
XOR Chain and Perfect Encryption at the Dawn of the
Quantum Era

Luis Adrián Lizama-Perez1,*[0000−0001−5109−2927]

1 Universidad Técnica Federico Santa Maŕıa, Av. Vicuña Mackenna 3939, San Joaqúın, Santiago, Chile;
luis.lizamap@usm.cl

Abstract. In this work we present a new algorithm that achieves the perfect Shannon secret
by means of the XOR function and a method that we call multiple key reuse. The algorithm
has two execution modes: message authentication and data encryption. The XOR encryption
scheme allows for batch encryption and exhibits Perfect Forward Secrecy (PFS). Further-
more, based on our fundamental algorithm, we have developed a new strategy for blockchain
implementation that does not require Proof of Work (PoW), but defines a fair mechanism for
miner selection and secure addition of blocks to the chain.
Since our method is mainly based on the Boolean XOR function, the strength of the cryp-
tosystem can be directly established thanks to its mathematical properties. Due to the risk
that quantum computers represent for current cryptosystems based on prime factorization or
discrete logarithm, we postulate that our method represents a promising alternative in the
quantum era for the security of communications between Internet of Things devices as well
as Blockchain technology.

Keywords: Authentication; Encryption; Blockchain

1 Introduction

Today’s global economy is enhanced by digital transactions executed through the Internet, which
must be guaranteed by cryptographic services for data protection and authentication. In this sce-
nario, public key cryptography makes user authentication possible, as well as digital signature and
Blockchain protocols.

On the other side, a debate has arisen regarding the installation of backdoors in mobile appli-
cation software which would allow encrypted conversations to be revealed and prevent cybercrime.
It is known that in the future, homomorphic encryption will allow the processing of encrypted
data without requiring its decryption and thus keep the conversations confidential. Unfortunately,
homomorphic software is still in the research stage.

In this paper we will discuss several methods which we hope will further contribute to homo-
morphic software development, specifically to obtain homomorphic traceability. Furthermore, since
our method is based on the properties of the XOR function, we claim that in the quantum era the
security of the algorithm is guaranteed.

1.1 Perfect Secrecy

In the context of the mathematical theory of secret communication, as it was stated by Claude
Shannon [1], it is known that the XOR logical operation is a mathematical function that allows

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 September 2022 doi:10.20944/preprints202209.0295.v1

© 2022 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202209.0295.v1
http://creativecommons.org/licenses/by/4.0/

2 Luis Adrián Lizama-Perez1,*

perfect encryption, at least in theory, since up to this date there are no cryptosystems that operate
using just the XOR encryption function.

A ciphertext exhibits perfect secrecy if the attacker’s knowledge about the content of the message
is the same before and after the adversary inspects the ciphertext, even though the attacker can
apply unlimited computational capacity. This implies that the encrypted message does not provide
the adversary with any precise information about the content of the cleartext message. This is
because according to the communication theory [1, 2], to achieve perfect secrecy the encryption
key must be the same size as the cleartext message. Unfortunately, there is a serious challenge
to establish an arbitrarily large secret key between Alice and Bob, the parties seeking the private
communication.

Fig. 1: The general scheme of Shannon cipher.

As long as the encryption key is at least the same size as the cleartext, the XOR function is
sufficient to guarantee the confidentiality of the message. This is explained because the XOR is the
only reversible Boolean operation, since k ⊕ k = 0 the ciphering relations are written below, thus
c ⊕ k = m ⊕ k ⊕ k = m where k represents the secret key and m denotes the cleartext:

— m ⊕ k = c
— c ⊕ k = m

Furthermore, given a ciphertext c, it could be derived from any arbitrary m and any possible
k, so that there are many possible keys as there are possible ciphertexts. This property is known
as perfect secrecy [3]. However, the XOR encryption system prohibits the reuse of the secret key
because messages can be subjected to statistical attack since they do not contain random bits as is
the case with secret keys.

In this work we will demonstrate that in order to obtain perfect secrecy it is not strictly necessary
to establish the entire secret key beforehand, but rather we propose to generate and reuse multiple
previously interleaved keys. However, another alternative but not functional in practice could be
the use of a simple key-renewal scheme, as it is written below, because it requires the continuous
establishment of a secret key between remote users through the public channel:

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 September 2022 doi:10.20944/preprints202209.0295.v1

https://doi.org/10.20944/preprints202209.0295.v1

XOR Chain and Perfect Encryption at the Dawn of the Quantum Era 3

— m1 ⊕ k1 = c1
— m2 ⊕ k2 = c2
— m3 ⊕ k3 = c3 . . .
— mr ⊕ kr = cr

We will return to this point later soon, where we will sketch the idea of multiple key reuse.

