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Abstract: Today, mechanical tracking systems have been downsized to allow them to be used in the 

field of airborne laser communications and in the military domain. Risley systems are used for this 

purpose, which work by directing a beam of light to a given target point, this procedure is com-

monly known as the inverse problem. In this paper, an analytical method, the geometric method, 

has been designed and developed to determine the beam steering in a Risley system and solve the 

inverse problem. The method focuses on different geometric shapes, like circumference or ellipse, 

that are described when the beam passes through the second prism. The accuracy and efficiency of 

the geometric method has been analysed and found to be faster than the two-step method. Further-

more, the geometric method has been implemented in an iterative process and an accuracy of up to 

1 pm has been achieved. This high accuracy would allow the geometric method to be applied in 

fields such as lithography, stereolithography or 3D printers. 
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1. Introduction 

Beam scanners make it possible to obtain the geometry of the scanned environment 

from massive data storage. Several beam scanners are available like gimbal scanners, gal-

vanometers scanners and Risley prisms scanner. Traditional carried-axis gimbal scanners 

can be heavy and subsequently require more driving energy, non-carried-axis galvanom-

eters have limited aperture size while Risley scanners can offer a lighter, more compact, 

vibration-insensitive scanning option. This paper is based on the latest laser scanner. 

The Risley configuration consists of a combination of two or more Wedge prisms [1] 

that can rotate independently, Figure 1. The system allows to set the direction of the beam 

𝑆 to a specific point in space, and to generate different patterns by setting the relative ve-

locity between the prisms.  

Some of the applications of the Risley configuration are in LiDAR technology [2,3] to 

scan Earth's surface with different scanning patterns or to collect wind field data [4] from 

an aircraft. In addition, the Risley configuration allows the development of systems with 

a wide field of view, multi-target tracking and angular scanning of the DMD (Digital Mi-

cro-mirror Device) [5].  

Two problems arise in the Risley configuration, the direct and the inverse problem. 

The direct problem is to determine the deviation of the laser beam direction given a set of 

prism orientation angles. This problem is commonly solved by the Forward Vector Re-

fraction Theorem [6]. However, the inverse problem is more complex, based on calculat-

ing the rotation angles needed to reach any region of space within the allowed limits of 

the system. Some research groups have solved it using an iterative process, which presents 

a high precision solution [6,7], the third-order solution [8,9], the two-step method  [10–

12], the look-up table method [13], the control system based on Newton’s method [14] and 

the error compensation method based on the paraxial approximation [15], among others. 
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This paper proposes a fast and direct inverse solution for applications that require a 

quick response and high accuracy. Two approximations of a mathematical method based 

on geometry are developed and compared with the two-step method. Later, the devel-

oped mathematical method has been implemented in an iterative method.  

The organization of the paper is as follows: Section 2 expounds the method that offers 

an inverse solution for the Risley prisms. Section 3 shows the results obtained from a time 

and accuracy analysis of the developed method and compares the two approximations of 

the method with each other and with other methods developed by other authors. Conclu-

sions are drawn in Section 4. 

2. Inverse solution for Risley prism 

Given the generic Risley configuration system shown in Figure 1, the two prisms π1 

and π2 are rotated independently about the Z axis. The refractive index of the prisms has 

been denoted n1 and n2 and the wedge angle of the prisms, α1 and α2. Orientations of the 

prisms are specified by the respective rotation angles θ1 and θ2. The distance between both 

prisms is D1 and the distance between the emergent surface of prism π2 and the receiving 

screen is D2. 

 

Figure 1. Risley system diagram. 

Assuming the prisms are identical and have the same characteristics: 
𝑛1 =  𝑛2 = 𝑛 

(1) 
𝛼1 =  𝛼2 =  𝛼 

The proposed method consists of modelling the pattern described by a beam when 

the set of prisms rotate. 

When a beam passes through the first prism 𝜋1 of the Risley system a circumference 

is described and when the beam passes through the second prism 𝜋2 different geometric 

shapes can be approximated depending on the wedge angle of the prisms, Figure 2. 

For low wedge angles of the prisms the geometric shape can be approximated to a 

circumference while for high wedge angles the geometric shape is closer to an ellipse. 

