Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2022

d0i:10.20944/preprints202209.0275.v1

Towards Building a Naturalistic Cycling Dataset Capturing Bicycle/Car

Interactions

Fahd Alazemi

Graduate Research Assistant

Center for Sustainable Mobility

Virginia Tech Transportation Institute, Blacksburg, Virginia 24061
Email: falazemi@vt.edu

Karim Fadhloun, Ph.D.

Postdoctoral Associate

Center for Sustainable Mobility

Virginia Tech Transportation Institute, Blacksburg, Virginia 24061
Email: karim198@vt.edu

Hesham A. Rakha, Ph.D., P.Eng. (Corresponding author)
ORCiD: https://orcid.org/0000-0002-5845-2929

Samuel Reynolds Pritchard Professor of Engineering and Director
Center for Sustainable Mobility

Virginia Tech Transportation Institute, Blacksburg, Virginia 24061
Email: hrakha@vt.edu

Archak Mittal, Ph.D.

ORCiD: https://orcid.org/0000-0001-6186-4513
Research Scientist

Ford Motor Company

20000 Rotunda Drive

Dearborn, Michigan 48124

Email: amittal9@ford.com

Keywords: Bicycle Behavior, Naturalistic Cycling Data, Car/Bike Interactions, Computer

Vision, Object Detection

© 2022 by the author(s). Distributed under a Creative Commons CC BY license.



mailto:alazemi@vt.edu
mailto:karim198@vt.edu
https://orcid.org/0000-0002-5845-2929
mailto:hrakha@vt.edu
https://orcid.org/0000-0001-6186-4513
mailto:amittal9@ford.com
https://doi.org/10.20944/preprints202209.0275.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2022 d0i:10.20944/preprints202209.0275.v1

Alazemi, Fadhloun, Rakha and Mittal 2

ABSTRACT

As machine learning and computer vision techniques and methods continue to advance, the
collection of naturalistic traffic data from video feeds is becoming more and more feasible. That
is especially true for the case of bicycles, for which the collection of naturalistic data is not
achievable in the traditional vehicle approach. This study describes a research effort that aims to
extract naturalistic cycling data from a video dataset for use in safety and mobility applications.
The used videos come from a dataset collected in a previous Virginia Tech Transportation
Institute study in collaboration with SPIN in which continuous video data at a non-signalized
intersection on the Virginia Tech campus was recorded. The research team applied computer
vision and machine learning techniques to develop a comprehensive framework for the
extraction of naturalistic cycling trajectories. In total, this study resulted in the collection and
classification of 619 bicycle trajectories based on their type of interactions with other road users.
The results confirm the success of the proposed methodology in relation to extracting the
locations, speeds, and accelerations of the bicycles at a high level of precision. Furthermore,
preliminary insights into the acceleration and speed behavior of bicyclists around motorists are
determined.

INTRODUCTION

Cycling, as a transportation mode, has been taking an ever-increasing share of the mobility over
the last decade. As a sustainable commuting mode, it has been the go-to solution of policymakers
to lessen traffic congestion in central downtown areas without further capacity increases. That is
justified by the fact that short-distance bike commuting often takes less time when accounting for
congestion and delays in public transportation, and presents the most efficient way to increase
the road capacity while maintaining existing infrastructure.

Despite the growing interest in bicycle use in the last decade and the urgent need to
develop models and planning techniques for bicycle traffic operations, traffic researchers have
minimally investigated the traffic flow dynamics of bicycles, unlike vehicular traffic flow, which
is heavily studied. The observed literature gap between vehicular and bicycle traffic research is
mostly justified by the scarcity, and even the non-existence, of naturalistic cycling data. Most of
the existing research that investigated bicycles as a means of transportation [1-6] were in relation
to investigating the interactions of bicycles with cars and other possible entities. Technically
speaking, a significant portion of those studies falls under, either the Cellular Automata (CA)
model that involves discretizing the time and space domain using a non-continuous cell grid such
as the work of [1, 2, 4]; or the social force model approach [5, 6] because of its advantages in
terms of simulating dynamic lateral dispersion characteristics of mixed traffic. However, while
these models offered a concise theoretical framework for the simulation of bicycle longitudinal
and lateral traffic behavior in a mixed traffic environment, they were limited in their validation
work due to the lack of naturalistic data capturing such interactions.