1.2 XOR Indistinguishability

Perfect secrecy can be equivalently established by asserting that two pairs of random binary strings
producing the same ciphertext cannot be algorithmically separated from each other because the
XOR function exhibits indistinguishability between the strings. Suppose we have xa and ya such
that h = xa ⊕ ya but we find another pair xr and yr that also produces h, as indicated below.
We say that the pairs (xa, ya) and (xr, yr) are indistinguishable from each other because they both
produce the same h. Therefore, an eavesdropper cannot determine the original components xa and
ya because there are an arbitrary pairs of strings that produce h likewise:

— h = xa ⊕ ya = xr ⊕ yr

In other words, due to indistinguishability, given h there is no algorithm to derive (xa, ya).
We will call to this computational problem the separability problem, and therefore cryptosystems
based on it are post-quantum because it will suffice to use binary strings large enough to demand
the exhaustive search of Grover’s quantum algorithm [4]. In this document, we refer to being
indistinguishable as the inseparability property of the XOR function.

We should note that if the user authentication would be supported just on verifying h, the
inseparability property becomes irrelevant, since it will suffice for the attacker to generate a random
string xe, then she computes h ⊕ xe to get ye so that h = xe ⊕ ye.

1.3 Stream Cipher

A stream cipher is a symmetric-key cipher in which a pseudo-random encryption stream digit is
combined with a data stream binary digit, that is, one byte at a time. Stream ciphers are mainly
used when speed and simplicity of the system are prioritized. Next we will briefly describe the most
outstanding algorithms.

— HC-256 generates keystream from a 256-bit secret key and a 256-bit initialization vector [5].
It has been designed to provide bulk encryption in software at high speeds while permitting
strong confidence in its security.

— Grain is based on two shift registers and a nonlinear output function. The key size is 80 bits
and no attack faster than exhaustive key search has been identified [6].

— Rabbit is based on iterating a set of coupled non-linear functions. Rabbit is characterized by a
high performance in software [7].

— Mutual Irregular Clocking Keystream generator (MICKEY) uses irregular clocking of shift
registers, with some novel techniques to balance the need for guarantees on period and pseudo-
randomness against the need to avoid certain cryptanalytic attacks [8].

— The core of Salsa20 is a hash function with 64-byte input and 64-byte output. The hash function
is used in counter mode as a stream cipher: Salsa20 encrypts a 64-byte block of plaintext by
hashing the key, nonce, and block number and xor’ing the result with the plaintext [9].

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 September 2022 doi:10.20944/preprints202209.0295.v1

https://doi.org/10.20944/preprints202209.0295.v1

4 Luis Adrián Lizama-Perez1,*

— Trivium, a stream cipher inspired by block cipher design principles that replaces the building
blocks used in block ciphers by equivalent stream cipher components [10].

— Sosemanuk is key length is variable between 128 and 256 bits. It accommodates a 128-bit initial
value. Any key length is claimed to achieve 128-bit security. The Sosemanuk cipher uses both
some basic design principles from the stream cipher SNOW [11] and some transformations
derived from the block cipher Serpent [12].

Fig. 2: The main components of the stream cipher.

1.4 Proposal of Our Approach

In previous works, we have developed digital signature methods based on hash functions [13] and
HMAC [14]. This time we will base our algorithms on the properties of the XOR boolean function.
We claim that our method can be used to construct the following cryptographic primitives, then
we will proceed to explain how we achieved them.

— Message Authentication: It is infeasible for the eavesdropper to impersonate a message as
coming from another one. The algorithm makes it possible to verify that the current message is
chained to all previous messages starting from the user’s identification message. To be discussed
in section 2.

— Message Encryption: Message are encrypted so that it is infeasible for the eavesdropper to
impersonate a message. To be discussed in section 3.

— XOR Chain: The authentication model has allowed us to define a proof-of-work technique
and a new approach to blockchain implementation that we have called XOR chain. For the
conceptualization of the XOR chain, we are going to first introduce a game based on hash
functions that we have named Crypto Bingo. This topic is covered in section 4.

Section 3 also contains a description of an attack scenario and other important properties of the
encryption method: Perfect Forward Secrecy (PFS), Group Encrypted Communication and Batch
Encryption.

2 Message XOR Authentication

Let three binary strings be k0, k1 and k2. We derive x01, x02 and x12 by performing the following
operations x01 = k0 ⊕ k1, x02 = k0 ⊕ k2 and x12 = k1 ⊕ k2. The additive group Z⊕ is defined by
the numbers x01, x02 and x12 because the following operations can be directly verified:

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 September 2022 doi:10.20944/preprints202209.0295.v1

https://doi.org/10.20944/preprints202209.0295.v1

XOR Chain and Perfect Encryption at the Dawn of the Quantum Era 5

x01 ⊕ x02 = x12
x02 ⊕ x12 = x01
x01 ⊕ x12 = x02

If we define a random variable k0
′ and compute k1

′ such that k0
′ ⊕k1

′ = x01. Then k2
′ is chosen

such that k0
′ ⊕ k2

′ = x02. Now, we want to find out if k1
′ ⊕ k2

′ = x12. To establish it, we know that
the numbers x01 and x02 imply the existence of x12 due to the closure of the additive group. Since
k0

′, k1
′ and k2

′ define the same group Z⊕, we have k1
′ ⊕ k2

′ = x12. Since k0
′ was defined randomly,

this implies that for every chain k0
′ exist k1

′ and k2
′ that define the same group Z⊕. Suppose Alice

has defined k0, k1 and k2 that she uses to compute x01, x02 and x12. If Alice keeps hidden k0, k1,
and k2 but she publicly shares x01, x02, and x12, an adversary can derive another set of numbers k0

′,
k1

′ and k2
′ which return x01, x02 and x12 as well. However, due to the indistinguishability principle,

Eve cannot derive the original Alice’s set k0, k1, and k2. Thus, we can establish an advantage for
Alice which leads us to derive our authentication model.

