Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 September 2022 d0i:10.20944/preprints202209.0239.v1

Article

Classification And Identification of Organic Matter in Black
Soil Based on Simulated Annealing Optimization of LSVM-

Stacking Model

Zifang Zhang !, Zhihua Liu 2, Hongzhao Xu !, Qinghe Zhao ?, Junlong Fang * and Kezhu Tan *

1 Electrical Engineering and Information College, Northeast Agricultural University, Harbin, China;

zhangzifang@neau.edu.cn (Z.Z.); xuhongzhao9858@neau.edu.cn (H.X.); zhaoginghe@neau.edu.cn (Q.Z.);

2 Resources and Environment Collage, Northeast Agricultural University, Harbin, China;

zhihua-liu@neau.edu.cn (Z.L.);

* Correspondence: jlfang@neau.edu.cn (J.F.); Tel.: +86-189-4505-5858; kztan@neau.edu.cn (K.T.); Tel.: +86-451-
5519-0446

Abstract: For the soil in different regions, the nutrient fertility contained in it is different, and the
detection and zoning management of soil nutrients before tillage every year can improve grain
yield. In this paper, an integrated learning strategy model based on black soil hyperspectral data is
designed for rapid classification of organic matter content classification of black soil. Soil hyperspec-
tral image dataset of Xiangyang Experimental Base was collected; by changing the internal structure
of the stacking model, an LSVM-stacking model with (MLP, SVC, DTree, XGBI, kNN) five classifiers
as the L1 layer was built, and the simulated annealing algorithm was used for hyperparameter op-
timization. Compared to other stacking models, the LSVM-stacking metrics are significantly im-
proved. The accuracy rate of hyperparameter optimization is improved by 38.6515%, the accuracy
rate of the independent test data set is 0.9488, and the comparison of individual learners can im-
prove the recognition classification accuracy of label"1" to 1.0.

Keywords: Hyperspectral Technology; Non-destructive Testing; Black Soil; Ensemble learning;
Support Vector Machine

1. Introduction

Cultivated land is an essential non-renewable natural resource in agricultural pro-
duction and a natural complex with many components. Soil organic matter (SOM) content
is an essential indicator of soil fertility and is directly related to crop growth and yield[1].
The black soil area of Northeast China is one of the three world-famous black soil areas.
Because it is rich in humus and has high soil fertility, it is a kind of soil that is very suitable
for the growth of crops and is a valuable cultivated land resource in China.

In the second national soil census, the soil was divided into six grades according to
the content of SOM.:<0.6 g/kg,0.6 g/kg-10 g/kg,10 g/kg-20 g/kg,20 g/kg-30 g/kg,30 g/kg-40
g/kg,40 g/kg<. According to the SOM content, the land is managed in the grid and culti-
vated in different zones. Every year, before spring plowing, a comprehensive assessment
of the black soil area is carried out to guide farmers to cultivate scientifically, ensuring the
people’s livelihood and contributing to agriculture’s sustainable development. The rou-
tine detection method of soil organic matter requires field sampling and laboratory chem-
ical sample analysis, followed by geographic interpolation to map the spatial distribution.

In Feb. 2022, the General Office of the State Council, PRC, issued a notification to
decide to complete the third national soil census from 2022 to 2025[2]. It is time-consuming
and laborious to conduct large-scale field surveys and laboratory sample analyses and
draw spatial maps. Agricultural informatization is the upsurge of global agricultural de-
velopment in the 21st century. Spectroscopy and imaging technology have been applied
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in agricultural production by multi-scale agricultural remote sensing platforms such as
satellites and UAYV systems. Hyperspectral technology is widely used in multi-objective
classification, such as agricultural product classification[3-12], the detection of nutrients
in agricultural products[13-15], and the determination of SOM[16-21]. Compared with
traditional chemical determination methods, hyperspectral is fast and non-destructive.
Reis et al. [22] collected from 8 depths near the COAMO in southern Brazil, and the
AsiaFENIX sensor was used to collect spectral images in the 380-2506 nm band and estab-
lished a SOM content estimation model by PLSR. Rapid monitoring of SOM content to
achieve rapid grading of black soil fertility has particular guiding significance for adapt-
ing measures to local conditions, scientific farming, and sustainable agricultural develop-
ment.