In addition to the above cycling research that is oriented towards capturing the effect of
bicycles in a mixed traffic environment, a few other studies investigated the fundamental
concepts behind bicycle longitudinal motion based on the assumption that there are no major
differences between the dynamics of single-file bicycle traffic and vehicular traffic. These
include models specifically developed for bicycle motion modeling such as the Necessary
Deceleration Model (NDM) [7] developed in 2012. Another approach used by researchers to
model the longitudinal motion of bicycles investigated the possibility of capturing cyclists’
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behavior through revamping certain aspects of existing car-following models. That is the case,
for example, in the Intelligent Driver Model (IDM) [8] which, after a simple re-parameterization,
was shown to be a good descriptor of bicycle-following behavior [9]. In a similar fashion, driven
by the complete overlook of the effects that the cyclist and the road environment have on bicycle
motion behavior, the research team proposed a longitudinal motion model for bicycles [10] that
is derived from the Fadhloun-Rakha (FR) car-following model [11]. A common factor between
the NDM model as well as the proposed IDM and Fadhloun-Rakha bicycle-specific formulations
is that they were all validated against cycling data collected in a similar experimental setting in
which participants were instructed to follow one another on a ring-road without the possibility of
overtaking [7][9]. While the used data in these efforts is in accordance with their assumptions
and the approach used is scientifically sound, it is quite clear that those models are not capable of
capturing the inherent naturalistic non-lane-based traffic behavior characteristics of bicycles. To
address that issue, the research team complemented, in a second stage, the Fadhloun-Rakha
longitudinal bicycle-following model with a lateral control module [12], thus inducing a certain
degree of freedom in bicycle lateral motion by allowing overtaking maneuvers to occur.
However, that effort remained theoretical in nature due to the unavailability of two-dimensional
naturalistic cycling data that could serve to validate and verify the model formulation.

While the above studies differed based on their purpose and applications, they all share
one key element. That is to say, the complete lack or superficiality of validation work due to the
non-existence of naturalistic cycling data that is well fitted for their objectives. In this study, the
research team tries to fill, at least partially, the apparent gap in naturalistic data that exist
between vehicular traffic and bicycle traffic.

Specifically, this paper describes a research effort that aims to extract naturalistic cycling
data from video feeds for use in different mobility applications. To achieve this objective, the
research team first applied computer vision, machine learning, and data reduction techniques to a
video dataset in order to identify and extract bicycle trips in the pixelated domain of the videos.
The selected video dataset is the result of a previous Virginia Tech Transportation Institute study
in collaboration with SPIN in which continuous video data at a non-signalized intersection at the
Virginia Tech campus was collected. Next, using the results of a high-precision surveying
campaign of the observed area, the collected trajectories were projected in the Northing-Easting
coordinate system allowing for the determination of the actual locations, speeds, and
accelerations of the bicycles. Besides its main contribution that resulted in the collection of 619
bicycle trajectories, it is noteworthy to mention that the trips were classified into different
scenarios depending on the type of interactions the bicyclists had with cars. Subsequently, a
better understanding of bicyclists’ behavior around motorists is achieved. The results could be
used to analyze the interactions between cyclists and drivers, both for safety and capacity studies.

Concerning its layout, the paper starts with a brief overview of the used naturalistic video
dataset. That is followed with a detailed description of the different methodologies and
techniques involved in the extraction of the naturalistic cycling trajectories from the video feeds.
Finally, the results and findings of the study are presented.

NATURALISTIC VIDEO DATASET

Due to the continuous proliferation and advancements in machine learning and computer vision
techniques, it is becoming feasible to acquire reliable naturalistic traffic data in a cheap and
efficient manner from video datasets. That is especially true for the case of bicycles as they are
not as instrumented as cars, which would not allow the capture of their full surroundings in the
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context of a naturalistic data collection study. In the case of this study, the complete video
dataset is the result of a previous Virginia Tech Transportation Institute study in collaboration
with SPIN in which continuous video data at several fixed locations at the Virginia Tech campus
was collected for a seven-month period. For the purpose of this research, only a portion of the
above dataset at a single location is used. The selected dataset was collected over 55 days
between the months of September and December 2019 using a roof-mounted high-definition
camera facing a non-signalized three-way stop intersection. The selected dataset includes
approximately 810 hours of 3720 x 1728 pixels videos recorded at a frequency of 30 Hz. That
translates to a total of approximately 87.5 million video frames.