2.1 XOR Authentication Algorithm

Fig. 3: Bob’s process diagram for authenticating Alice.

Now, we will introduce the XOR authentication model whose security is discussed in the next
subsection. The Alice’s public and private keys to achieve authentication are written in Table 1
where k0, k1 and k2 are random binary strings.

In this protocol hr constitutes the hash code of the message mr. The message m0 is assumed
to be the credential containing identification data of user Alice. For message mr, Alice obtains
hr = f(mr) where f denotes the hash function and she generates a random string xr, then she
proceeds to compute yr = xr ⊕ hr. The authentication process is represented in Figure 3 and is

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 September 2022 doi:10.20944/preprints202209.0295.v1

https://doi.org/10.20944/preprints202209.0295.v1

6 Luis Adrián Lizama-Perez1,*

Table 1: Alice Private/Public key definition in Lizama’s XOR authentication.
Private Key Public Key

{k0, k1, k2} {x0 ⊕ k0 ⊕ k2, y0 ⊕ k1 ⊕ k2, k0 ⊕ k1}

Table 2: Alice database (DB) contains the XOR sum of transactions. Integrity of the DB is
verified because hr+1 can be derived from hr ⊕ hr+1 and hr from 0 to any row r.

First Sum Term Second Sum Term

0 h0 x0 ⊕ x1
1 h0 ⊕ h1 x1 ⊕ x2
2 h1 ⊕ h2 x2 ⊕ x3

. . .
r hr−1 ⊕ hr xr ⊕ xr+1

completed after Bob verifies Eq. 2. We will denote the terms in Figure 3, as center term cj , down
term dj , left term lj and right term rj , so, we state Eq. 1 for j ≥ 1. The initial authentication step
is represented in Figure 3 and will be discussed next.

While the index j is intended to denote an arbitrary round beyond the initial authentication,
the index r will be used to denote the user authentication from the beginning. Thus, round 0
e.g. r = 0, is the first authentication process, as seen in Figure 3. However, there is an initial
authentication step where Bob gets the Alice’s public key from her database. Then Bob XORs the
three components of the key to get x0 ⊕ k0 ⊕ k2 ⊕ y0 ⊕ k1 ⊕ k2 ⊕ k0 ⊕ k1 = x0 ⊕ y0 ⊕ x1 ⊕ y1, but
remember that h0 = x0 ⊕ y0 and h1 = x1 ⊕ y1 (see Table 1). Also, h0 and h0 ⊕ h1 are allocated in
the Alice DB, from here Alice is correctly authenticated.

cj = yj ⊕ kj+1 ⊕ kj+2

lj = kj+1 ⊕ kj+3

rj = yj+1 ⊕ kj+2 ⊕ kj+3

dj = xj ⊕ xj+1

(1)

To be authenticated in the round 0 Alice computes h0 and chooses two random numbers x0 and
x1, then she registers h0 and x0 ⊕ x1 in her public database (see Table 2). The execution involves
the following steps.

1. Alice chooses a new random number x2 to get x1 ⊕ x2. She computes h1 from m1 and updates
her DB uploading h0 ⊕ h1 and x1 ⊕ x2 as shown in Table 2.

2. Alice sends to Bob:
– {k1 ⊕ k3}, {y2 ⊕ k2 ⊕ k3} and the message m1.

2. Bob retrieves {x0 ⊕ x1} and {h0 ⊕ h1} from Alice’s DB.
3. Bob XORs h0, {x0 ⊕ x1}, {k1 ⊕ k3}, {y1 ⊕ k2 ⊕ k3} and {y0 ⊕ k1 ⊕ k2} (see Figure 3) and he

verifies that h1 be equal to the computed value, that is h1 == f(m1). This condition is stated

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 September 2022 doi:10.20944/preprints202209.0295.v1

https://doi.org/10.20944/preprints202209.0295.v1

XOR Chain and Perfect Encryption at the Dawn of the Quantum Era 7

in Eq. 2 for r ≥ 1. Bob also checks that the received h0 ⊕ h1 is equal to the data retrieved from
Alice’s DB.

hr == hr−1 ⊕
⊕ xr−1 ⊕ xr ⊕ kr ⊕ kr+2 ⊕
⊕ yr ⊕ kr+1 ⊕ kr+2 ⊕
⊕ yr−1 ⊕ kr ⊕ kr+1

(2)

2.2 First Security Analysis

Suppose the eavesdropper Eve finds the triplet {k0
′, k1

′, k2
′}, and the pair {x0

′, y0
′}, so that those

numbers meet the next relations, where yr = hr ⊕ xr for r = 0, 1:

— h0 ⊕ x0 ⊕ k1 ⊕ k2 = h0 ⊕ x0
′ ⊕ k1

′ ⊕ k2
′

— k1 ⊕ k3 = k1
′ ⊕ k3

′

— h1 ⊕ x1 ⊕ k2 ⊕ k3 = h1
′ ⊕ x1

′ ⊕ k2
′ ⊕ k3

′

Assume that in round 0 Eve tries to mount a Man In The Middle (MITM) attack to the protocol
depicted in Figure 3. Eve intercepts Alice’s left term k1 ⊕ k3 then she replaces it with k1

′ ⊕ k3
′.