Knowing the equation that define the geometric shape described by the beam when 

it passes through the second prism 𝜋2, the intersection points with the circumference de-

scribed by the beam when it passes through the first prism 𝜋1 of the system can be calcu-

lated. In this way, by obtaining intersection points, the angles of rotation of the desired 

prisms can be calculated. This process has been called the ‘geometric method’. 
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Figure 2. Representation of the different geometric shapes that depend on the wedge angle of the 

prisms. 

In this article, two approximations to the geometric shapes described by the beam are 

proposed. A fast but less accuracy approximation (the circumference) and a slow but 

higher accuracy approximation (the ellipse). Then, the geometric method has been imple-

mented into an iterative process to improve accuracy. 

2.1 Circumference approximation 

In this approximation, Figure 3, the geometric shape that describes the beam when 

the second prism 𝜋2 rotates approximates a circumference c2 with centre at any point of 

the circle 𝑐1. The circumference 𝑐1 is described by the beam when the first prism 𝜋1  ro-

tates and there is no second prism 𝜋2, with primary radius 𝑟1 and centre at the point of 

origin. 

Using the Forward Vector Refraction Theorem, the maximum and minimum radius 

that the system can reach at a given distance D2 can be calculated. The maximum radius 

is obtained when both prisms are oriented with the same angle of rotation and the mini-

mum radius is obtained when the prisms are out of phase 180º. Once both radii have been 

calculated, primary and secondary radius can be obtained: 

𝑟1 = 𝑟2 + 𝑚𝑖𝑛 _𝑟𝑎𝑑𝑖𝑢𝑠  

(2) 
𝑟2 = (𝑚𝑎𝑥 _𝑟𝑎𝑑𝑖𝑢𝑠 − 𝑚𝑖𝑛 _𝑟𝑎𝑑𝑖𝑢𝑠)/2 
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Figure 3. Circumference approximation diagram. 

Given the target point P to be reached with coordinates (𝑥0, 𝑦0), a change of axes 

through the angle δ is made, Figure 3, so that the target point P is on the X' axis, now 

becoming P'(𝑥0
′ , 𝑦0′).  

Considering 𝑦0
′ = 0 and solving the system of equations formed by the equations (3) 

that define the radius (𝑟1, 𝑟2), the centre point 𝐶′(𝑥𝑐
′ , 𝑦𝑐′) is obtained.  

𝑟1 = √𝑥𝑐
′ 2 + 𝑦𝑐

′2 

(3) 

𝑟2 =  √(𝑥𝑐
′ − 𝑥0

′ )2 + 𝑦𝑐
′2 

Knowing the centre point C’, it is possible to calculate the angle 𝛾′: 

𝛾′ = 𝑎𝑐𝑜𝑠(𝑥𝑐
′ 𝑟1⁄ ) = 𝑎𝑐𝑜𝑠((𝑟1

2 −  𝑟2
2 + 𝑥0

′ 2
) 2𝑟1𝑥0

′⁄ ) (4) 

Finally, undoing the change of coordinate axes, the rotation angle of the first prism 

𝜃1 is: 

𝜃1 =  𝛾′ +  𝛿 (5) 

Where 𝛿 is: 

𝛿 =  𝑎𝑐𝑜𝑠 (𝑥0 √𝑥0
2 + 𝑦0

2⁄  ) 
(6) 

The centre point of the circumference 𝐶′(𝑥𝑐
′ , 𝑦𝑐′) on the X' and Y' coordinate axes is 

isolated from (4) to obtain the rotation angle of the second prism 𝜃2.  

𝑥𝑐′ =  𝑟1 · 𝑐𝑜𝑠 (𝛾′) 
(7) 

𝑦𝑐′ =  𝑟1 · 𝑠𝑖𝑛 (𝛾′) 

Translating the central point C’ to the X and Y coordinate axes: 

𝑥𝑐 =  𝑥𝑐
′ · 𝑐𝑜𝑠(𝛿) − 𝑦𝑐

′ · sin(𝛿) 
(8) 

𝑦𝑐 = 𝑥𝑐 ′ · 𝑠𝑖𝑛(𝛿) + 𝑦𝑐′ · 𝑐𝑜𝑠(𝛿) 

The rotation angle of the second prism 𝜃2 is the angle of the section formed by the 

points (𝐶, 𝑃, 𝑂2) in Figure 3. 