VIDEO PROCESSING

The first step of this research effort involves the identification of the bicycle events from the
different videos. Given the big size of the video feed, a manual data reduction was judged to be
infeasible, as it will be both a costly and lengthy process. Instead, the research team opted for a
more automated route that makes use of existing object detection techniques. Specifically, a two-
step object-detection algorithm was developed.

The first step of the proposed algorithm uses a cascade detector based on the histograms
of oriented gradients (HOG) with 11 stages to detect potential regions of interest that might be
bicycles in the video frames. The number of stages used to train the detector is not random. In
fact, the research team initially used a database composed of 400 positive images and 900
negative images to train detectors with different number of stages (5, 7, 9, 11, and 13) and a false
alarm rate fixed at 2.5%. The number of training images and stages were purposefully set
relatively low in order to ensure a quick training process. The focus of the research team, at this
level, was to ensure that the number of stages of the detector is high enough to detect a
significant percentage of the true positives regardless of the number of false positives as these
will be addressed and eliminated later. Next, the trained detectors were run on a one-hour video
from the database at 5-second intervals to quantify their performance. The outputs from this step
consisted of bounded areas that highlight regions that might be inclusive of bicycles in the
examined video frame, as illustrated in FIGURE 1.

FIGURE 1 Sample output of HOG detectors
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The following metrics were used to assist with the evaluation of each of the detectors:
e The number of true positives: These refer to the bounded areas identified correctly by the
detectors in that they actually contain a bicycle.
e The number of false positives: These correspond to the bounded areas identified
wrongfully by the detectors.
e The number of false negatives: These account for the cases in which a bicycle was
present in the video frame without being detected.
It is noteworthy to mention that all the detectors, regardless of their number of stages, were able
to identify 42 out of the 44 bicycle trips. However, a deeper look into the results using the above
metrics highlighted the huge differences between them. FIGURE 2 plots the variation of the true
positives (FIGURE 2.a), false positives (FIGURE 2.b), and false negatives (FIGURE 2.c) against
the number of stages used to train the detector. The main revelation from the figures is that the
total number of false positives significantly decreases as the number of training stages increases.
However, the observed decrease is also accompanied by a decrease in the number of true
positives and an increase of the number of false negatives. Based on the observed patterns, it is
evident that the detector with 11 stages is the best among those investigated albeit a relatively
high number of false positives. To address that issue, the bicycle-detection algorithm was
complemented with another technique with the main objective of decreasing the occurrences of
false detections.
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FIGURE 2 Variation of the detector metrics as a function of the number of training stages
a) True positives; b) False positives; c¢) False negatives

In fact, in the second stage of the algorithm, the highlighted areas of interest are selected
for further examination using a semantic segmentation network that attempts to classify every
pixel in them and assign them to different classes. For that purpose, the research team selected an
existing pre-trained DeepLabv3+ network [13], which is a convolutional neural network (CNN)
designed for semantic image segmentation. The network is available for download at the
Mathworks website and was trained using the CamVid dataset [14] from the University of
Cambridge. The dataset consists of a collection of street-level images that are segmented at the
pixel-level using 32 semantic classes (such as bicyclist, pedestrian, and car) as shown in
FIGURE 3.
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FIGURE 3 Sample image from the CamVid dataset

As mentioned earlier, the main reason behind the semantic segmentation phase is to
eliminate the false positives that were detected by the HOG detector in the previous step. That
was achieved through a comparison between the number of pixels that were classified as
bicyclist and the total number of pixels in the investigated area. If the ratio between the two
values is greater than a set threshold of 5% in at least one of the highlighted regions, the
examined video frame is saved for manual confirmation. Otherwise, it is rejected (FIGURE 4).
The application of the semantic segmentation algorithm over the areas identified by the HOG
detector proved to be quite successful. In fact, the number of frames selected for further
investigation decreased from 683 frames for the standalone HOG detector to 89 frames when the
two algorithms together without any decrease in the number of bicycles detected. The algorithm
was able to detect accurately 42 out of the existing 44 bicycle events (95.5%).

