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Abstract: Ramsey theory influences the dynamics of mechanical systems, which may be described 

as abstract complete graphs. We address a mechanical system which is completely interconnected 

with the two kinds of ideal Hookean springs. The suggested system mechanically corresponds to 

the cyclic molecules, in which functional groups are interconnected with two kinds of chemical 

bonds, represented mechanically with two springs �1 and �2. In this paper, we consider a Cyclic 

system (molecule) built of six equal masses m and two kinds of springs. We pose the following 

question: what is the minimal number of masses in the such a system in which three masses are 

constrained to be connected with spring �1 or three masses to be connected with spring �2? The 

answer to this question is supplied by the Ramsey theory, and it is formally stated as follows: what 

is the minimal number �(3,3)? The result emerging from the Ramsey theory is �(3,3) = 6. Thus, 

in the aforementioned interconnected mechanical system will be necessarily present the triangles 

(at least one triangle), built of masses and springs. This prediction constitutes the vibrational spec-

trum of the system. Thus, the Ramsey Theory supplies the selection rules for the vibrational spectra 

of the cyclic molecules. Symmetrical system built of six vibrating entities is addressed. The Ramsey 

approach works for 2D and 3D molecules, which may be described as abstract complete graphs.       
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1. Introduction 

Ramsey theory, is a branch of mathematics/combinatorics that focuses on the appear-

ance of ordered substructures within a structure of a known size. Ramsey theory states 

that any structure will necessarily contain an orderly substructure [1]. Ramsey's theorem, 

in one of its graph-theoretic forms, states that one will find monochromatic cliques in any 

edge labelling (with colours) of a sufficiently large complete graph [2]. One more example 

is supplied by the van der Waerden’s theorem: colorings of the integers by finitely many 

colors must have long monochromatic arithmetic progressions [2]. Problems in Ramsey 

theory typically ask a question of the form: "how big must some structure be to guarantee 

that a particular property holds?" More specifically, Ron Graham described Ramsey the-

ory as a "branch of combinatorics"[3-5]. A simple, popular introduction to the Ramsey 

theory is found in refs. 2-3. More advanced, rigorous mathematical approach is presented 

in refs. 4-5. Applications of the Ramsey theory for the theory of communication and deci-

sion making are discussed in ref. 6. We address the application of the Ramsey theory for 

the analysis of mechanical systems, which may be represented as complete graphs. Cyclic 

molecules may be seen as complete graphs [7-8]. Chemical bonds are seen the edges (links) 

of the graph, which in a very crude approximation may be considered as ideal springs. 

We demonstrate that the Ramsey theory introduces the “selection rules” for eigenmodes 

(eigenfrequincies) of the cyclic molecules, treated as completed graphs. Thus, the Ramsey 
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approach to the vibrational spectra of the cyclic molecules becomes possible. The pro-

posed Ramsey approach predicts the Ramsey modes, which are necessarily present in 

these spectra.  

1.1. Ramsey theory and vibrations of cyclic molecules  

Consider mechanical system built of six identical masses m shown in Figure 1. These 

masses are connected with two ideal Hookean massless springs �� and �� as shown in 

Figure 1. The mechanical system depicted in Figure 1 corresponds to the chemical com-

pound in which two kinds of chemical bonds are present. These bonds are represented by 

the springs �� and ��. The bonds form the complete graph, i.e. a graph in which each 

pair of graph vertices (masses) is connected by an edge (spring/chemical bond). We 

demonstrate that the Ramsey theory supplied predictions related to the eigenvalues of 

frequencies of vibrations in the system described in Figure 1. In other words, the Ramsey 

theory may predict the peculiarities of the vibrational spectrum of the cyclic chemical 

compound (molecule) corresponding to the mechanical system, shown in Figure 1. For a 

sake of simplicity, the masses of the vibrating bodies are taken equal. 

 

 

 

 

 

 

 

Figure 1. Cyclic chemical compound represented by the mechanical system forming a complete 

graph. The system is built of identical masses m interconnected by two kinds springs �� and ��. 

The complete graph depicted in Figure 1 is a graph typical for the Ramsey theory. 

Let us connect the masses interconnected with the spring �� with the red; in turn, let us 

connect the masses interconnected with the spring �� with the green line.      