𝜃2 = 𝑎𝑐𝑜𝑠 ((𝑥0 − 𝑥𝑐) √− 𝑥0 + 𝑥𝑐)2 + (−𝑦0 + 𝑦𝑐)2 ⁄ ) 
(9) 

2.2 Ellipse approximation 

The second approximation is based on the geometric shape described by the beam is 

an ellipse. Using the properties of eccentricity and the focal distance of the ellipse it is 

possible to obtain the rotation angles of the prisms. To obtain the rotation angles of the 

prisms is necessary to calculate the value of the semi-axis a, which depends on the wedge 

angle of the prisms α and the distance D2. 

2.2.1 Calculation of the semi-axis a 
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The value of the semi-axis b is the value of the secondary radius r2. On the other hand, 

the value of the semi-axis a must be optimised so that the error between the points calcu-

lated by the Forward Vector Refraction Theorem and by the parametric equations of the 

ellipse for a specific distance D2 must be minimised. The value of the semi-axis a can be 

optimised with different optimisation methods such as: Nelder-Mead, Powell… 

Once the value of the semi-axis a has been optimised for the specific distance D2, the 

incident angle 휀 of the laser beam on the screen can be obtained: 

휀 = 𝑎𝑡𝑎𝑛(𝑎 𝐷2⁄ ) (10) 

The incident angle 휀 is constant for the optic system configuration and it does not 

depend on the distance D2’, so it is not necessary to repeat the optimization process. It is 

possible to calculate a’ for any distance D2’ as: 

𝑎′ = 𝐷2′ · 𝑡𝑎𝑛 (휀) (11) 

Once the value of the semi-axis a has been obtained, the angles of rotation of the 

prisms can be calculated. 

2.2.2 Calculation of the rotation angles of the prisms 

In this approximation, the geometric shape that describe the beam, when the second 

prism 𝜋2 rotates, approximates an ellipse e1 with centre at any point of the circle 𝑐1. 

Since the sum of the focal distance of any point P on an ellipse is constant and equal 

to the length of the major axis of the ellipse (b): 

𝑃𝐹1 + 𝑃𝐹2 = 2𝑏 → 𝑑1 + 𝑑2 = 2𝑏 (12) 

For simplicity, a rotation of the coordinate axes through the angle δ is made, Figure 

4, so that the target point P is on the X' axis, being now the point P'(𝑥0
′ , 𝑦0′). 

 

Figure 4. Rotation of the coordinate axes. a) The diagram is represented on the original axes (X, Y). 

b) The diagram is represented on the rotated axes (X’, Y’). 

Knowing the target point 𝑃’ and the points of the focal F1’(𝑥1′, 𝑦1′) and F2’(𝑥2
′ , 𝑦2′), 

the distance between them is calculated as: 

𝑑1 = √(𝑥1′ − 𝑥0′)2 + (𝑦1′ − 𝑦0′)2 
(13) 

𝑑2 = √(𝑥2′ − 𝑥0′)2 + (𝑦2′ − 𝑦0′)2 

Where, 
𝑥1′ = 𝑟𝐹1 · 𝑐𝑜𝑠(𝛾′) 
𝑦1′ = 𝑟𝐹1 · 𝑠𝑖𝑛(𝛾′) 

(14) 
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𝑥2′ = 𝑟𝐹2 · 𝑐𝑜𝑠(𝛾′) 
𝑦2′ = 𝑟𝐹2 · 𝑠𝑖𝑛(𝛾′) 

The radius 𝑟𝐹1 and 𝑟𝐹2 is the radius of the circle formed with centre at the origin and 

passing through the focus point F1 and the focus point F2, respectively. The focus points 

(F1 and F2) are at the same distance from the primary radius. This distance is √𝑏2 − 𝑎2. 

Considering 𝑦0
′ = 0 and with the equations (12), (13) and (14), it is possible to obtain 

the solution of the angle 𝛾′ between the X′-axis and the line that pass through the centre 

point C’ of the ellipse: 

𝛾′ = −𝑎𝑐𝑜𝑠(−(𝑐4 − 4𝑏 · 𝑐7 + 𝑐5) 𝑥0
′ · 𝑐3⁄ ) (15) 