Also, she blocks Alice’s right term h1 ⊕ x1 ⊕ k2 ⊕ k3 and she substitutes it with h1
′ ⊕ x1

′ ⊕ k2
′ ⊕ k3

′.
Bob XORs the right and the left terms, the DB term x0 ⊕ x1 and the previous term as shown in
Figure 4. However, on the other side, Eve gets h0 ⊕ h1

′ ⊕ x0 ⊕ x0
′ ⊕ x1 ⊕ x1

′ because x0 ̸= x0
′ and

x1 ̸= x1
′. Otherwise if x0 = x0

′ and x1 = x1
′ Bob could derive h0 ⊕ h1

′. Remember that Alice has
stored x0 ⊕ x1 in her public DB.

Fig. 4: Security analysis for a Man In The Middle (MITM) attack. Eve gets h0 ⊕ h1
′ ⊕ x0 ⊕ x0

′ ⊕
x1 ⊕ x1

′.

2.3 Second Security Analysis

Suppose Alice is unable to store the term xr ⊕ xr+1 in her DB as indicated in Table 2 where r ≥ 0.
Therefore she sends it directly to Bob, thus in Equation 1 we have lj = kj+1 ⊕ kj+3 ⊕ xj ⊕ xj+1.

In the previous subsection, we assumed Eve could adjust the left and right term in Figure 4.
Now, we will go deeper to discuss this scenario. As commented before, the attacker is allowed to
find {k0

′, k1
′, k2

′} and {x0
′, y0

′} so that such numbers meet the following relations.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 September 2022 doi:10.20944/preprints202209.0295.v1

https://doi.org/10.20944/preprints202209.0295.v1

8 Luis Adrián Lizama-Perez1,*

— k0
′ ⊕ k1

′ = k0 ⊕ k1
— k0

′ ⊕ k2
′ = k0 ⊕ k2

— x0
′ ⊕ k0

′ ⊕ k2
′ = x0 ⊕ k0 ⊕ k2

— y0
′ ⊕ k1

′ ⊕ k2
′ = y0 ⊕ k1 ⊕ k2

— h0
′ = h0

Fig. 5: We write h1
′ as y1

′ ⊕ x1
′ then δe = x1

′ ⊕ k3
′.

Nevertheless the following inequalities hold: k0
′ ̸= k0, k1

′ ̸= k1, k2
′ ̸= k2, x0

′ ̸= x0 and h1
′ ̸= h1.

What we want to determine is whether Eve, using her own numbers, could produce Alice’s left
term: l0 = k1 ⊕ k3 ⊕ x0 ⊕ x1 and right term: r0 = y1 ⊕ k2 ⊕ k3 as represented in Figure 5.

Assume Eve choose x1
′ and k3

′ for the next round. By choosing them, Eve should get Alice’s
numbers. Let δe = x1

′ ⊕ k3
′, then as can be seen in Figure 5 Eve could adjust one of the two

numbers but not both. Let’s say she adjusts δe to get the left term l0 = k1 ⊕ k3 ⊕ x0 ⊕ x1, but
doing this causes the inequality of the right term r0 = y1 ⊕ k2 ⊕ k3. As a result, Eve’s presence in
the middle of the protocol becomes detectable.

2.4 Efficiency

For the quantum era is recommended that the size of the hash code should be at least 256 bits
to be used. Thus, the recommended size of the private key {k0, k1, k2} achieves 3 · 256 = 768 bits.
Also, the size of the public key {x0 ⊕ k0 ⊕ k2, y0 ⊕ k1 ⊕ k2, k0 ⊕ k1} amounts 3 · 256 = 768 bits.
These key sizes are really small compared to current public key cryptosystems.

In addition, a database of each user must be publicly maintained, which contains the XOR sum
of hash codes and the Alice keys xr ⊕ xr+1. Then the size of the packet sent by Alice, each round,
achieves 512 bits: {xr−1 ⊕ xr ⊕ kr ⊕ kr+2} and {yr ⊕ kr+1 ⊕ kr+2} plus the size of the message mr

itself.
Preliminary tests carried out on the cocalc.com platform show execution times of only a few

milliseconds. A prototype is currently being implemented to determine the precise timing of key
generation as well as authentication/encryption processes.

2.5 Key Renewal

Two reasons could lead to the renovation of the authentication chain produced by Alice’s DB.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 September 2022 doi:10.20944/preprints202209.0295.v1

https://doi.org/10.20944/preprints202209.0295.v1

XOR Chain and Perfect Encryption at the Dawn of the Quantum Era 9

1. The length of the chain has become too long, thus authenticating a user DB can become
computationally costly (see the caption of Table 2).