Any single classifier has its advantages and disadvantages, and ensemble learning
can take advantage of some combination rules to improve the model. Ensemble learning
can comprehensively use each learner’s advantages, integrate the model’s prediction re-
sults, and make up for the shortcomings of a single model that is greatly disturbed by
sensitive samples and lacks robustness[23]; therefore, it is also the focus of current re-
search. Many previous studies have demonstrated that the ensemble learning method has
a good effect on hyperspectral classification[24-30]. Ensemble learners based on SVM per-
form well on high-dimensional hyperspectral data[24-26]. The classification accuracy us-
ing the decision tree is similar to that of SVM, but the decision tree model is susceptible to
noise[27]. Random Forest is also a standard classification algorithm, but it is computation-
ally expensive compared to other algorithms[28-30]. The standard ensemble methods are
homogeneous ensembles, Guo et al.[31] proposed a heterogeneous ensemble model that
integrates SVM, KELM, and MLR by bagging, which also has good applicability. Both
theoretically and empirically, the integration model is not as big as possible. Conversely,
sometimes small ensemble models may have unexpected effects, so the selection of clas-
sifiers and the way of the ensemble are issues that need to be solved urgently.

In this paper, an ensemble learning strategy model based on black soil hyperspectral
data is designed to complete the gradation of SOM content. The LSVM-stacking model
was screened out by comparing nine stacking models, and simulated annealing was used
for hyperparameters optimization. The accuracy score on the test set is 0.6318 before the
parameter adjustment and 0.8760 after the parameter adjustment. In the independent val-
idation dataset, the LSVM-stacking model has a higher accuracy of 0.9488 than other
stacking models, and the recognition classification accuracy of label"1" can be improved
to 1.0. It means that the LSVM-stacking model has the best applicability.

2. Materials and Methods

2.1 Materails
2.1.1 Determination of SOM

Soil samples were collected from Xiangyang Experimental Base of Northeast Agri-
cultural University (45°45'44"N, 126°55'8"E), where the northeast China, near Harbin, Hei-
longjiang Province. It has a temperate monsoon climate, with long, cold, and dry winters,
short., hot, and rainy summers, and average annual precipitation of 569.1 mm. Figure 1
shows the geographical location of the Xiangyang Experimental Base.
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Figure 1. The geographical location of the Xiangyang Experimental Base

When sampling, drilling holes with a post-hole digger and installing a well casing to
prevent the collapse of the well wall during sampling affect the accuracy of the sample.
Soil samples at four depths of 0-10cm, 10-20cm, 20-30cm, and 30-40cm were taken by five-
point mixed sampling. A total of 112 soil samples were collected, and the location of the
sampling point was recorded with a handheld GPS at the same time. After returning it to
the laboratory, the soil samples taken from each sampling point are mixed evenly, and
impurities such as rhizomes are removed. After natural drying, take a part of the ground
soil and pass it through a 20-mesh sieve, and this part of the sample is used to measure
the spectral curve. The other part was ground and passed through a 100-mesh sieve, and
this part of the sample was used for chemical analysis.

SOM data were provided by the College of Resources and Environment, Northeast
Agricultural University. The analysis of SOM content was done by the potassium dichro-
mate method[32]. Soil mixed with excess potassium dichromate solution, the heat outside
the oil bath, potassium dichromate can oxidize organic matter in the soil, and titrate the
remaining potassium dichromate with a standard solution of ferrous iron, then calculate
the content of organic matter in the sample from the consumption of potassium dichro-
mate.

Since the sample has been dried and ground in powder form, placing the samples
directly on the working platform for testing will cause the work platform to malfunction.
Therefore, select a petri dish with a diameter of 6 cm and a depth of 1 cm, and the samples
are loaded into the petri dish and labeled it. Flatten the sample to avoid shadows caused
by halogen lamps. Pick out small grassroots to avoid interference in the subsequent data
processing.

Spectral data acquisition was performed using the Headwall’s Hyperspec® VNIR
family of integrated hyperspectral imaging A-sensors. The sample collection needs to be
carried out in a dark room, the light source should be limited to the halogen light on the
experimental platform as much as possible, and calibrating sensors with a standard white-
board before each sample. The sensor wavelength range is configured from 400nm to
1000nm, the spectral resolution is about 3nm, and 203 bands are collected. During the
acquisition, the moving speed of the push-broom platform was 5mm/s, the exposure time
was 38.84ms, the frame period was 0.04ms, and the final resolution of the obtained cubic
image was (1004, 812, 203).