With the algorithms ready, the different videos of the database were processed using the
HOG detector in conjunction with the semantic segmentation at 5-second intervals. That is
mainly due to the heavy computational toll of those algorithms. However, that did not have much
effect on the accuracy of the algorithm in bicycle detection as demonstrated earlier. Furthermore,
to further illustrate the performance of the algorithm in relation to false positives, it was run on
the 4-hour video between 6AM and 10AM on Christmas day, which is a period in which no
bicycles were present. The algorithm saved only 21 frames for further investigation out of the
2880 frames examined (< 1%).
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FIGURE 4 Sample output after semantic segmentation

EVENT PROCESSING

The previous step resulted in an image database in which the video frames selected for further
investigation were saved separately with pertaining information to the date, time, and timestamps
in their respective videos. Through a manual data reduction process, the resulting database was
investigated to identify the different cycling trips and noting their start times and end times. The
end result of this process was the identification of a total of 2259 cycling events.

More importantly, the data reductionists were instructed to classify the identified events
based on whether the bicycle interacted with other entities or not during this trip. That is of
utmost importance when it comes to validating existing bicycle behavior models. For instance,
the portion of trips in which the bicycle is traveling without any impact from the surrounding
traffic will be mostly useful for the validation of bicycle motion models (in the free-flow regime
where no leader is involved). However, when it comes to mobility studies investigating bicycle
interactions with cars (or other modes), information about the interacting entities along with the
trajectories of the bicycles is necessary for any validation work.

In that regard, the research team defined 56 scenarios to classify the bicycle trips based
on the following criteria. The first criterion relates to the motion behavior of the car. The
interacting car with the bicycle is categorized by whether it is moving straight, turning, or
coming to a complete stop. The second classification criterion captures the relative position of
the bicycle in relation to the car. The bicycle can be behind, ahead, or next to the car. The next
criterion looks at whether the bicycle is in the path or out of the path of the car. Finally, the last
criterion investigates the relative direction of the bicycle velocity vector in comparison to that of
the car. Here, the categorization can take one out of five possible values. The direction of the
bicycle velocity vector relative to the car can be either: same, either oncoming, stationary, lateral,
or receding.

The definitions of the scenarios along with the total number of events identified for each
scenario are presented in TABLE 1. Out of the 2259 events identified by the data reduction team,
about 70% (1580) of the trips fall under the first scenario in which the bicycle was traveling
independently of other traffic with no observed interactions. It is noteworthy to mention that the
predominance of the first scenario is quite understandable given that the Virginia Tech campus is
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very cyclable-friendly, and bicycle trips can generally be completed on the sidewalk without
having to go on the road. The remaining trips concern scenarios in which interactions did occur.
The results show that these are mostly concentrated in four specific scenarios, namely: scenarios
2, 10, 43 and 44. Metrics about the trip durations are presented in FIGURE 5.a and FIGURE 5.b,
which illustrate the duration distribution histograms for the trips with no interactions (Scenario

1) and the trips with interactions (remaining scenarios), respectively. The figures confirm that
most of the trips have a duration between 10 and 20 seconds with an average of 16.1 seconds and
a median of 14.0 seconds.

