expression data were performed with the "limma" and 
"sva"[12]packages. Detailed flow chart is shown in Figure 1. 

2.2. Acquisition of Anoikis-related Genes 
A total of 358 anoikis-related genes (ANRGs) were downloaded from the GeneCard 

database[13](https://www.genecards.org/) and Harmonizome portals[14]. Differential ex-
pression analysis of differentially expressed genes (DEGs) was performed for the TCGA 
cohort and different subgroups using the R software "limma" package with | log2FC |>1.0 
and FDR<0.05 as thresholds. 

2.3. Functional Enrichment Analysis 
Functional enrichment analysis We downloaded “c2. cp.kegg.v7.4. symbols. gmt” 

from the MSigDB database to carry out GSVA analysis. The “GSVA” R package was used 
to perform GSVA enrichment analysis[15]. In addition to this, functional enrichment anal-
ysis was performed by the "clusterProfiler" package in the R software, including Kyoto 
Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis. 

2.4. Consensus Clustering 
Consensus clustering was applied to identify distinct anoikis-related patterns relat-

ing to the expression of anoikis regulators by the k-means method. Thereafter, Uniform 
Manifold Approximation and Projection (UMAP) was used to validate the reliability of 
clustering with the R package “ggplot2”. 
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2.5. Selection of Characteristic Genes 
Two machine learning algorithms: random forest and SVM-RFE[16]were used to 

screen for signature genes. Recursive feature elimination (RFE) in the random forest algo-
rithm is a supervised machine learning method for ranking genes in LGGs. Predictive 
performance was estimated by tenfold cross-validation and genes with relative im-
portance > 0.25 were identified as feature genes. SVM-RFE is a small-sample learning 
method that essentially bypasses the traditional process of induction to deduction and 
enables efficient "transductive inference" from training to prediction samples, simplifying 
the usual classification and regression problems. 

2.6. Development and Validation of Prognostic Signatures 
First, accurate models were developed using the R package "sva" to eliminate batch 

effects between TCGA and CGGA data. Variables with p-values < 0.01 were selected for 
the least absolute shrinkage and selection operator (LASSO) regression analysis, and the 
number of genes in the final risk model was reduced by the R software package "glmnet". 
Finally, the genes from the LASSO regression were selected for the multivariate Cox re-
gression analysis and thus constructed according to the following equation: risk score = Ʃ 
(ð × Exp), where ð is the corresponding regression coefficient and Exp represents the ex-
pression value of each mRNA. All patients were divided into high-risk and low-risk 
groups according to the median risk score. Survival curves and risk maps were generated 
to show the survival differences and status of each patient by the R software, "survminer" 
and "ggrisk" packages. In addition, the CGGA cohort was used as an independent external 
cohort to validate the utility of the prognostic model. 

2.7. Estimation of the Tumor Immune Microenvironment of the Prognostic Signature 
CIBERSORT and ssGSEA R scripts were used to quantify the relative proportion of 

infiltrating immune cells[17]. We used CIBERSORT to estimate the proportion of immune 
cell types between the low-risk and high-risk groups. The sum of all estimated immune 
cell type scores in each sample equals 1. Meanwhile, spearman rank correlation analysis 
was applied to explore relationships between risk score values and immune infiltrating 
cells. 

2.8. Tumor immune Cycle and ICB Response 
We obtained the cancer-immune cycle-related gene set[18] from the website devel-

oped by Xu et al. (http://biocc.hrbmu.edu.cn/TIP/) and a set of genes positively associated 
with clinical response to the anti-PD-L1 drug (atezolizumab) from Mariathasan's study 
features[19]. 

2.9. Construction and Evaluation of a Predictive Nomogram 
The nomogram was created using risk ratings and clinicopathological features. For 

internal validation to confirm the accuracy, the calibration plot was executed. DCA, or 
decision curve analysis, was used to evaluate the clinical net benefit.[20]. In addition, we 
evaluated the accuracy of risk ratings in predicting 1-year, 3-year, and 5-year OS in LGG 
patients by plotting subject operating characteristic curves using the R software's "tim-
eROC" package. 

2.10. Tumor Immune Single Cell Hub Database 
An extensive single-cell RNA-seq database devoted to the TME is available online 

under the name Tumor Immune Single-Cell Hub (TISCH; http://tisch.comp-ge-
nomics.org)[21]. Utilizing this database, comprehensive research on TME heterogeneity 
in diverse data sets and cell types was done. 