Where, 

𝑐1 =  −4𝑏2 · 𝑟𝐹1 − 4𝑏2 · 𝑟𝐹2 
𝑐2 =  𝑟𝐹1

3 − 𝑟𝐹1
2 · 𝑟𝐹2 − 𝑟𝐹1𝑟𝐹2

2 + 𝑟𝐹2
3 

𝑐3 = 2 · (𝑟𝐹1 − 𝑟𝐹2)2  
𝑐4 =  −𝑐1 
𝑐5 = −𝑐2 
𝑐6 = 4𝑏2𝑟𝐹1𝑟𝐹2 − 𝑟𝐹1

3𝑟𝐹2 + 2𝑟𝐹1
2𝑟𝐹2

2 − 𝑟𝐹1𝑟𝐹2
3 

𝑐7 =  √𝑐6 + 𝑟𝐹1
2 · 𝑥0′2 − 2𝑟𝐹1 · 𝑟𝐹2 · 𝑥0′2 + 𝑟𝐹2

2 · 𝑥0′2 

Finally, the rotation angle of the first prism 𝜃1 and the second prism 𝜃2 can be fol-

lowing the same process as the circumference approximation (undoing the change of co-

ordinate axes) with (5), (6), (7), (8) and (9). 

2.2 Iterative method with geometric method 

To improve the accuracy to reach the target point, Anhu Li developed an iterative 

method [6] consisting of a combination of the two-step method [10] and the Forward Vec-

tor Refraction Theorem. In this paper, the two-step method has been replaced by the geo-

metric method in the iterative method. 

In the first iteration, the exiting point of the system is assumed to be the centre 

𝑁 (0, 0, 𝐷1) of the second surface of the prism Π2. Given a target point 𝑃 (𝑥𝑝, 𝑦𝑝, 𝑧𝑝), it is 

possible to calculate the rotation angles (𝜃1, 𝜃2) of the prisms by the geometric method. 

Then, substituting the rotation angles into the Forward Vector Refraction Theorem, the 

corresponding exiting point 𝑁 = (𝑥𝑛 , 𝑦𝑛 , 𝑧𝑛) and the tracking point 𝑃𝑟 = (𝑥𝑟𝑝, 𝑦𝑟𝑝, 𝑧𝑟𝑝) is 

obtained. The tracking point 𝑃𝑟  has a deviation (𝜑𝑥, 𝜑𝑦) from the target point P, being 

𝜑𝑥 = 𝑥𝑝 − 𝑥𝑟𝑝 y 𝜑𝑦 =  𝑦𝑝 − 𝑦𝑟𝑝. 

In the second iteration, taking the point 𝑃𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) = (𝑥𝑝 + 𝜑𝑥, 𝑦𝑝 + 𝜑𝑦 , 𝐷2) as 

the target point of the system, it is possible to calculate the rotation angles (𝜃1, 𝜃2) of the 

prisms by the geometric method. This process is iterated until the separation distance be-

tween tracking point 𝑃𝑟  and target point 𝑃 meets the given accuracy requirement 𝛿.  

The steps to implement the geometric method in the iterative method are: 

Step 1. Given a target point 𝑃 (𝑥𝑝, 𝑦𝑝 , 𝑧𝑝),  assume that the initial point is 

𝑁 (𝑥𝑛 , 𝑦𝑛, 𝑧𝑛) = (0, 0, 𝐷1) on prism Π2. Also, it is assumed that the deviation (𝜑𝑥 , 𝜑𝑦) is 

zero.  

Step 2. Calculate the rotation angles (𝜃1, 𝜃2) of the two prisms using the geometric 

method by considering the initial point 𝑃𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) = (𝑥𝑝 + 𝜑𝑥, 𝑦𝑝 + 𝜑𝑦 , 𝐷2)  as the 

point to be reached.  

Step 3. Update the current exiting point 𝑁 = (𝑥𝑛, 𝑦𝑛 , 𝑧𝑛) and the current target point 

𝑃𝑟 = (𝑥𝑟𝑝 , 𝑦𝑟𝑝, 𝑧𝑟𝑝)  substituting the rotation angles into the Forward Vector Refraction 

Theorem.  

Step 4. Calculate the error Δ between the tracking point and the current target point 

on the receiving screen as: ∆ =  √(𝑥𝑟𝑝 −  𝑥𝑝)2 + (𝑦𝑟𝑝 −  𝑦𝑝)2 + (𝑧𝑟𝑝 − 𝑧𝑝)2. If the error is 
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less than the error threshold (∆ <  𝛿) the rotation angle (𝜃1, 𝜃2) are the final rotation angle. 