Completing radiometric correction with the white and dark reference files in ENVI
Clasic5.3. Use the ROI Type square function on the processed image to create Regions of


https://doi.org/10.20944/preprints202209.0239.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 September 2022 d0i:10.20944/preprints202209.0239.v1

40f 14

Interest (ROI) on the sample. To avoid reflections from the edges of the petri dish, only
take the center part. Each ROI displays an average of about 240 pixels, and the software
calculates the spectral average of the pixels in the region to obtain the spectral curve of
this ROL

The 3063 sample points are divided into two groups according to the ratio of 7:3; the
training set and testing set are obtained. Another 100 groups of samples were selected to
extract 2831 sample points as the validation set. The average spectral curves of the three
types are shown in Figure 2. The range of organic matter content in various samples and
the specific quantity of samples are shown in Table 1.

Mean Spectrum of Three Types Black soils (400~1000nm)
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Figure 2. Mean spectral curves of three-grade black soils.

Table 1. The range of organic matter content in three-grade black soil samples and the specific quan-

tity of sample.
organic matter (mg/kg) Trainingset Testing set total validation set total
type 0 10.00-19.99 709 304 1013 704 1717
type 1 20.00-29.99 721 309 1030 1069 2099
type 2 30.00-45.00 714 306 1020 1058 2078
total 2144 919 3063 2831 5894
2.2 Methods

2.2.1 Ensemble Learning

For a multi-classifier system, only including individual learners of the same type is
called a homogeneous ensemble, while the individual learners in a heterogeneous ensem-
ble are generated by different types of algorithms[23].

The combination strategy of ensemble learning refers to the cooperation strategy be-
tween individual learners. Standard ensemble methods include boosting, bagging, and
stacking. Like AdaBoost and Gradient Boosting, Boosting integrates a series of the indi-
vidual learner, like Decision Tree, which realizes homogenous integration of serial train-
ing through residuals or other indicators for reducing bias. Bagging integrates bootstrap
sampling to form a sampled sub-set in this process for training individual learners. The
trained homogeneous learners are trained in parallel to reduce variance. Stacking is a
broader ensemble strategy, hierarchically stacking heterogeneous individual learners; the
statistical result of one-layer individual learners is input as features to two-layer meta-
learners to complete the stacking algorithm. Variance is reduced by parallel training, and
deviation is reduced by serial training.

No matter which strategy is employed, ensemble learning is expected to obtain mul-
tiple aspects of the sample space through multiple angles with significant differences and
achieve better-supervised learning effects than individual learners.

The stacking strategy can more flexibly select different heterogeneous learners for
integration. The stacking strategy is divided into two layers: the L1 layer is composed of
several individual learners, and the strategic decision layer consists of meta-learner L2.
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Each learner in the L1 will complete supervised learning in the sample space, convert the
original data into n transition data S, and then input it into the L2. The most basic form of
the L2 layer is equal voting (classification problem) or equal weighting (regression prob-
lem), but a strong learner is generally adopted as the core of this layer.

The selection of the L1 individual learner needs to consider the feature information
in the sample space because the individual learners of this layer directly perform feature
extraction and decision output on the samples. So, the selection needs to consider general
feature engineering problems, such as the linear model is possibly a strong individual
learner in the high-dimensional small sample data set. However, when the features are
highly collinear, the linear model may become a weak individual learner. The sample sub-
space input to the L2 is quite different from the original space, and the choice of the learner
is more inclined to the features of S. In the classification problem, the output of the L1 can
be sample labels or the continuous cross probability or information entropy of the sample
labels. The most significant difference between the stacking, boosting, and bagging strat-
egies is the existence of the L2. Stacking does not target a single individual learner for
further learning. When the sample space is determined, after using multiple and different
individual learners to build the L1, determining a reasonable strong learner in the L2 layer
will significantly improve the learning effect of the model. The pseudo-code of stacking is
as follows:

Table 2. The pseudo-code of stacking algorithms.

Algorithm. Ensemble Learning (for Stacking)

Input: training set: D = {(x1,y1), (%2, ¥2), .., (i, Ym)
individual learners: n4,14,...,07;

meta-learners: 7.

1: fort=1,2,...,Tdo
2: hy =n(D);

3: end for

4. S=@;

5. fori=1,2,...,mdo
6: fort=1,2,...,Tdo
7 sy = he(xy);

8: end for

9: S =((5i1,Sizse-r SiT) Vi)s
10: end for

11: ' =n(D");

Output: H(x) = h'(hy(x), hy(x),..., he (X))

where D is a training set with m samples, L1 consists of T individual learners. L2 is meta-
learner 7. Receiving trained model h; with the training set. For x; in D, s;; = h(x;), the
second training set generated by x; is 5; = (51, Siz, ..., Sir), the label is y;. The secondary
training set produced by T individual learners is S = {(s;, y;)}%,, which will be used for
training meta-learner.