We recognize two triangles in Figure 1. The vibrational spectrum of the system 

shown in Figure 1 will crucially depend on the presence of the triple of double chains of 

masses.  Let us pose the following question: what is the minimal number of masses in the 

system in which three masses are connected with spring �� or three masses are connected 

with spring ��. The answer to this question is supplied by the Ramsey theory, and it is 

formulated as follows: what is the minimal number �(3,3)? The answer emerging from 

the Ramsey Theory is: �(3,3) = 6. Indeed, we recognize in the example illustrated with 

Figure 1, that in the molecule built of six point masses, in which the relationships “to be 

connected by spring ��” and “to be connected by spring ��” are necessarily present we 

find triads of masses connected by the same kinds of springs (at least one triangle-shaped 

ring chain of masses will be necessarily present in the system of masses completely inter-

connected one to another). Of course, the quantitative prediction of the eigenfrequency 

corresponding to the triangle-shaped chain of masses, for the asymmetric system, shown 

in Figure 1, presents extremely challenging computational problem. This problem be-

comes solvable for the symmetric plane distribution of masses depicted in Figure 2 (the 

masses form the regular hexagon).  
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Figure 2. Equal masses m forming a regular hexagon are interconnected with two kinds of ideal 

springs denoted �� (green edges) and �� (red edges). Two equilateral triangles “153” and “246” 

are recognized). 

Two equilateral triangles, namely “153” and “246” are present within the cyclic “mol-

ecule” depicted in Figure 2. These triangles built of the masses m and springs ��  are 

shown with the red dashed lines. If harmonic oscillations of the masses connected with 

the “green” and “red” springs are decoupled (this will take place when �� ≫ �� is ful-

filled), the eigenvalues of the vibrations occurring within the red dashed triangles are cal-

culated with the standard methods of the classical mechanics [9]. The full spectrum of the 

eigenfrequencies ������ in this case is given by Eq. 1: 

                        ������ = ��, �, �, �
���

��
; �

���

��
; �

���

�
�             (1) 

Two of aforementioned trivial zero-eigenfrequencies correspond to the x and y trans-

lations of the entire system in the XY-plane, and the third one corresponds to the uniform 

rotation of the entire system about its center of mass. The detailed treatment of the 

eigenmodes is supplied in Appendix A. In addition the modes inherent for the ring of 

“green” springs ��  should be considered [10-11]. We call these modes the Ramsey 

modes. It turns out that the Ramsey theory imposes restrictions on the vibrational spec-

trum of the cyclic mechanical systems, described by complete graphs. In other words, it 

supplies the “selection rules” for the vibrational spectra of the cyclic molecules, chemical 

structure of which may be described with the complete graphs [7-8]. ). It is noteworthy 

that �(�, �) = 6. Thus, if we have a molecule, described by a complete graph, which is 

built of six functional groups, or two or six interconnected groups will necessarily be pre-

sent in its structure; thus, explaining the formation of the benzene-like ring structures (see 

Figure 2).         

At the same time, eigenfrequencies supplied with Eq. 1 will not necessarily appear in 

the molecule built of five point masses, shown in Figure 3. Indeed, the triangles built of 

the springs are not present in these structures, and this conclusion immediately follows 

from the Ramsey approach: �(�. �) = � > �.      
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Figure 3. Five equal masses m forming a regular pentagon are interconnected with two kinds of 

ideal springs denoted �� (green edges) and �� (red edges). No triangles are formed in the springs 

network. The Ramsey number �(�. �) = � > �. 

Again, the Ramsey Theorem works as a selection rule for the vibrational spectra of 

molecules.   

The proposed Ramsey approach is easily extended for the 3D vibrating systems/mol-

ecules such as those shown in Figure 4. The molecule shown in Figure 4 is built from two 

tetrahedrons, denoted “1234” and “1235”. Triangle “123” is located in the plane (���) 

(see Figure 4). Masses placed in the vertices of the tetrahedron are connected with two 

kinds of springs, the green (��) and red (��) ones.    

 

 

 

 

 

Figure 4. 3D systems built of two tetrahedrons “1234” and “1235” is depicted. Masses placed in the 

vertices of the tetrahedron are connected with two kinds of springs, the green (��) and red (��) 

ones. Triangle “123” is located in the plane (���). 

Figure 4 depicts coloring of the 3D system in which no monochrome triangle is pre-

sent. Thus, eigenmodes supplied with Eq. 1 will not appear in the vibrating system/mol-

ecule built of five point masses, shown in Figure 4. This result conforms from the Ramsey 

approach: �(3,3) = 6 > 5; and it works for 3D systems. It is noteworthy, that “springs” 

connecting the masses may be classic or quantum ones [12].           