2.11. Statistical Analysis 
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All analyses were performed using R version 4.1.1, 64-bit6, and its support package. 
To calculate prognostic values and to compare patient survival in different subgroups in 
each dataset, Kaplan-Meier survival analysis, and the log-rank test was used. The non-
parametric Wilcoxon rank sum test was used to test the relationship between the two 
groups for continuous variables. Kruskal-Wallis test was used as a comparison between 
more than two groups. Clinical characteristics of the high and low-risk groups were 
screened for prognostic variables using univariate and multivariate Cox regression (R 
package 'survival'). Correlation coefficients were examined using spearman correlation 
analysis. In all statistical investigations, P<0.05 was considered statistically significant. 

3. Results 

 
Figure 1. A detailed flow chart about the study of anoikis-related genes in LGG. 

3.1. Acquisition of Anoikis-related Genes 
The Genecards and Har-monizome portals yielded a total of 358 anoikis-associated 

genes (Supplementary Table 1), and the TCGA and CGGA cohorts included a combined 
total of 316 ANRGs (Figure 2A). When compared to normal adjacent tissues, we found 57 
DEGs in the TCGA-LGG and GTEx cohorts, and the volcano map of these DEGs is dis-
played in Figure 2 B. To create the new "TCGA-CGGA" cohort, we combined the TCGA-
LGG cohort with the CGGA cohort and eliminated the batch effect. 41 of 57 ANRGs were 
linked with survival and statistically distinct, according to univariate Cox regression anal-
ysis (p 0.05, km 0.05, Supplementary Table 2). The top 27 ANRGs most strongly correlated 
with prognosis in LGG patients are displayed in the forest plot (p0.001, Figure 2C) Except 
for ANGPTL2 and CRYAB, 25 genes were associated with poor prognosis. Meanwhile, 
network plots more clearly showed the relationship between the expression levels of the 
top 27 ranked genes (Figure 2D). Since LGG patients frequently lost or gained chromoso-
mal regions[22], we downloaded CNV data from the TCGA database to further explore 
the alteration of these lost apoptosis-related genes on chromosomes and the location of 
each gene on chromosomes (Figure 2E, F). Figure 2F demonstrates that IFI27 was mostly 
displayed as a "loss" and was positioned on chromosome 14, while the most substantial 
changed "gain" of EGFR was located on chromosome 7.   
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Figure 2. Characteristics of ANRGs in LGG. (A)316 anoikis-related genes identified from TCGA and 
CGGAcohort. (B) Volcano plot of 57 DEGs in TCGA and GTEx cohort. (C) The forest plot shows the 
Aanoikis-related (p < 0.001) via the univariate Cox regression analysis. (D) The network diagram 
showed the correlations between the top 27ANRGs. (E) Copy number variations (CNVs) and 27 
ANRGs in TCGA-LGG. (F) Chromosome region and alteration of ANRGs. 

3.2. Consistent Clustering of 27 Anoikis-related Genes in LGG 
to comprehend the function of anoikis-related genes in LGG better. We used the 

'Consensus Cluster Plus' R program to perform consensus clustering based on 27 progno-
sis-related ANRGs (P0.001) and the findings of the univariate cox analysis. When k=3, as 
in Figure 3A, the cohort could be effectively divided into three subtypes. A substantial 
difference in prognosis between the three subtypes was revealed by the overall survival 
analysis (P 0.001, Figure 3B). Its accuracy was examined using principal component anal-
ysis (PCA), which was used to classify the data. The findings demonstrated that, at k=3, 
the three clusters' subtypes could be precisely defined (Figure 3C). heat maps of ANGs 
expression and corresponding clinicopathological features of the 3 subtypes indicated that 
higher expression of ANGRs in cluster A might be associated with a worse prognosis in 
LGG patients, and interestingly try that very low expression of ANGs in cluster C was not 
associated with a better prognosis (Figure 3D ), so that anoikis-related genes may regulate 
LGG progression through more complex pathways. We used the GSVA software to con-
centrate on the differential enrichment of the KEGG pathway between cluster A and clus-
ter B given the obvious disparities between clusters A, B, and C in addition to examining 
the overall distribution of the 27 ANRGs in clusters (Figure 3E, Supplementary Figure 1). 
Cluster A with the poorest prognosis was mainly associated with the adhesive junction 
pathway and some common tumor-associated pathways. In glioma, adhesive linkage-as-
sociated proteins can bind to β-catenin (β-catenin) and regulate gene transcription, which 
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ultimately affects the cell cycle, apoptosis, and changes in cytoskeletal structure, affecting 
cell migration[23]. 