In conclusion, when choosing the stacking for ensemble learning model construction,
the diversity of L1 individual learners and the selection of L2 meta-learners are the two
decisive aspects of this strategy.

2.2.2 Individual Learners Selection
The following five basic models are selected as the individual learner of the L1:
® CART Tree (DTree)
The Decision Tree algorithm is representative of the tree model. The Decision Tree

algorithm is a binary growing tree, a nonlinear model that can realize data visualization.
The time cost of model training is O(n * m? * logm). This model uses the Gini index as the
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segmentation index when measuring tree growth. In this individual learner, the minimum
number of samples that model leaf nodes can split is 2, and the minimum number of sam-
ples for leaf nodes is 1. However, the maximum depth of model splitting and the maxi-
mum leaf node is not limited to enable the model to be adequately fitted by a greedier
algorithm.

® RBF-SVC (SVM)

Support Vector Machines implemented with Radial Basis Function Kernel SVM. The
lower bound of the model training time cost is O(n * m?), and the upper bound is
0(n * m?). In this individual learner, the regularization parameter C is constrained to be
1, and the kernel coefficient gamma is 0.0016.
®  k-nearest neighbor (kNN)

The k-nearest neighbor model is nonlinear and is often used in problems with unclear
classification boundaries. The lower bound of the model training time cost is
0(n *log(m)), and the upper bound is O(n * m). The nearest neighbor calculation algo-
rithm is k-DTree. The number of neighbors that can be queried is 5. All neighbors in the
neighborhood have the same weight, that is, uniform weights. The spatial distance is cal-
culated by Euclidean distance.
®  Multilayer Perceptron (MLP3)

The multilayer perceptron is a fully connected feedforward network model. This
time, the three-layer perceptron model is a relatively simple perceptron model with only
one hidden layer. The number of nodes in each model layer is (100, 50, 25). Activation
function for the hidden layer is "relu", that is, f(x) = max(0, x). The solver for weight op-
timization is adam, that is, a stochastic gradient-based optimization proposed by Kingma,
Diederik, and Jimmy Ba. Moreover, the maximum number of iterations is 200. The time
cost of training this model is O(n * m * hiddens™""°™ x outputs * inters).
®  XGBoost (XGBI)

The XGBoost algorithm integrates n linear models as the representative of the linear
model. Set the booster parameter to "gblinear" to integrate linear models, and there are
also no restrictions on the maximum depth and maximum leaf nodes for model splits.

In the time complexity representation, m represents the sample size, and n represents
the sample dimension.

2.2.3 L2 selection

In this experiment, individual learners are determined as the L1 through a heteroge-
neous ensemble strategy to consider various types of classifiers that reduce the model's
variance. The algorithm is completed by matching different learners as the L2, and the
structure is shown in Figure 3. The L1 is set to five individual learners in 3.1. After con-
verting the original data into transition data, the L2 is connected to complete the classifi-
cation. The L2 function candidate models are Logist, MLP, kNN, XGBoost, Decision Tree,
LSVM, SVC, Random Forest, and AdaBoost.

Leam Leamn Leamn Learn Predict ! predictions
Leamn Learn Learn Predict Learn predictions
Training set Leam Learn Predict Learn Learn predictions | Training set (9  Leamn
Leamn Predict Learn Learn Learn predictions
Predict Learn Learn Learn Learn predictions
Modell DTree  Model2 SVC Model3 kNN Model4 MLP Modle5 XGBI L2
|Testiug set | \ Predict || Predict || Predict || Predict || Predict |—D§ Testing set H Predict ‘
L1 L2
Validation set \ Predict ” Predict ” Predict “ Predict ” Predict F’%VﬂlidmionsetH Predict ‘
L1 L2

Figure 3. The process structure of the algorithm.
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This stacking method has a process structure similar to multilayer neural networks.
This paper mainly conducts comparative experiments on model selection at the L2. When
selecting the L2 function, it is necessary to adjust the parameters of the objective function.
The simulated annealing hyperparameter optimization algorithm is used for parameter
configuration, and the optimal parameter solution is selected after 1000 iterations. By com-
paring the trained models on the testing set, the optimal L2 function is selected. In addi-
tion, an independent validation set is introduced to verify the model's applicability.