TABLE 1 Distribution of identified bicycle trips among defined scenarios

Scenario Criteria
" . " o Total
Number | Criteria 1 | Criteria 2 | Criteria 3 | Criteria 4
1 No interactions 1580
2 Straight Ahead In path Same 304
3 Straight Ahead Out of path | Same 13
4 Straight Ahead In path Oncoming 7
5 Straight Ahead Out of path | Oncoming 2
6 Straight Ahead In path Stationary 0
7 Straight Ahead Out of path | Stationary 0
8 Straight Ahead In path Lateral 8
9 Straight Ahead Out of path | Lateral 1
10 Straight Behind In path Same 132
11 Straight Behind Out of path | Same 6
12 Straight Behind In path Receding 1
13 Straight Behind Out of path | Receding 0
14 Straight Behind In path Stationary 0
15 Straight Behind Out of path | Stationary 0
16 Straight Behind In path Lateral 1
17 Straight Behind Out of path | Lateral 0
18 Straight Next Out of path | Same 12
19 Straight Next Out of path | Receding 0
20 Straight Next Out of path | Stationary 0
21 Straight Next Out of path | Lateral 0
22 Turning Ahead In path Same 6
23 Turning Ahead Out of path | Same 0
24 Turning Ahead In path Oncoming 0
25 Turning Ahead Out of path | Oncoming 1
26 Turning Ahead In path Stationary 0
27 Turning Ahead Out of path | Stationary 0
28 Turning Behind In path Same 1
29 Turning Behind Out of path | Same 0
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30 Turning Behind In path Receding 0
31 Turning Behind Out of path | Receding 0
32 Turning Behind In path Stationary 0
33 Turning Behind Out of path | Stationary 1
34 Turning Next Out of path | Same 0
35 Turning Next Out of path | Receding 0
36 Turning Next Out of path | Stationary 0
37 Stopping | Ahead In path Same 0
38 Stopping | Ahead Out of path | Same 0
39 Stopping | Ahead In path Oncoming 0
40 Stopping | Ahead Out of path | Oncoming 0
41 Stopping | Ahead In path Stationary 0
42 Stopping | Ahead Out of path | Stationary 0
43 Stopping | Ahead In path Lateral 123
44 Stopping | Ahead Out of path | Lateral 60
45 Stopping | Behind In path Same 0
46 Stopping | Behind Out of path | Same 0
47 Stopping | Behind In path Receding 0
48 Stopping | Behind Out of path | Receding 0
49 Stopping | Behind In path Stationary 0
50 Stopping | Behind Out of path | Stationary 0
51 Stopping | Behind In path Lateral 0
52 Stopping | Behind Out of path | Lateral 0
53 Stopping | Next Out of path | Same 0
54 Stopping | Next Out of path | Receding 0
55 Stopping | Next Out of path | Stationary 0
56 Stopping | Next Out of path | Lateral 0
Total 2259

10
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FIGURE 5 Histogram of the duration distribution for a) Trips with no interactions; b)
Trips with interactions

TRAJECTORY EXTRACTION

With the start and end times of the different trips known along with identifying information
about the type of interactions occurring with motorists, the corresponding video sections are
isolated and prepared for the next step, which relates to the extraction of the trajectories in the
video pixel domain.

There are two approaches that can be used to achieve the latter. The first approach is
quite straightforward but is only possible for a relatively low number of trajectories. For each of
the trajectories, a simple script is used to extract the frames from the video at 0.2 seconds
allowing for the user to manually click on the position of the bicycle and the vehicles interacting
with it. Two moving perpendicular lines are implemented to assist a data reductionist to detect
the intersection of the front of the bicycle wheel with the pavement as shown in FIGURE 6. In
the background, the script saves the location of the clicks in the (x, y) domain of the video
frames (a 3720x1728 pixel grid); thus collecting the trajectories for further processing. It is
necessary to note here that if any obstructions interfering with a precise collection of the bicycle
location from the video frame exist (such as a car, a tree, or a structure), the bicycle coordinates
will not be collected for that specific timeframe. An interpolation algorithm will be used in a
later stage to get an estimate at those time steps.

Given that the described process for the extraction of the bicycle trajectories is quite
tedious both in relation to the time and cost involved, the research team opted to limit its use, at
this time, to the extraction of bicycle trajectories associated with scenarios in which interactions
with a vehicle occurred, and for which a significant number of events exists. In that regard, the
research team applied the aforementioned process to extract the trajectories falling under
scenario 2, 10, 43, and 44. This resulted in the collection of 619 trajectories.
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FIGURE 6 Sample screenshot from the trajectory collection process

Before moving on to the description of the next step, we would like to note that our final
objective is to extend this work to the extraction of the bicycle trip events that occurred over the
entire seven-month period and for all the 14 locations on campus. However, achieving that
would require to introduce a certain level of automation to complete the trajectory extraction
process. In fact, only 1.2 out of the available 49.5 terabytes of available videos were used so far.
Assuming, hypothetically, that a perfect proportionality exists between the number of bicycle
trips and the size of the video database, the expected number of trips expected to be found in the
entire video dataset would be in excess of 90,000. Even more, once the tasks requiring manual
labor are removed, the research community would have access to a comprehensive automated
trajectory extraction framework that can be applied to similar videos.