 
Figure 3. Subgroups of LGG related by anoikis-related genes. (A) The consensus matrix for k = 3 
was obtained by applying consensus clustering. (B) Overall survival of three subtypes (p < 0.001). 
(C) PCA distinguished three subtypes based on the expression of anoikis-related genes. (D) Heat 
map of anoikis-related genes expression and corresponding clinicopathological features of two sub-
types. (E) GSVA analysis focused on the differential enrichment of KEGG pathways between clus-
ters A and B. 

3.3. Immune infiltration and Differential Gene Expression in the Two Subtype Clusters 
A boxplot was utilized to demonstrate the considerable variation in immune cell in-

filtration levels between the three groupings (Figure 4A). We were surprised to find that 
almost all percentages of immune cell infiltration were higher in group A than in groups 
B and C. We performed differential analysis for groups A and B, where patients had the 
worst survival performance, and volcano plots of the differential analysis are shown in 
Figure 4B. GO and KEGG enrichment analyses were performed for these differential 
genes, and these DEGs were associated with a variety of items, including "regulation of 
trans-synaptic signaling" in the biological process (BP) class, "presynapse" in the cellular 
component (CC) class, and molecular KEGG results showed that these genes were associ-
ated with 'proteoglycans in cancer' (Figure 4C-D), with related evidence that proteogly-
cans can act as co-receptors for growth factors and co-receptors for cellular matrix pro-
teins, increasing the affinity of adhesion molecules for their specific receptors, and thus 
proteoglycans play an important role in the acquisition of apoptosis resistance in tumors 
with anoikis[24,25]. 
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Figure 4. Differential expression of genes and immune infiltration patterns in three subtype groups. 
(A) Immune infiltration patterns in three subtype groups. (B) Volcano plot of up-and down-regu-
lated DEGs in clusters A and B . (C, D) GO and KEGG enrichment analysis of DEGs. 

3.4. The Development and Validationof an Anoikis-related Prognostic Signature 
We used two machine learning methods to choose apoptosis-related signature genes 

in LGG in order to investigate the clinical utility of anoikis-related genes. For the SVM-
RFE algorithm, the error was minimized when the number of features was 28 (Figure 5A). 
For the random forest algorithm, the 20 feature genes with the largest relative importance 
scores were determined (Fig. 4B, C). After taking the intersection set, 19 feature genes 
common to both the random forest and SVM-RFE algorithms were finally identified (Fig-
ure 5D). We then participated in a Lasso-penalized Cox analysis using these 19 ANRGs 
(p<0.05, Figure 5E, F). Finally, by multivariate Cox analysis, 7 ANRGs were identified as 
independent prognostic factors, including ANGPTL2, BAG1, CDH2, IFI27, PTK2B, SOD2, 
and UBE2C. Based on their coefficients, we calculated risk scores using the following for-
mula. 

Risk score=expression level of CDH2*0.185- expression level of ANGPTL2*0.201- ex-
pression level of the BAG1*0.167+ expression level of IFI27*0.106+ expression level of the 
PTK2B*0.169+ expression level of the SOD2*0.132+ expression level of UBE2C*0.308. The 
correlation coefficients are shown in Supplementary Table 3. Patients in the high-risk 
group in the TCGA-LGG cohort had a worse prognosis, according to KM curves, which 
was also seen in the CGGA validation cohort (Figure 5G, H). Risk plots display specific 
survival results for each patient in the TCGA cohort and the CGGA cohort, showing a 
steady rise in mortality with increasing risk scores (Fig-ure 5I, J). Risk scores were signif-
icantly different in the three previous subtypes (Figure 5K), with cluster A having a higher 
risk score (P<0.01). Alluvial plots show the association of cluster, risk, and survival status 
associated with ANRGs (Figure 5L). 
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Figure 5. Identify anoikis-related prognosis signature. (A) Relationship between the number of ran-
dom forest trees and error rates. (B) Ranking of the relative importance of genes. (C) SVM-RFE al-
gorithm for feature gene selection. (D) Venn diagram showing the feature genes shared by random 
forest, and SVM-RFE algorithms. (E) LASSO analysis with 10-fold cross-validation identified seven 
prognostic genes. (F) Coefficient profile plots of seven prognostic anoikis-related genes. (G, H) The 
K-M curves showed a different prognosis in the subtype risk group. (I, J) Risk plots were used to 
illustrate the survival status of each sample in the TCGA and CGGA cohorts. (K) Risk score in 3 
clusters established before. (J) Alluvial diagram of subtype and living status. 