If not, update deviation 𝜑𝑥 =  𝑥𝑖 − 𝑥𝑟𝑝, 𝜑𝑦  =  𝑦𝑖 − 𝑦𝑟𝑝 and go to step 2. 

This procedure is the same that the iterative method developed by Anhu Li except 

for the step 2. 

3. Results of the geometric method 

In order to evaluate how good a method is, it is necessary to evaluate its accuracy 

and efficiency. In this section, an analysis of these two aspects of the geometric method 

and the two-step method will be made to compare them. In addition, an analysis of time 

and number of iterations of the iterative method with the geometric method and with the 

two-step method will be made to compare them. 

The parameters of two identical prisms used to obtain the results are: refractive index 

n = 1.517; the diameter of the prisms is 25.4 mm; the distance between two prisms D1 = 40 

mm; the thickness of the thinnest end 𝑑0 = 2.75 mm.  

There are three parameters that have been modified to analyse the behaviour of the 

approximations under different conditions. The distance between the emergent surface of 

prism 𝜋2 and the receiving screen D2 has taken values between 500 mm and 16.384 km, 

the wedge angle α has been changed between 2º and 40º and the error threshold δ for the 

iterative method has taken values between 0.1 𝜇𝑚 and 1 𝑝𝑚. 

The computer used to obtain the following results has an AMD Ryzen 5 CPU and 8 

GB memory, and the code has been developed in C++. 

3.1. Comparative of the error obtained by geometric method and the two-step method 

The accuracy in the direction of the laser beam to any point in space varies radially 

and also depends on the wedge angle α. To analyse the accuracy of the method the error 

is calculated, where the error is the difference between the target point and the point that 

has been reached with the method used.  

The Figure 5 (a)(c)(e) shows that the error increases when the wedge angle is larger 

for the three methods. In addition, three wedge angle values have been selected to observe 

their profile as a function of the radius, Figure 5(b)(d)(f). The two-step method (Figure 

5(e)(f)) has a radial behaviour, the error increases as the radius increases. However, in the 

geometric method (Figure 5(a-d)) the minimum error is obtained at the minimum and 

maximum radius. This is because the laser beam does not actually describe a circumfer-

ence, it is closer to an ellipse and the radius of the circumference is the same to the semi-

axis b of the ellipse. Moreover, in the ellipse approximation (Figure 5(c)(d)) the error has 

been minimized so that when the radius is 65% of the maximum radius, a minimum error 

occurs.  
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Figure 5. Error of the two approximations for different values of wedge angle α and radius of the 

target point. (a) Represents a heat map with the error obtained by the circumference approximation.  

(b) The graph represents the error profile obtained by the circumference approximation. (c) Repre-

sents a heat map with the error obtained by the ellipse approximation. (d) The graph represents the 

error profile obtained by the ellipse approximation. (e) Represents a heat map with the error ob-

tained by the two-step method. (f) The graph represents the error profile obtained by the two-step 

method. 

In the three methods the error depends on the wedge angle of the prisms α, however, 

the error as a percentage of the distance D2 does not change even if the distance increases. 

Considering a target distance (D2) of 1 m, the Figure 6 shows the mean error as a percent-

age of the distance D2 and the shadow regions correspond to the standard deviation of 

the measurements for each wedge angle of the prisms. The mean error has been obtained 

from a set of eighty points. This set of points has been obtained on a straight line for an 

azimuth angle of 45°, as the error is radial it does not matter which angle is considered.  

It can be seen from Figure 6 that the error obtained by the ellipse approximation is 

smaller than the error obtained by the circumference approximation. The error of the cir-

cumference approximation is approximately twice the error of the ellipse approximation. 
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However, both approximation of the geometric method have a smaller error than the two-

step method.  

 

Figure 6. Mean error as percentage of D2 for each value of the prism angle α.  

Another important aspect to consider is the time needed to obtain the desired data, 

the results of time obtained are shown in Table 1. It has been obtained from a set of 4900 

points, which contain points for seventy different angles of the whole possible region and 

seventy different radii between the minimum radius and the maximum radius. This set of 

points has been repeated sixteen times giving a total of 78,400 points to calculate the mean 

time. 

The ellipse approximation has a longer computation mean time than the circumfer-

ence approximation. The circumference approximation is about 1.6 times faster than the 

ellipse approximation. However, both approximations of the geometric method are faster 

than the two-step method. 