2. If Alice acts as a server, she could maintain an authentication chain with each user separately.

To meet both requirements, Alice executes the following procedure: she keeps the keys k0 and
k1 but she updates k2, what is achieved choosing randomly other binary string. As a result, the root
key {k0 ⊕ k1} remains unchanged but the other two keys {k0 ⊕ k2}, {k1 ⊕ k2} must be substituted
(see Table 3).

Table 3: Renewal strategy for XOR authentication mode.
Public Key

1

x0 ⊕ k0 ⊕ k1

y0 ⊕ k0 ⊕ k2 k1 ⊕ k2

2 y0 ⊕ k0 ⊕ k2
′ k1 ⊕ k2

′

3 y0 ⊕ k0 ⊕ k2
′′ k1 ⊕ k2

′′

This is feasible and safe because, as stated before, an adversary cannot derive k0, k1 neither k2
despite she has access to the XOR sums {k0 ⊕ k1}, {k0 ⊕ k2} and {k1 ⊕ k2}. The resulting public
keys are written in Table 3. Any user who wants to authenticate Alice only needs to verify that the
root key x0 ⊕ k0 keeps unchanged. In the first renewal case, the last message of the original chain
will become the first message of the new chain after the execution of the key renewal algorithm.
For the second renewal case, Alice maintains a separated chain of communication with each user of
the system. Such situation is depicted in Figure 6.

Fig. 6: User i can keep an authenticated conversation with user j using the keys k0i ⊕ k1i, x0i ⊕
k0i ⊕ k2j and y0i ⊕ k1i ⊕ k2j .

3 Message XOR Encryption

We will now define a new type of data stream encryption that can also be converted to a block
encryption scheme, in which the encryption key acquires the same size as the data to be sent,
although this size may be arbitrarily large.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 September 2022 doi:10.20944/preprints202209.0295.v1

https://doi.org/10.20944/preprints202209.0295.v1

10 Luis Adrián Lizama-Perez1,*

3.1 Multiple Key Reuse

Our encryption method relays in a mechanism to generate the encrypted message that we call
multiple key reuse which is symbolically established by Eq. 3 for r ≥ 0. According to this equation,
the encrypted messages can be written as c2 = m2 ⊕ x2 ⊕ x1 ⊕ x0, c3 = m3 ⊕ x3 ⊕ x2 ⊕ x1,
c4 = m4 ⊕ x4 ⊕ x3 ⊕ x2, c5 = m5 ⊕ x5 ⊕ x4 ⊕ x2 and so on. Messages m0 and m1 were encoded using
the initial secret keys as we will explain soon. As can be deduced from this equation, every key is
used tree times. Eq. 3 holds for r ≥ 0 where xr+2, xr+1 and xr represent secret random numbers.
In the following sections we will provide arguments about the security of this approach.

cr+2 = mr+2 ⊕ xr+2 ⊕ xr+1 ⊕ xr (3)

3.2 XOR Encryption Algorithm

In this scenario Alice wants to send secret messages to Bob. Let’s assume that Alice and Bob share
an initial secret key because they have possibly performed a secret key establishment algorithm.
Actually, they share three secret keys k0ab, k1ab, k2ab, then they compute XOR between the secret
keys {k0ab ⊕ k1ab, k0ab ⊕ k2ab, k1ab ⊕ k2ab}. In this explanation we will denote them simply as
k0, k1, k2.

Users run the protocol depicted in Figure 7, so that Alice (or Bob) starts sending the first
encrypted message m0 which satisfies the relation m0 = x0 ⊕ y0. As stated by Equation 4, in this
scenario there is no a database of any user so we have removed the term dj from Equation 1 but
appending the terms xj ⊕ xj+1 into lj .

In this protocol we establish the substitution rule kj = xj−3 which implies that in rj the term
kj+2 must be substituted by xj−1 and kj+3 by xj while in cj instead of kj+1 it must be written
xj−2 and kj+1 by xj for j ≥ 1. Applying this rule to lj gives xj−2 ⊕ xj+1.

cj = yj ⊕ kj+1 ⊕ kj+2 = xj−2 ⊕ xj−1 ⊕ yj

lj = kj+1 ⊕ kj+3 ⊕ xj ⊕ xj+1 = xj+2 ⊕ xj+1

rj = yj+1 ⊕ kj+2 ⊕ kj+3 = xj−1 ⊕ [xj] ⊕ yj+1

(4)

In rj of Equation 4 we have enclosed in brackets the term [xj] because it will be appended
by Bob after he receives xj−1 ⊕ yj+1 (see Figure 7). The XOR computation between cj , lj and rj

results in cj ⊕ lj ⊕ rj = xj ⊕ yj ⊕ xj+1 ⊕ yj+1.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 September 2022 doi:10.20944/preprints202209.0295.v1

https://doi.org/10.20944/preprints202209.0295.v1

XOR Chain and Perfect Encryption at the Dawn of the Quantum Era 11

Fig. 7: To recover an encrypted message Bob must able to get kj and kj+3 as they are written in
rj of Eq. 5 (see Figure 3). To derive kj and kj+3 Bob uses the relation kj+2 = xj−1 for j ≥ 1, then
he XORs it to the incoming number from the right hand side. We have highlighted the term xj−1
enclosing it in brackets.

