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Abstract: Omicron BA.2.75 may become the next globally dominant strain of COVID-19 in 

2022. BA.2.75 sub-variant has acquired more mutations (9) in spike protein and other genes of 

SARS-CoV-2 than any other variant. Thus, its chemical composition and thermodynamic properties 

have changed comparing to earlier variants. In this paper Gibbs energy of binding and antigen-

receptor binding rate is reported for the BA.2.75 variant. Gibbs energy of binding of Omicron 

BA.2.75 variant is more negative than that of the competing variants BA.2 and BA.5. 
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1. Introduction 

Multicellular organisms can be considered as open thermodynamic systems exhibit-

ing growth [1-3]. Microorganisms, including viruses, represent open thermodynamic sys-

tems with the property of growth through multiplication [4-11]. Microorganisms perform 

chemical, physical and biological interactions with their environment, other microorgan-

isms and their host [4, 5, 7, 12-16]. The basic condition for virus-host interaction is the 

presence of an appropriate antigen on the virus and an appropriate receptor on the host 

cell [12]. The receptor on human cells susceptible to SARS-CoV-2 is angiotensin-convert-

ing enzyme 2 (ACE2). SARS-CoV-2 binds to its host cells using its antigen, the spike gly-

coprotein trimer (SGP) [17, 18].  

Microorganisms represent open thermodynamic systems, exchanging matter and en-

ergy with their surroundings [2]. Thermodynamic properties are available for more than 

50 microorganisms [7]. Thermodynamic analysis has been done of biochemical processes 

performed by microorganisms [19-24]. Thermodynamic driving force for growth of mi-

croorganisms has been analyzed by von Stockar [5, 6, 25]. Application of laws of thermo-

dynamics in biology and medicine is available in the literature [26-31, 60]. Hansen has 

underlined the importance of calorimetry in life sciences and drew a parallel between bi-

ological evolution and the laws of thermodynamics [32-34]. In 2022, data have been pub-

lished on thermodynamic properties on Monkeypox and Vaccinia viruses [35]. Atom 

counting method was developed to obtain empirical formula and thermodynamic prop-

erties of viruses [36]. 

SARS-CoV-2 is an RNA virus. RNA mutate more often than DNA viruses [37]. Start-

ing from the original Hu-1 variant, SARS-CoV-2 has developed several dozen mutations 

[38, 39]. These mutations contributed to increase in infectivity, in accordance with the pre-

dictions of theory of evolution [40]. Some mutations contributed to increase in infectivity, 

while others contributed to immune response evasion [18, 38].  

The goal of this paper is to, based on available literature data, calculate the value of 

standard Gibbs energy of binding of the BA.2.75 variant, as well as to determine the anti-

gen-receptor binding rate. Moreover, using a mechanistic model, an explanation will be 

made for increase in infectivity of BA.2.75 compared to BA.2 and BA.5, which currently 

compete during the summer waive of COVID-19, in July and August 2022.  
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2. Materials and Methods 

Dissociation equilibrium constants for the spike glycoprotein trimer (SGP) of SARS-

CoV-2 to the human angiotensin-converting enzyme 2 (ACE2) were taken from Cao et al. 

[41]. Their values are presented in Table 1. Their measurement was made at 25°C, by sur-

face plasmon resonance [41].  

Binding of the virus antigen (SGP) to the host cell receptor (ACE2) represents a chem-

ical reaction. The rate of this chemical reaction is can be calculated using the binding phe-

nomenological equation 

�� = −
��

�
∆�� (1) 

where rB is the rate of binding of SGP to hACE2, LB the binding phenomenological coeffi-

cient, T temperature and ΔBG Gibbs energy of binding of SGP to hACE2 [4, 42-45]. The 

binding phenomenological equation shows that the rate of binding is proportional to the 

negative value of the Gibbs energy of binding.  

Barton et al. [38] reported that mutations in viruses lead to changes in binding affinity 

and standard Gibbs energy of binding. Standard Gibbs energy of binding quantifies the 

strength with which the virus antigen binds to host cell receptor. The strength of antigen-

receptor interactions is related to the ability of coronaviruses to infect human hosts [46]. 