3.5. Immune Infiltration in Different Risk Groups 
The development of gliomas and the effectiveness of immunotherapy are both sig-

nificantly influenced by the immune microenvironment. In order to achieve this, we 
looked more closely at the tumor microenvironment (TME) of LGG patients. The relative 
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proportions of invading immune cells in the high-risk and low-risk groups were meas-
ured using the "CIBERSORT". First, the risk scores for the LGG samples were ranked from 
low to high to display the proportion of various immune cells (Figure 6A). With an in-
creasing risk score, the proportion of mast cells gradually increased (R = 0.23, Figure 6B). 
In particular, SOD2 was highly associated with infiltration of M1 macrophages and CD8+ 
T cells. The seven genes utilized to build the risk score were strongly connected with nu-
merous immune cell infiltrations (Figure 6C). The monocyte and mast cell infiltration was 
greater in the low-risk group (Figure 6D). This shows that mast cell suppression may play 
a significant role in the poor prognosis for LGG. We discovered that practically all im-
mune checkpoints, including CTLA-4, HAVCR2 (TIM3), PDCD1 (PD-1), TIGIT, and 
CD70, displayed greater activity in the high-risk group by comparing immune checkpoint 
activation between various risk groups (Figure 6E). Additionally, we were able to deter-
mine the stromal score and immunological score of the high-risk and low-risk groups us-
ing estimatescore of the expression profile (Figure 6F). 

 

Figure 6. The immune microenvironment of LGG tissues with different risk scores. (A) Relative 
proportions of infiltrating immune cells with different risk scores. (B) Correlation analysis between 
risk scores and the proportion of activated Mast cells in LGG tissues. (C) Correlation between im-
mune cells and seven hub ANRGs. (D) Immune cell composition between the high-risk and low-
risk groups. (E)Checkpoint expression in the risk groups. (F) Estimatescore of the expression profile 
in the high-risk group and low-risk group. 

3.6. Establishment of a Prognostic Nomogram for LGG Patients 
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The risk score was identified as an independent predictive factor for LGG in the 
TCGA population by univariate and multivariate Cox analyses (Figure 7A, B). Then, we 
included information about risk groups, IDH mutation status, 1p/19q deletion status, tu-
mor grade, age, grade, and tumor grade in the nomogram (Figure 7C). To evaluate the 
consistency between the prognostic model's predicted overall survival (OS) and the actual 
overall survival, calibration plots were created. The findings revealed that the nomo-
gram's predictions were accurate (Figure 7D). The efficacy of the created model in accu-
rately predicting OS in LGG patients was evaluated using time-dependent ROC curves. 
Concerning predicting OS in the TCGA cohort, the risk score did well (AUCs for 1-year, 
3-year, and Time-dependent ROC curves were used to assess the accuracy of the devel-
oped model for predicting OS in LGG patients. The risk score did well in the TCGA cohort 
at predicting OS in these people (AUCs for 1-year, 3-year, and 5-year OS: 0.872, 0.844, and 
0.813; Figure 7E). Comparable outcomes were seen in the CGGA cohort (Figure 7H). In 
both the TCGA and CGGA cohorts, the three-year area under the curve (AUC) of the risk 
score was larger than the AUC of other clinicopathological characteristics (Figure 7F, I). 
The three-year DCA curves showed that the risk score was a good predictor of survival in 
LGG patients (Figure 7G, J). 