In that regard, the research team is currently working on developing an automated tool
for the extraction of the trajectories that can replace the data reduction process. Without going
into much detail as this is still a work in progress, the concept of the algorithm consists of using
the Hough transform for the detection of bicycle wheels allowing the determination of their
contact point with the road surface. To achieve that, edge detection techniques are first used to
isolate the bicycle trip on a black and white background as shown in FIGURE 7. After that,
Hough transform is used to detect the wheels as shown in FIGURE 8. However, the research
team is currently still working on solving the most challenging part of this process, which deals
with the fine-tuning of the algorithm in relation to the assignment of the detected points to their
corresponding trajectories and the automatic exclusion of false positives.
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FIGURE 8 Detection of bicycle wheels using Hough transform

INTERSECTION SURVEYING

In order to convert the extracted trajectories into naturalistic trajectories, a grid map overlay of
GPS coordinates at specific locations, which are easily identifiable both in the video frames and
in the field, is needed. In fact, the aforementioned map is the element that would allow the
conversion of the pixel-based trajectories into distance-based trajectories using the multi-step
algorithm described thereafter.

To achieve the stated objective, the research team started by creating a mesh of
approximately 400 points as shown in FIGURE 9. As the figure shows, the points are heavily
concentrated around the edges of the sidewalks and the road crossings because they are the
easiest to identify in the videos as well as in the field. That is quite useful for the next step as
both the sidewalks and the road crossings are the most used by the bicyclists to complete their
trips. Initial attempts to collect the GPS coordinates at the specified locations were made using
accessible tools such as Google Earth and existing GPS mobile applications. However, those
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attempts proved unsuccessful due to the small distances involved and the relative low accuracy
of those tools when used in this context. As a result, a surveying campaign using professional
high-precision tools was conducted to acquire the required coordinates, which are expressed in
the Northing-Easting-Elevation coordinates system. Since the investigated area is relatively flat,
the elevation data can be ignored without major repercussions on the results. In what follows, we
will refer to the data collected in this step by the transform matrix.

FIGURE 9 An aerial view of the surveyed area and the collection points

TRAJECTORY TRANSFORMATION AND RESULTS

The final phase in this research deals with the conversion of the extracted trajectories that are
currently expressed in the video pixel domain to actual naturalistic trajectories allowing access to
the distances traveled along with the associated speed and acceleration profiles. That would
constitute the final product of this study and would allow traffic researchers to validate their
theories and models against the resulting naturalistic bicyclist dataset. The trajectory
transformation process is achieved using the following multi-step algorithm:

1. A linear interpolation algorithm is used initially to complement the extracted trajectories
with estimated values at the level of the time steps for which the determination of the
bicycle location was impossible due to the presence of visual obstructions.

2. Next, the trajectories are exponentially smoothed using a smoothing factor of 0.5. The
purpose of the exponential smoothing operation is to address the noise and the zigzag-
like features that might be present as a result of the manual trajectory extraction process.
At this level, the trajectories will look similar to the two sample trajectories presented in
FIGURE 10.

3. For each of the observations composing a trajectory, one of the closest convex hulls
containing the observation and delimited by three points from the transform matrix is
identified.

4. Since we have access to the coordinates of the points defining the convex hull in both
coordinate systems, the coordinates of the trajectory observation could be approximated
in the Northing-Easting coordinate system using a triangulation algorithm.
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5. Once Step 4 is completed for all the observations, the speed profile associated with the
obtained trajectory is determined and smoothed through the application of a third order
Savitzky—Golay filter.

6. In a similar fashion to Step 5, the acceleration profile is obtained from the smoothed
speed profile and smoothed using a similar Savitzky—Golay filter.

7. The speed profile, the distance traveled, and the coordinates of the trajectory in the
Northing-Easting coordinate system are updated backwards to account for the effect of

the two-layer filtering that was applied.