Mutations induce significant changes in SGP conformation [47]. The mutations that lead 

to higher binding affinity are promoted by evolution through natural selection [47]. The 

quantitative measure of binding affinity is Gibbs energy of binding [13-16].  

Gibbs energy of binding can be determined using dissociation equilibrium constants. 

Standard Gibbs energy of binding, ΔBG⁰, is given by the equation  

∆��
� = −��� ln(��) (2) 

where Rg is the universal gas constant, T temperature and KB the binding equilibrium con-

stant [42, 48]. KB can be found as the reciprocal of the dissociation equilibrium constant, 

KD [48].   

�� =
�

��
 (3) 

The dissociation equilibrium constant is defined for the dissociation reaction of the 

antigen-receptor complex.  

�� ⇄ � + � (4) 

Where AR represents the antigen-receptor complex, A the virus antigen (SGP), and R the 

host cell receptor (hACE2) [42, 48]. Thus, KD is defined through the free antigen concen-

tration [A], free receptor concentration [R] and antigen-receptor complex concentration 

[AR] [42, 48] 

�� =
[�][�]

[��]
 (5) 

Gibbs energy of binding was calculated from the binding equilibrium constant, 

which in turn was found from the dissociation equilibrium constant. ΔBG⁰ is the thermo-

dynamic driving force for the chemical reaction of antigen-receptor binding. 

3. Results 

Standard Gibbs energies of binding were determined for BA.2.75, BA.2, BA.4/5 and 

other major SARS-CoV-2 variants. They are given in Table 1. Standard Gibbs energy of 

binding of BA.2 variant was found to be -45.81 kJ/mol, while for BA.5 it is -44.95 kJ/mol. 

Finally, for BA.2.75, standard Gibbs energy of binding was found to be -49.91 kJ/mol. 
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Table 1. Standard thermodynamic properties of binding of SARS-CoV-2 variants. The table shows 

association rate constant, kon, dissociation rate constant, koff, dissociation equilibrium constant, Kd, 

binding phenomenological coefficient, LB, binding equilibrium constant, KB, and standard Gibbs en-

ergy of binding, ΔBG⁰, data at 25°C. The kon, koff and Kd data were taken from [41]. 

Name kon (M-1s-1) koff (s-1) Kd (M) LB (mol² K / J s dm³) KB (M-1) ΔBG⁰ (kJ/mol) 

BA.2 4.06E+06 3.82E-02 9.40E-09 8.01E-17 1.06E+08 -45.81 

BA.4/5 5.30E+05 7.07E-03 1.33E-08 1.48E-17 7.52E+07 -44.95 

BA.2.75 1.88E+06 4.22E-03 2.20E-09 8.68E-18 4.55E+08 -49.41 

BA.2.75 (Q493R) 8.85E+05 5.64E-03 6.40E-09 1.19E-17 1.56E+08 -46.77 

BA.2.75 (S446G) 3.36E+06 1.18E-02 3.50E-09 2.47E-17 2.86E+08 -48.26 

BA.2.75 (N460K) 3.87E+07 5.02E-01 1.38E-08 1.12E-15 7.25E+07 -44.86 

B.1.1.7 (Alpha) 7.38E+05 3.55E-03 4.80E-09 7.43E-18 2.08E+08 -47.48 

B.1.351 (Beta) 5.42E+05 7.31E-03 1.35E-08 1.54E-17 7.41E+07 -44.92 

P.1 (Gamma) 3.77E+05 6.29E-03 1.67E-08 1.32E-17 5.99E+07 -44.39 

B.1.617.2 (Delta) 7.21E+05 7.84E-03 1.09E-08 1.65E-17 9.17E+07 -45.45 

BA.1 1.04E+06 1.07E-02 1.03E-08 2.25E-17 9.71E+07 -45.59 

BA.2.12.1 9.08E+05 9.41E-03 1.04E-08 1.98E-17 9.62E+07 -45.56 

BA.3 1.54E+06 3.16E-02 2.04E-08 6.59E-17 4.90E+07 -43.89 

BA.2.75 (H339) 2.81E+06 6.72E-03 2.40E-09 1.41E-17 4.17E+08 -49.20 

 