Table 1. Result of time of the geometric method and the two-step method. 

 

Geometric method 
Two-step 

method 
Circumference  

approximation 

Ellipse  

approximation 

Mean time (𝝁𝒔) 2.72571 4.33776 9.67367 

Deviation (𝝁𝒔) 0.475435 0.501481 7.39166 

Number of point 78,400 

3.2. Comparative resulst of the error with the iterative method. 

The iterative method proposed by Anhu Li [6] has been implemented with the two-

step method and compared with the circumference and ellipse approximation of the geo-

metric method for a wedge angle α of 10º. However, the ellipse approximation has been 

performing worse than the circumference approximation due to it takes almost twice as 

long as the circumference approximation. Therefore, only the results of the circumference 

of the ellipse will be shown. 

The mean computation time that each method takes to reach the required error 

threshold have been calculated, the result obtained are shown in Figure 7. Each point rep-

resented in the graphs in Figure 7 is the mean time obtained for a set of 40,000 points. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 September 2022                   doi:10.20944/preprints202209.0280.v1

https://doi.org/10.20944/preprints202209.0280.v1


 

 

Figure 7. Mean computation time as a function of distance D2 for each error threshold. a) Represents 

the mean computation time obtained by the iterative method with the geometric method (circum-

ference approximation) for each error threshold. b) Represents the mean computation time obtained 

by the iterative method with the two-step method for each error threshold. 

Figure 7 shows that the iterative method has a shorter computation time with the 

geometric method than with the two-step method for any distance D2 and error threshold. 

The shortest time taken by the iterative method with the geometric method to obtain the 

final rotation angles is 3 μs while with the two-step method it is 7 μs. 

The maximum number of iterations that the iterative method can reach is fifty itera-

tions, this maximum value has been established because after several tests it has been 

found that if the method is not able to reach the required threshold error in fifty iterations 

it will never get there. 

The graph in Figure 7 b) shows that with the two-step method for large distances 

(more than 100 m) and for very small error thresholds (1  𝑛𝑚) the results are obtained in 

100 𝜇𝑠 on average. This is because the method has reached the maximum number of iter-

ations, i.e., the two-step method does not achieve error thresholds smaller than 1 𝑛𝑚. On 

the other hand, an error threshold up to 1 𝑝𝑚 can be achieved for any distances up to 

16.384 km with the geometric method (Figure 7 a). 

The iterative method with the geometric method achieves an accuracy three orders 

of magnitude lower than the iterative method with the two-step. Moreover, the iterative 

method with the geometric method achieves more accurate results for larger D2 distances 

than the iterative method with the two-step method. 

4. Conclusion 

Many studies on the inverse problem have been performed, such as the third-order 

theory [8], the inverse solution [4], the two-step method [10–12] and the iterative method 

[6]. In this paper, a geometric method is proposed to solve the rotation angles for a given 

target trajectory in less computing time and with high accuracy. 

Two approximations have been made for the geometric method and the accuracy and 

time obtained by both approximations have been analysed. The error of the circumference 

approximation is approximately twice the error of the ellipse approximation. However, 

the ellipse approximation has a longer computation time than the circumference approx-

imation. 

The geometric method has been compared with the two-step method and it has been 

concluded that the geometric method is faster and more accurate than the two-step 

method.  

Until now, the most accurate method was the iterative method using the two-step 

method. Therefore, the geometric method has been implemented in the iterative method 
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to analyse if it improves time and accuracy. It has been concluded that the iterative 

method with the two-step method obtains good time and accuracy results for small D2 

distances while the iterative method with the geometric method obtains good results for 

small and large D2 distances. In addition, the iterative method with the two-step method 

takes more iterations to reach the established error threshold and, therefore, the compu-

tation time is longer than the iterative method with the geometric method. 

Therefore, the geometric method can solve the inverse problem of Risley systems that 

prevent the laser beam from being steered to any region of space. Solving the inverse 

problem enables applications involving the control of dual-prism rotary motions such as 

multimode beam tracking in the field of airborne laser communications, the monitoring 

of containers in harbour operations and target tracking in the military domain. Moreover, 

the geometric method could be used in applications that require a higher accuracy like 

lithography, stereolithography or 3D printers. 

Future research will apply the geometric method in various real applications. 
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