In this encryption scheme, instead of sending the hash value of the message hr as in the authen-
tication mode, Alice uses a piece of the message to compute yr as mr ⊕ xr where xr is a random
string and mr is the cleartext message. In the round r Bob applies the cipher XOR rule depicted in
Figure 8, which gives xr+2 ⊕yr+2 ⊕xr+3 ⊕yr+3 = mr+2 ⊕mr+3. Then, mr+3 is recovered according
to Eq. 5 for r ≥ 2. Rounds r = 0 and r = 1 are run according to the Figure 7.

1. For message mr where r ≥ 2, Alice generates a random string xr, then she computes yr =
xr ⊕ mr. She sends to Bob {xr−2 ⊕ xr+1} and {xr−2 ⊕ xr−1 ⊕ yr}.

2. Bob XORs xr to the incoming number on the right hand side of Figure 7, thus he gets {xr−1 ⊕
[xr] ⊕ yr+1}.

3. As stated by Eq. 5 Bob XORs {xr−2 ⊕ xr+1}, {xr−1 ⊕ [xr] ⊕ yr+1} and {xr−2 ⊕ xr−1 ⊕ yr},
where the last term has been stored at Bob’s side from the previous round. This XOR operation
yields mr ⊕ mr+1, then Bob is able to derive mr+1 (see Figure 8).

mr+1 == mr ⊕
⊕ xr−2 ⊕ xr+1 ⊕
⊕ xr−1 ⊕ [xr] ⊕ yr+1 ⊕
⊕ xr−2 ⊕ xr−1 ⊕ yr

(5)

In practice Bob must be capable to derive xj−1 for j ≥ 1 as indicated by the rule kj+2 = xj−1.
The relations that allow Bob to obtain each xj−1 are k0 ⊕ k2 ⊕ x0 → x0, k1 ⊕ x1 → x1, . . .,
xr ⊕ xr+3 → xr+3.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 September 2022 doi:10.20944/preprints202209.0295.v1

https://doi.org/10.20944/preprints202209.0295.v1

12 Luis Adrián Lizama-Perez1,*

Fig. 8: It is represented the cipher XOR rule of Eq. 5 {xr−2 ⊕ xr+1} ⊕ {xr−1 ⊕ [xr] ⊕ yr+1} ⊕
{xr−2 ⊕ xr−1 ⊕ yr} = mr ⊕ mr+1.

3.3 Attack Scenario
Let us analyze an scenario which could be exploited by an eavesdropper to implement the following
attack: Eve captures the numbers sent by Alice through the public channel. Eve computes the
sum of the incoming numbers arriving in Figure 7 from the right (denoted as sr), where we have
substituted yr = mr ⊕ xr.

s0 = m0 ⊕ k1 ⊕ k2 ⊕ x0
s1 = m0 ⊕ m1 ⊕ k1 ⊕ x0 ⊕ x1
. . .
sr = m0 ⊕ . . . ⊕ mr ⊕ k1 ⊕ k2 ⊕ xr−1 ⊕ xr

Now, the sum terms are XORed with the term y0 ⊕ k1 ⊕ k2 = m0 ⊕ x0 ⊕ k1 ⊕ k2.

s0
′ = 0

s1
′ = m1 ⊕ x1 ⊕ k2

. . .
sr

′ = m1 ⊕ . . . ⊕ mr ⊕ x0 ⊕ xr−1 ⊕ xr ⊕ k2

Eve also computes the XOR sum of the left hand input terms (denoted tr) including the term
k0 ⊕ k1.

t0 = x0 ⊕ k1 ⊕ k2
t1 = x0 ⊕ x1 ⊕ k2
. . .
tr = xr−2 ⊕ xr−1 ⊕ xr

If Eve XORs m1⊕. . .⊕m5⊕x0⊕x4⊕x5⊕k2 and x3⊕x4⊕x5 she gets m1⊕. . .⊕m5⊕x0⊕x3⊕k2.
Although the term x0 ⊕ x3 is sent by Alice through the public channel, it cannot be exploited by
Eve to obtain m1 ⊕ . . . ⊕ m5 due to the encryption key k2 that appears in Eve’s relation.

3.4 Perfect Forward Secrecy
Suppose the key xt has been exposed and therefore has been compromised. As a consequence, all
messages for r ≥ t will be exposed because xr ⊕xr+3 is sent over the public channel. However, since
the keys xr for r < t have no dependency on xt then secrecy of messages where r < t is preserved
and the cryptosystem is said to exhibit Perfect Forward Secrecy (PFS).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 September 2022 doi:10.20944/preprints202209.0295.v1

https://doi.org/10.20944/preprints202209.0295.v1

XOR Chain and Perfect Encryption at the Dawn of the Quantum Era 13

3.5 Group Encrypted Communication

Provided a group of users share a secret key, the encrypted conversation within the group is possible
because each user derives the current plaintext message of the conversation as shown in Figure 7.