Binding rates of the analyzed SARS-CoV-2 variants were calculated and are pre-

sented in Table 2. Binding rate for BA.2 variant was found to be 6.58 ∙ 10-17 M/s, while for 

BA.5 it is 1.19 ∙ 10-17 M/s. Finally, for BA.2.75 it is 5.74 ∙ 10-18 M/s, while for BA.2.75 (N460K) 

it is 1.49 ∙ 10-15 M/s.  

Binding equilibrium constants of the analyzed SARS-CoV-2 variants were calculated 

and are shown in Table 1. Binding equilibrium constant of BA.2 variant was found to be 

1.06 ∙ 108 M/s, while for BA.5 it is 7.52 ∙ 107 M/s. Binding equilibrium constant of BA.2.75 

variant is 4.55 ∙ 108 M/s. 

4. Discussion 

The direction of development of COVID-19 pandemic depends on two biological 

properties: infectivity and pathogenicity of SARS-CoV-2 [40]. Infectivity and pathogenic-

ity are biological properties, which are a consequence of virus-host interactions [39, 49]. 

Virus-host interactions have a chemical and thermodynamic background [9, 13-16, 50-53]. 

Infectivity depends on the entry rate of the virus into susceptible cells [42]. Pathogenicity 

depends on the rate of virus multiplication [42]. Virus entry rate is a kinetic property. In 

its essence, the entry is preceded by antigen-receptor binding. Antigen-receptor binding 

represents a process similar to protein-ligand interactions [44, 48]. The driving force for 

antigen-receptor binding is Gibbs energy of binding [13-16, 43]. Since 2019, SARS-CoV-2 

has evolved continuously through acquisition of multiple mutations [38]. According to 

the evolution theory, it is expected that mutations lead towards increase in infectivity and 

maintenance or decrease in pathogenicity [40]. Virus multiplication represents a chemical 

process of polymerization of nucleotides and amino acids into virus building blocks [51]. 

The driving force for virus population growth is Gibbs energy of biosynthesis [40, 44].  
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Table 2. Binding rates of SARS-CoV-2 variants. The table shows rkin, rTD and rexp: binding rates cal-

culated using the kinetic, thermodynamic and exponential methods, respectively. The values were 

calculated at Q = 0.91 KB. 

Name rkin (M/s) rTD (M/s) rexp (M/s) 

BA.2 6.58E-17 6.34E-17 6.64E-17 

BA.4/5 1.19E-17 1.17E-17 1.23E-17 

BA.2.75 5.74E-18 6.88E-18 7.20E-18 

BA.2.75 (Q493R) 1.03E-17 9.42E-18 9.86E-18 

BA.2.75 (S446G) 1.98E-17 1.95E-17 2.05E-17 

BA.2.75 (N460K) 1.49E-15 8.88E-16 9.29E-16 

B.1.1.7 (Alpha) 6.03E-18 5.89E-18 6.16E-18 

B.1.351 (Beta) 1.29E-17 1.22E-17 1.27E-17 

P.1 (Gamma) 1.11E-17 1.05E-17 1.10E-17 

B.1.617.2 (Delta) 1.40E-17 1.31E-17 1.37E-17 

BA.1 1.88E-17 1.78E-17 1.86E-17 

BA.2.12.1 1.70E-17 1.57E-17 1.64E-17 

BA.3 5.15E-17 5.22E-17 5.47E-17 

BA.2.75 (H339) 1.22E-17 1.12E-17 1.17E-17 

 