5. Conclusions 

Ramsey theory is a branch of combinatorics that predicts the appearance of ordered 

substructures within a structure of a known size [1-6]. Ramsey theory states, under ad-

dressing the properties of complete graphs, that any structure will necessarily contain an 

orderly substructure [1-6]. We applied the Ramsey theory for the analysis of the cyclic 

mechanical systems, in which point masses m are connected with two kinds of ideal 

springs. Such systems may be seen as complete graphs, in which vertices (point masses) 

are connected with the edges colored with two colors (i.e. two kinds of springs). We ap-

plied the Ramsey theory for these kinds of graphs. These graphs also represent cyclic mol-

ecules, in which functional groups are connected by two kinds of chemical bonds [7-8]. 
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Two kinds of springs/chemical bonds in our case are colored with “green” and “red” cor-

respondingly. The Ramsey number for the aforementioned systems is defined as the 

smallest value of n such that in a group of n point masses either a group of j masses forms 

a complete network of “red” springs or i masses form a complete network connected by 

the “green” springs. We formulated the following question: what is the minimal number 

of masses in the system in which three masses are connected with spring �� or three 

masses are connected with spring ��? The answer to this question emerges from the Ram-

sey Theory, and it is mathematically formalized as follows: what is the minimal Ramsey 

number �(3,3)? The Ramsey Theory states that is �(3,3) = 6. Thus, within the intercon-

nected mechanical system built of six point masses the triangles (triangle), comprising 

masses and springs of the same kind will be necessarily present. This prediction consti-

tutes the vibrational spectrum of the system. Thus, the Ramsey Theory supplies the kind 

of the selection rules for the vibrational spectra of the mechanical systems/cyclic mole-

cules, which may be described by the complete graph. Consider that also �(2,6) = 6. 

Thus, if we have a molecule, described by a complete graph, which is built of six functional 

groups, or two or six interconnected groups will necessarily be present in its chemical 

structure; thus, explaining the formation of the benzene-like ring structures. 

The cyclic molecule built of five functional groups interconnected with two kinds of 

chemical bonds will not necessarily be characterized by the collective modes involving 

vibration of three point entities. This fact is easily explained within the Ramsey approach 

�(3,3) = 6 > 5. The calculation of the eigen-frequencies of these systems in the general 

case poses essential mathematical difficulties.  

Symmetrical systems/molecules in turn may be analyzed explicitly. Symmetrical sys-

tem built of six entities is addressed. The eigenfrequencies inherent for the vibrations of 

triangles are reported. We call these modes the Ramsey modes of the systems described 

by complete graphs [7-8]. The introduced approach is easily extended for 3D vibrating 

systems interconnected by classical/quantum springs, which may be described as abstract 

complete graphs. Future work should consider k-partite-graph extensions of Ramsey the-

ory, which correspond to graphs with k sets of nodes which cannot self-interact.     
 

APPENDIX A 

Calculation of eigenmodes of system built of the point masses interconnected with ideal springs 

forming an equilateral triangle 

Consider three equal masses connected with ideal springs ��. Springs form an equi-

lateral triangle (the side of the triangle is a), as shown in Figure 1A. The center of the 

masses of the entire system is in rest, considering this fact yields: 

                    �� + �� + �� = 0; �� + �� + �� = 0 ,                     (1A) 

where �� and ��  denote the displacement of i-body from equilibrium.  

 

 

 

 

 

 

Figure 1. A. Modes of the vibrations occurring within a system built from three equal masses m and 

springs ��. Springs form an equilateral triangle. 
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The addressed planar system is characterized by six degrees of freedom; hence, it 

necessarily has six eigenfrequencies; three of these eigenfrequencies equal zero (see Eq. 

1). Two of these trivial eigenfrequencies correspond to the x and y translations of the entire 

system in the XY-plane, and the third one corresponds to the uniform rotation of the entire 

system about its center of mass. The non-trivial modes are depicted in Figure 1A. The 

mode shown in inset (a) corresponds to the situation when all of the bodies move along 

the bisectors of the triangle. The Lagrange function corresponding to this mode is supplied 

by Eq. 2A: 

                         �(�, �̇) =
���̇�

�
−

�����

�
                 (2A)  

Eq. 2A immediately yields (see Eq. 1):  

                          ������� = �
���

�
                     (3A) 

One more mode, shown in inset (b) is found from the symmetry considerations. One 

of the nodes (the upper one in the inset (b)) moves along the bisector of the triangle. The 

movements of the remaining nodes in this case will be a mirror image of each other in the 

plane of symmetry of the triangle. The Lagrange function corresponding to this mode is 

supplied by Eq. 4A (��, �� ≪ � is adopted): 

              �(��, ��, �̇�) = 4��̇�
� −

�

�
����

� −
������

�

�
+

�√�������

�
     (4A)          

The eigenfrequency emerging from this Lagrange function is given by Eq. 5A:   

                      ������� = �
���

��
                         (5A) 

The symmetry considerations yield (see Eq. 1):  

                 ������� = ������� = �
���

��
                    (6A) 
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