Based on these observations, we compared in detail whether risk scores differed 
across subgroups of clinical characteristics. We found that individuals with older age, G3 
stage, no mutation in IDH, no common defect in 1p/19q, and astrocytoma tissue type 
showed higher risk scores (Figure 8A-F, P all < 0.05). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 September 2022                   doi:10.20944/preprints202209.0342.v1

https://doi.org/10.20944/preprints202209.0342.v1


 

 

 

Figure 7. Prognostic value of risk scores in patients with LGG. TCGA cohort (A) Univariate and (B) 
multi-variate COX analysis to assess risk scores and clinical features (including age, grade, gender, 
IDH status, and 1p/19q. codeletion). (C) Nomogram of risk groupings and clinical characteristics 
predicting 1-, 3-, and 5-year survival. (D) Calibration curves tested for agreement between actual 
and predicted outcomes at 1, 3and5 years.  AUC values for the (E)TCGA and (H)CGGA cohort risk 
scores at 1, 3and5 years. AUC values for (F)TCGA and (I)CGGA cohort risk scores and clinical char-
acteristics at 3 years. DCA curves of risk scores and clinical characteristics for the (G) TCGA and (J) 
CGGA cohorts at 3 years. 
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Figure 8. Differences in risk scores among different clinical characteristics subgroups in the TCGA 
cohort. (A) age, (B) gender, (C) grade, (D) IDH mutation status, (E) 1p/19q. codeletion and (F) histo-
logical type. *p < 0.05, **p < 0.01, ***p < 0.001. 

3.7. Mutation Landscape in Different Risk Groups 
TMB was higher in the high-risk group, according to our analysis of the relationship 

between risk score and tumor mutation load (TMB) (Figure 9B) and the variation in TMB 
among various risk groups (Figure 9A). IDH1, TP53, and ATRX were the most frequently 
mutated genes in high-risk and low-risk groups, respectively (Figure 9C, D). However, 
there were fewer IDH mutations and more mutations in other genes in the high-risk 
group. As a result, we generated two waterfall plots to explore the detailed gene mutation 
characteristics between high- and low-risk populations. 
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Figure 9. Mutation analysis based on risk score model. (A) Differences in tumor mutational load 
(TMB) in high-flying risk score groups. (B) Correlation of risk score and TMB. (C, D) Waterfall plots 
summarizing the mutations in high- and low-risk patients. 

3.8. Immunotherapy and ICB Response 
Since the immune microenvironment mediates the ICB response, we further ana-

lyzed the correlation between risk score and ICB response signature and found that risk 
score was significantly negatively correlated with Alcoholism only, while it was signifi-
cantly positively correlated with other ICB response signatures (Figure 10A). Subse-
quently, to further refine the immune signature of the tumor microenvironment, we also 
performed a correlation analysis between tumor immune cycle steps and risk score. Once 
more, risk scores were significantly and favorably correlated with the majority of the crit-
ical stages of the tumor immune cycle, such as the release of cancer cell antigen (step 1), 
presentation of cancer antigen (step 2), priming and activation (step 3), immune cell 
transport to the tumor (step 4) (CD8 T cell recruitment, Th1 cell recruitment, Th22 cell 
recruitment, NK cell recruitment, and Th17 cell recruitment), infiltration of immune cells 
into tumors (step 5), and recognition of cancer (Figure10 B). 

Finally, we investigated the potential sensitivity of clinical agents in the high-risk and 
low-risk groups using the "pRRophetic" R package and screened some chemotherapeutic 
agents that could be used to treat gliomas, such as lapatinib and afatinib (Figure 10C and 
D). Almost all of these agents showed higher IC50 in patients with high scores (Supple-
mentary Figure S2), indicating that patients with high-risk scores may be more sensitive. 
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Figure 10. (A) Correlation between risk score and ICB response signature, and (B) correlation be-
tween risk score and each step of the tumor immune cycle. IC50 values were calculated for patients 
in the high- and low-risk groups based on lapatinib (C) and afatinib (D) to assess the sensitivity of 
chemotherapeutic agents. 

3.9. Correlation Analysis of Anoikis-Related Genes and Tumor Immune Microenvironment 
To examine the expression of seven ANRGs in TME, we used the single-cell dataset 

GSE70630 of oligodendroglioma from the TISCH database. There are 10 cell populations 
and 4 intermediate cell types in the GSE70630 dataset, and the image depicts their distri-
bution and number (Figure 11A). Both PTK2B and SOD2 were mostly expressed in mon-
ocyte macrophages, as was discovered. ANGPTL2, BAG1, and CDH2 on the other hand 
were primarily expressed in cancerous cells and oligodendrocytes (Figure11B, C).
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 Fig-
ure 11. ARHGAP protein family genes in single-cell RNA sequencing (A) Annotation of all cell types 
in GSE70630 and the percentage of each cell type. (B, C) Percentages and expressions of ANGPTL2, 
BAG1, CDH2, IFI27, PTK2B, SOD2, and UBE2C. 