In this paper, Gibbs energies of binding were calculated, based on kinetic and ther-

modynamic properties, kon, koff and Kd, reported by Cao et al. [41] for the currently domi-

nant BA.2.75 Omicron variant. Gibbs energy of binding of BA.2.75 Omicron variant was 

calculated to be -49.41 kJ/mol (Table 1). BA.2.75, is increasing in frequency, and has been 

detected in at least 15 countries as end of July, 2022. This means that BA.2.75 is suppress-

ing the existing BA.4 and BA.5 variants. This leads to the conclusion that infectivity of 

BA.2.75 is greater than that of BA.4 and BA.5. In that case, BA.2.75 is characterized by a 

more negative Gibbs energy of binding than BA.4 and BA.5. Moreover, the rate of entry 

into host cells depends on three factors: Gibbs energy of binding, binding phenomenolog-

ical coefficient and temperature. Temperature at which most biological processes occur is 

the physiological temperature of 37°C. The calculated binding phenomenological coeffi-

cients are given in Table 1. The calculated rates of binding of the viral spike glycoprotein 

trimer (SGP) to the human angiotensin-converting enzyme 2 (ACE2) are given in Table 2. 

Relative to the BA.2 variant, BA.2.75 carries 9 additional mutations in the spike glycopro-

tein [54, 55]. Mutation cause change in elemental composition and empirical formula, 

leading to change in thermodynamic properties. The underlying mechanism of BA.2.75’s 

enhanced infectivity, especially compared to BA.5, remains unclear for now [41]. 

Various Omicron strains compete for soil [40, 53]. This means that BA.2.75 competes 

with BA.2 and BA.5. Since we know that BA.2.75 wins, it is expected to have a more neg-

ative Gibbs energy of binding than other variants, as well as greater entry rate and infec-

tivity. Table 1 shows ΔBG⁰ values for several SARS-CoV-2 variants. ΔBG⁰ values of BA.2 

and BA.5 variants are -45.81 kJ/mol and -44.95 kJ/mol, respectively. Indeed, ΔBG⁰ of 

BA.2.75 is more negative than that of competing variants. This observation explains both 

the greater infectivity and suppression of previous variants by BA.2.75.  

The entry rate of SARS-CoV-2 variants was calculated using three approaches: ki-

netic, thermodynamic and exponential. The kinetic approach uses the law of mass action 

with kon and koff rate constants [44, 56, 57]. Thermodynamic approach uses the binding phe-

nomenological equation [44, 45, 58]. The exponential approach uses a more general expo-

nential equation from nonequilibrium thermodynamics [44, 45]. The results are shown in 

Table 2. The entry rates of BA.2 and BA.5 variants were found to be 6.58 ∙ 10-17 M/s and 

1.19 ∙ 10-17 M/s, respectively. On the other hand, the entry rate of BA.2.75 was found to be 

5.74 ∙ 10-18 M/s, using the kinetic method. This can be explained by a difference in binding 

phenomenological coefficients, LB. However, the variant BA.2.75 (N460K) exhibits the 
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greatest binding rate of 1.49 ∙ 10-15 M/s. Thus, the binding rate of BA.2.75 (N460K) is 23 

times greater than that of BA.2 and 125 times greater than that of BA.5.  

The mutations G446S and N460K are present in the BA.2.75 variant. They were found 

to provide the BA.2.75 variant enhanced resistance to neutralizing antibodies [59]. How-

ever, it seems that it is not only evasion of immune response, but also more negative Gibbs 

energy of binding and entry rate into host cells, as shown by results in Table 2. 

5. Conclusions 

Gibbs energy of binding of Omicron BA.2.75 variant is more negative than that of the 

competing BA.2 and BA.5. This may be the reason why the BA.2.75 variant has exhibited 

a high infectivity in India and other countries.  

Mutation N460K on BA.2.75 variant contributes not only to evading immune re-

sponse, but also to faster antigen-receptor binding. Thus, infectivity of this variant is 

greater than that of competing variants.  

The greatest rate of binding to host cell receptors is that of BA.2.75 with the mutation 

N460K, being 23 times greater than that of BA.2 and 125 times greater than that of BA.5. 
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