FIGURE 10 Sample trajectories in the video pixel domain
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Sample results from this step are presented in FIGURE 11 and FIGURE 12. FIGURE 11
shows the resulting trajectories in the Northing-Easting coordinate system corresponding to the
two trajectories presented in FIGURE 10. The figure demonstrates the success of the proposed
multi-step algorithm in conserving the shape and main features of the extracted trajectory.
Meanwhile, FIGURE 12 illustrates the distance traveled, speed, and acceleration profiles
corresponding to the trajectory presented in FIGURE 10.a and FIGURE 11.a.
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FIGURE 11 Sample naturalistic trajectories after the triangulation procedure
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FIGURE 12 Extraction of the distance traveled, speed, and acceleration profiles for a
naturalistic trajectory a) Distance traveled; b) Speed profile; ¢) Acceleration profile

Finally, the histograms of the instantaneous accelerations and speeds from all the 619
trajectories is investigated to confirm the consistency of the obtained values with bicycle
behavior. The results, which are plotted in FIGURE 13, show that the results are concentrated
around low acceleration levels and speeds that are quite typical for bicyclists. Furthermore, the
range of the observed values can be confirmed to be physically feasible for a bicycle. A deeper
look at the results is possible by looking at the histograms corresponding to each of the four
investigated scenarios. The results are presented in FIGURE 14 (for Scenario 2), FIGURE 15
(for Scenario 10), FIGURE 16 (for Scenario 43), and FIGURE 17 (for Scenario 44). The
aforementioned figures confirm the ability of the resulting trajectory dataset to capture the effect
of the type of interaction on bicyclists’ speed and acceleration behavior. This can lead to a better
understanding of bicyclists’ behavior around cars and can prove very useful for a multitude of
studies such as safety analysis research.
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FIGURE 13 Histogram of the instantaneous accelerations and speeds of the aggregated
extracted trajectories
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FIGURE 14 Histogram of the instantaneous accelerations and speeds of the extracted
trajectories corresponding to Scenario 2
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FIGURE 15 Histogram of the instantaneous accelerations and speeds of the extracted
trajectories corresponding to Scenario 10
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FIGURE 16 Histogram of the instantaneous accelerations and speeds of the extracted
trajectories corresponding to Scenario 43
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FIGURE 17 Histogram of the instantaneous accelerations and speeds of the extracted
trajectories corresponding to Scenario 44

CONCLUSIONS AND FUTURE WORK

In the context of a better understanding of bicyclists’ behavior, this paper described the
development of a comprehensive framework that would allow for the collection of naturalistic
cycling trajectories from video feeds. Even though the current naturalistic dataset is composed of
only 619 trajectories, it will be useful to traffic researchers in several mobility applications such
as the validation of studies investigating bicycle motion behavior such as the model [12]
developed by the research team. Furthermore, the collected trajectories will contribute to a better
understanding of bicyclists’ behavior around cars leading to a better understanding of the
interactions between bicycles and other modes of transportation. More importantly, the
significance of this work will be further accentuated once the trajectories of the cars and other
entities interacting with the bicycles is extracted.

The research team faced two main challenges during this study. The first challenge deals
with automating the process of extracting the bicycle trajectories from the videos through the
detection of bicycle wheels. In fact, the number of trajectories in the resulting dataset is limited
due to the problems encountered while trying to complete that process. Once those problems are
addressed, the size of the trajectory database will increase significantly. More importantly, the
proposed methodology will be completely transferable for use by other researchers at different
locations. The second challenge relates to the collection of the transform matrix needed to
transform the video trajectories into actual trajectories. Due to the small distances involved,
typical tools such as Google Maps and existing GPS applications cannot be used; instead, a
professional surveying campaign of the observed area is needed.

Overall, the proposed framework for the extraction of bicycle trajectories from big video
datasets is demonstrated to be comprehensive and accurate. The findings seem to be consistent
with actual bicycle behavior, which is generally characterized by low acceleration levels. As a
future work, the research team plans to continue extending this dataset and complement it with
the trajectories of the entities interacting with the bicycles. Once that is achieved, this work will
result in the most complete naturalistic dataset that, not only include data relevant to the bicycle,
but also information about any vehicles or entities that had an influence on its behavior.
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