3.6 Batch Encryption

Instead of sending each piece of message mr, one by one over the network, Alice can send several
messages into a single batch packet. If the network traffic conditions allow it, the communication
could be commuted to send again individual fragments. In any case, the amount of key material is
equal to the size of the whole transferred message. See the relations listed below which correspond
to the right input numbers in Figure 7.

y0 ⊕ k1 ⊕ k2 = m0 ⊕ x0 ⊕ k1 ⊕ k2
y1 ⊕ x0 ⊕ k2 = m1 ⊕ x0 ⊕ x1 ⊕ k2
. . .
yr ⊕ xr−2 ⊕ xr−1 = mr ⊕ xr−2 ⊕ xr−1 ⊕ xr

Messages from m0 to mr are encrypted with the keys x0 to xr plus the initial secret keys. Since
the whole plaintext message is encrypted with a key that reaches the same size, we satisfy the
criteria of Shannon’s perfect encryption.

4 XOR Chain

The XOR authentication model discussed so far can be used to define a system of transaction-linked
blocks to maintain a secure database of such network transactions. The most used system for this
purpose is Blockchain, in which Bitcoin miners perform a Proof of Work (PoW) that consists of
finding a number such that concatenated with the hash code of the previous block produces a hash
code prefixed with a predetermined number of zeros. The miner is then authorized to establish the
next block into the blockchain. The block contains the root code of the Merkle tree used to identify
the transactions group. As a final step, the miner receives a reward in bitcoins. Unfortunately, to
find the required nonce, miners need to compute a large number of hashes per unit of time, which
entails a large energy cost.

To avoid such computational effort and the required electrical power consumption, the random
selection of the miner could be proposed. However, doubts could prevail about the integrity of the
random selection algorithm. We will reformulate this scenario through the XOR chain algorithm.
But before introducing XOR chain, we will discuss in the next section a similar scheme from which
we have developed the XOR chain algorithm that we have named Crypto Bingo.

4.1 Crypto Bingo

We define Crypto Bingo in the context of a game scenario. Let us start by stating that each player,
say i, registers into the game by posting his binary number si that each user choose randomly. For
the round j each player i computes gij = fxij (wij)||yij , here wij = sr||hij

′ and hij
′ is the hash code

that belongs to the previous winning player, xij is a random number and yij is the hash code of
their Merkle tree which identify the transactions group of r. Let us go deeper into this algorithm.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 September 2022 doi:10.20944/preprints202209.0295.v1

https://doi.org/10.20944/preprints202209.0295.v1

14 Luis Adrián Lizama-Perez1,*

Fig. 9: Players register hij = f(gij), then they announce gij = fxij (wij)||yij and (xij , yij).

Fig. 10: The diagram process to compute hij .

— In the first round, the root player computes and registers h01 into the game, where h01 =
fx01(w01)||y01 and w01 == s0 (instead of s0||h01

′ because there is no a previous winner). In
addition, players compute and register hi1 into the game. Then the root player announces g01
and the player whose gi1 is at the minimum Hamming distance denoted as δ, wins and acquires
the right to place his block into the chain. Let s1 be the winning player with h11. To be verified
the root player publishes (x01, y01) while player 1 announces (x11, y11). Then, all players verify
that they correspond to h01 and h11, respectively.

— Next, in round 2, s1 computes and register h12 in the game, where h12 = fx12(w12)||y12 and
w12 == s1||h11. All players compute and publish hi2. Then s1 announces g12 and the player
who gets δ wins and owns the block chain. Player 1 is verified after he publishes (x12, y12), also
the verification of the winning player 2 is performed using (x22, y22) (see Figures 9 and 10).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 September 2022 doi:10.20944/preprints202209.0295.v1

https://doi.org/10.20944/preprints202209.0295.v1

XOR Chain and Perfect Encryption at the Dawn of the Quantum Era 15

As can be deduced, verifying the winning player’s given hij and (xij , yij) can be efficiently
performed. The players do not require a high computational effort and the expenditure of energy is
minimal. More important, no player can break the rules of the game since everyone publishes their
registration number wi since the beginning of the game.

4.2 XOR Chain Algorithm

In this section, we will apply the authentication model for building a blockchain system. Suppose
all players act as Eve according to the rules described in subsection 2.3 Second Security Analysis
where Alice sends xj ⊕ xj+1 over the network and Eve can adjust the left term but misfit the right
term by an amount of δe as indicated in Figure 5.

cj = yj ⊕ kj+1 ⊕ kj+2

lj = kj+1 ⊕ kj+3 ⊕ xj ⊕ xj+1

rj = yj+1 ⊕ kj+2 ⊕ kj+3

(6)

Fig. 11: The XOR Chain model. In the first round Miner m1 computes the keys for the next round
such that the resulting left term is equal to h0. Black boxes represent that they contain the same
(or closer) number.

In this explanation, we will refer to Alice as the root player m0 (see Figure 11).