4. Discussion 
The prognosis for glioma patients does not significantly improve despite break-

throughs in surgery, radiation therapy, chemotherapy, and other treatments. Glioma is 
the most prevalent kind of malignant brain tumor in adults[26,27]. Glioma cells can pen-
etrate along blood vessels and invade surrounding normal brain tissue, making it difficult 
to remove the tumor as a whole[28]. Once a low-grade glioma differentiates into a high-
grade malignant glioblastoma, the invasive ability is enhanced and it can infiltrate and 
metastasize through the normal tissue space[29]. However, due to the heterogeneity of 
gliomas and the lack of sustained response, targeted therapies for LGG patients are less 
effective, and therefore, there is an urgent need for more tumor metastasis-related mark-
ers for early glioma treatment to improve diagnostic accuracy. 

In the absence of extracellular matrix (ECM) attachment or when cells adhere to in-
appropriate sites, cells undergo a specific type of apoptosis called anoikis[30]. Failure to 
properly execute the anoikis program may lead to rapid cell proliferation at ectopic sites. 
This dysregulation of apoptotic execution is becoming a hallmark of cancer cells and con-
tributes to their metastasis to distant organs[31]. 

The crucial process by which epithelial cells transform into mesenchymal cells and 
lose their cell polarity and adhesion is known as oncogenic epithelial-mesenchymal tran-
sition (EMT). EMT has recently been discovered in glioma stem cells to directly impact 
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migration, invading ability, and radiation resistance in gliomas[32]. One of the hallmarks 
of EMT is the resistance of tumor cells to anoikis. The development of new cancer treat-
ment modalities to address tumor resistance to anoikis has become a hot topic of research 
in recent years[33,34]. Gliomas have anoikis-resistant properties that enhance their inva-
sion of the adjacent brain parenchyma and eventually recur despite the use of standard 
therapies. Further exploration regarding the mechanisms of anoikis in gliomas remains to 
be done. A recent study found that activation of anoikis in glioma cells was associated 
with inhibition of p21-activated kinase 4 (PAK4)[35]. In addition, Jiang et al. found that 
MNX1 is bound to the upstream regulatory region of TrkB as a transcription factor to 
activate its expression, enhancing the ability of glioma cells to evade anoikis[28]. 

In this work, we found seven genes—ANGPTL2, BAG1, CDH2, IFI27, PTK2B, SOD2, 
and UBE2C—that together make up robust risk score characteristics. Numerous correla-
tions between these anoikis-related genes and tumorgenesis and pathogenesis have been 
extensively reported in previous research. Increased ANGPTL2 expression in colorectal 
cancer (CRC) cells improves -catenin pathway signaling and boosts tumor cell prolifera-
tion. ANGPTL2 regulates epithelial regeneration and intestinal immune response[36]. In 
ovarian cancer, ANGPTL2 can even reduce peritoneal metastasis of tumor cells by inhib-
iting anoikis resistance[37]. While BAG1 is a multifunctional protein associated with a va-
riety of cellular processes, such as apoptosis, proliferation, growth, and motility[38]. As 
an autophagy-related gene, BAG1 is also considered to be an important prognostic factor 
in low-grade gliomas[39]. In colon cancer, knockdown of the neurotrophic factor BDNF 
suppresses the expression of the mesenchymal marker CDH2 leading to anoikis and im-
mune resistance in tumor cells[40]. Atypical EGFR signaling in glioblastoma activates the 
transcription factor IRF3, leading to the expression of IFI27, which often plays an im-
portant oncogenic role[41]. Acute lymphoblastic leukemia (ALL) contains multiple acti-
vated kinase and cytokine receptor signatures, such as genomic alterations in PTK2B[42]. 