1. Using his numbers k0, k1, k2 and x0, y0 the root player denoted as m0 publishes c0, l0 and r0
computed as c0 = y0 ⊕ k1 ⊕ k2, l0 = k1 ⊕ k3 ⊕ x0 ⊕ x1, r0 = y1 ⊕ k2 ⊕ k3. All players select
their own set of numbers (k0

′, k1
′, k2

′, k3
′, x0

′, x1
′, y0

′ and y1
′), so that they throw up the root

numbers c0, l0, r0.
2. In the second round the root player m0 computes and publishes l1 = x1 ⊕ x2 ⊕ k2 ⊕ k3,

r1 = y2 ⊕k3 ⊕k4 according to Eq. 6 where r = 3. Then, each player chooses k3
′ so that their left

term l1
′ matches the root left term l1, then he publishes both results: left term l1

′ = x0
′⊕k1

′⊕δw

and right term r1
′ = h1

′ ⊕ k2
′ ⊕ δw where δw = x1

′ ⊕ k3
′ (see Figure 5).

3. The player who achieves the pre-specified Hamming distance wins. For simplicity, this situation
is illustrated in Figure 11 as the player m1 who is at the right of the root node. The winner
places the hash code from the root of their Merkle tree on the blockchain.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 September 2022 doi:10.20944/preprints202209.0295.v1

https://doi.org/10.20944/preprints202209.0295.v1

16 Luis Adrián Lizama-Perez1,*

4. The winner m1 computes the keys for the next round, choosing k4 such that the resulting left
term l2 is equal to h0 as indicated by Eq. 7 where lr−2 = hr−4. This action prevent the winning
player from favoring another player. The process to choose the next winner is repeated.

lr−2 = hr−4 = kr−1 ⊕ kr+1 ⊕ xr−2 ⊕ xr−1 (7)

At network time n, the current winning node contains the valid historical list of system blocks:
h0, h1, . . . , hn (see Figure 11).

5 Conclusions

In this work we have introduced a new approach to achieve the perfect secret using the XOR
function and applying a mechanism that we call multiple key reuse. We have discussed two modes
of the basic algorithm: message authentication and encryption. We argue that our method exhibits
Perfect Forward Secrecy (PFS) and batch encryption to adapt to network traffic conditions. Since
the crypto system only requires the XOR function, the execution time only takes a few milliseconds.

More importantly, we have taken advantage of the basic authentication system to define a new
approach to implementing blockchain that does not require proof of work. Our method relies on
another algorithm called Crypto Bingo that we have previously developed. The security of the
system is fundamentally based on XOR operations, which is why it can be established without
great complexity. Therefore, we believe that our scheme represents a safe, efficient and simple
alternative to the current Blockchain technology in the era of the Internet of Things (IoT) and
quantum computing.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 September 2022 doi:10.20944/preprints202209.0295.v1

https://doi.org/10.20944/preprints202209.0295.v1

Bibliography

[1] C. E. Shannon, “Communication theory of secrecy systems,” The Bell system technical journal,
vol. 28, no. 4, pp. 656–715, 1949.

[2] A. Feutrill and M. Roughan, “A review of shannon and differential entropy rate estimation,”
Entropy, vol. 23, no. 8, p. 1046, 2021.

[3] T. Shimeall and J. Spring, Introduction to information security: a strategic-based approach.
Newnes, 2013.

[4] L. K. Grover, “A fast quantum mechanical algorithm for database search,” in Proceedings of
the twenty-eighth annual ACM symposium on Theory of computing, pp. 212–219, ACM, 1996.

[5] H. Wu, “A new stream cipher hc-256,” in International Workshop on Fast Software Encryption,
pp. 226–244, Springer, 2004.

[6] M. Hell, T. Johansson, and W. Meier, “Grain-a stream cipher for constrained environments.”
estream, ecrypt stream cipher,” 2005.

[7] M. Boesgaard, M. Vesterager, T. Pedersen, J. Christiansen, and O. Scavenius, “Rabbit: A
new high-performance stream cipher,” in International workshop on fast software encryption,
pp. 307–329, Springer, 2003.

[8] S. Babbage and M. Dodd, “The stream cipher mickey 2.0,” ECRYPT Stream Cipher, 2006.
[9] D. J. Bernstein, “Salsa20 specification,” eSTREAM Project algorithm description, http://www.

ecrypt. eu. org/stream/salsa20pf. html, 2005.
[10] C. De Canniere, “Trivium: A stream cipher construction inspired by block cipher design prin-

ciples,” in International Conference on Information Security, pp. 171–186, Springer, 2006.
[11] P. Ekdahl and T. Johansson, “Snow-a new stream cipher,” in Proceedings of First Open NESSIE

Workshop, KU-Leuven, pp. 167–168, Citeseer, 2000.
[12] E. Biham, R. Anderson, and L. Knudsen, “Serpent: A new block cipher proposal,” in Interna-

tional workshop on fast software encryption, pp. 222–238, Springer, 1998.
[13] L. A. Lizama-Perez, “Digital signatures over hash-entangled chains,” SN Applied Sciences,

vol. 1, no. 12, p. 1568, 2019.
[14] L. A. Lizama-Pérez, “Digital signatures over hmac entangled chains,” Engineering Science and

Technology, an International Journal, p. 101076, 2021.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 September 2022 doi:10.20944/preprints202209.0295.v1

https://doi.org/10.20944/preprints202209.0295.v1