Normal cells require adherence to the extracellular matrix to survive. Cell shedding 
leads to a dramatic increase in reactive oxygen species (ROS), which promotes anoi-
kis[43,44]. And mammary epithelial cells can reduce anoikis by increasing mitochondrial 
antioxidant enzyme SOD2 to reduce ROS produced by mitochondrial glucose oxida-
tion[45]. Similarly, in ovarian cancer cells, SOD2 protein expression is associated with in-
creased oxidative stress, and ovarian cancer cells rapidly increase their mitochondrial an-
tioxidant capacity through this mechanism as a means to adapt to the loss of anchor points 
and escape anoikis[46]. Ma et al. found that the ubiquitin-binding enzyme E2C (UBE2C) 
is a key regulator of cell cycle progression and an important factor in the malignant pro-
gression of astrocytic tumors[47]. Meanwhile silencing of UBE2C in glioma leads to sig-
nificant inhibition of the PI3K-Akt-mTOR pathway, while avoiding autophagy[48]. 

To evaluate the status of anoikis, we utilized unsupervised cluster analysis to divide 
LGG patients into three subgroups (clusters A, B, and C) based on 27 ANRGs. The major-
ity of the ANRGs were discovered to be highly expressed in cluster A, which is likely what 
caused the individuals in group A to have a worse prognosis. The results imply that anoi-
kis can affect how LGGs form. The two clusters of AB differed in tumor infiltration and 
metastasis-related pathways, according to GSVA. In the current study7, both the training 
and validation cohorts of LGG patients showed that the anoikis-related gene signature 
correctly predicted OS. This gene signature was an independent predictor of LGG prog-
nosis in both the TCGA and CGGA cohorts when considering relevant clinical character-
istics, such as tumor grade, age, and sex. Clinical variables with high-risk scores tended 
to be statistically significant risk factors for prognosis, suggesting that the ANRG gene 
signature could be a predictor of prognosis and could be a proxy for prognosis. Patients 
with concurrent risk scores tended to have higher tumor grade, IDH-wild type, and no 
1p/19q co-deletion, which is consistent with previous studies[49,50] and more suggestive 
of a high-risk adverse prognostic profile. 

To investigate the prognostic mechanism of this feature and to provide clues for pre-
dicting ICI, we compared the high-risk and low-risk groups in terms of the proportion of 
22 immune cells, TME, gene mutations, and TMB. Consistent with previous studies, CD8+ 
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T-cell infiltration was greater in the high-risk group. Furthermore, SOD2, among the seven 
risk genes, had the highest correlation coefficient with CD8+ T cells[51]. Thus, SOD2 acti-
vation of the CD8+T cell axis may be an interesting pathway. We also found that the high-
risk group exhibited higher TMB than the low-risk group, but the low-risk group ex-
pressed more high-frequency IDH and CIC mutations[52]. The high-risk group showed 
higher TMB, which would lead to more neoantigens and enhanced T-cell recognition, and 
therefore could be a good predictor of the effect of ICI therapy. 

In 2013, Chen and Mellman introduced the concept of tumor immune cycling. Tumor 
immunity arises as a continuously self-derived cyclic process, through which immune 
stimulatory molecules are accumulated to amplify T cell responses[53]. Thus, the cancer-
immune cycle represents the immune response of the human immune system to cancer. 
Immune checkpoint inhibitors, particularly treatments such as anti-PD-1/PD-L1 and 
CTLA-4, are effective against a wide range of tumors but have performed poorly in clinical 
trials in glioma[54]. The efficacy of immunotherapy in glioma is associated with its unique 
molecular alterations, immune expression profile, and immune infiltration, and correlates 
with a high level of the immune microenvironment and immune checkpoint expression 
in the tumor. In addition patients in the high-risk group tended to have higher immune 
checkpoint gene expression, while we found a significant correlation between higher risk 
scores and both the tumor immune cycle and ICB response so that patients in the high-
risk group were in inflammatory TME[55]. while patients with high-risk LGG can have 
better immunotherapy outcomes. 

5. Conclusion 
In conclusion, our 7 anoikis-related genes signature can well predict the survival of 

LGG patients, and it will assist clinicians in creating various treatment plans. The DCA 
curve also indicates that LGG patients can benefit from the nomogram created using the 
7 genes signature. In practical practice, columnar maps based on this concept can aid doc-
tors in creating personalized treatments. Our study still has some inherent problems, 
though. Future experimental confirmation is required because all of these conclusions 
came from bioinformatics research.  
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