2.2.4 Simulated Annealing

Hyperparameters are parameters used to control the behavior of an algorithm when
building a model, which cannot be obtained from regular training and must be set manu-
ally. One of the most complex parts of machine learning is finding the best hyperparame-
ters for the model. The performance of the model is directly related to the hyperparame-
ters. The better the hyperparameters are tuned, the better the model's performance.

The simulated annealing algorithm was first proposed by N. Metropolis et al. [33].
However, its use in combinatorial optimization design was proposed in 1983 by S. Kirk-
patrick et al. and V. Cerny [34-36]. Itis derived from the principle of metal quench cooling.
When the metal heats up and melts, the thermal energy is converted into kinetic energy,
and the particles in the metal start to move disorderly. When the metal cools down slowly,
the particles tend to be ordered; when the metal cools down to a normal temperature state,
the kinetic energy is the lowest[37]. The simulated annealing algorithm consists of the
Metropolis criterion and the annealing process. The annealing process is understood as
finding the optimal global solution. Moreover, the purpose of the Metropolis criterion is
to search for the optimal global solution out of the optimal local solution, which is the
basis for annealing.

Metropolis criterion is generally expressed as follows (1):

1: E(xnew) < E(xold)
P = exp (_ E(xnew) ’; E(xold)> ) E(xnew) > E(xold)

The Metropolis criterion states that at temperature T, there is a probability P(AE) of

@™

cooling with an energy difference AE, expressed as P(AE) = exp(AE/(kT)), where k is
the Boltzmann constant, exp is the natural exponent, and AE < 0. So P and T are posi-
tively correlated. This formula means that the higher the temperature, the greater the
probability of cooling with an energy difference of AE; the lower the temperature, the
lower probability. If the energy attenuation, then this change will be accepted with 1. If
the energy does not change or increase, this change deviates from the direction of the
optimal global solution, which will be accepted with P. Because the temperature gradu-
ally decreases during the annealing process, AE is always less than 0. Therefore, AE /kT <
0, so the range of P(AE) is (0,1). With the decrease of temperature T, P(AE) will gradually
decrease and eventually stabilize to achieve the optimal global solution.

2.2.5 Evaluation indicators

(1) Accuracy and Class Accuracy

For classifying organic matter content in black soil, which is essentially a multi-clas-
sification problem in supervised learning, accuracy (ACC) can be used as the model eval-
uation index. Accuracy is calculated as follows (2):

N
1
acc(y,ypred) = Nz 1 (ypredi = yi) (2)
i=0

where y; is the true label of the i sample, y_pred; is the predicted label of sample i, and N

is the total number of samples.
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Class accuracy (C-ACC) for evaluating single class classification is a variant of accu-
racy, which indicates the proportion of a that the model predicts correctly in the label. The

formula is as follows (3):
NI
) 1 .
aCC](yfypred) = mz 1 (ypredi =Y )ryi € labd(])
i=0

where y; is the true label of the i sample, y_pred; is the predicted label of sample i, and

®)

N/ is the total number of samples of this label.

The legal range of both of them is [0, 1]. The closer it is to 1, the higher the proof
accuracy and the better the classification effect of the model. This study balances the num-
ber of samples in the three labels. So, for this three-label problem, the lowest limit of the
total accuracy rate should be 0.33.

(2) F score

F score, also known as the balance score, is the weighted average of precision and
Recall. In this classification problem, it is necessary to consider the precision and the recall;

that is, the F1 score (F1) is quoted. The formula is as follows (4):
precision X recall
F1=2x—— 4)
precision + recall
where precision and recall respectively represent the precision and recall within the label,

and the formulas are as follows (5) and (6):

recision = L ®)
P TP + FP
TP (6)
re call = TPTFN

where TP represents the number of correctly predicted samples, FP represents the number
of wrongly predicted samples from other classes as this class, and FN represents the num-
ber of samples from this class that is incorrectly predicted as other classes.

The legal range of F score is [0, 1], an enormous value means a better model.

2.2.5 Compute environment

All the codes designed in this research have been open-sourced under the MIT li-
cense. The hardware environment that the analysis depends on is shown in Table 3 below,
and the compile environment is based on Python 3.9 in Windows 10 LTSC. To ensure
reproducibility of all experimental and analysis results, all random seeds involved in this
paper are set as 615.

Table 3. Environment and tools of analysis and model building in paper.

Computing Environment Algorithmic Environment
CPU Intel® Core™ i5-10400 (2.90GHz) Scikit-learn 1.0.1,
GPU Nvidia GeForce RTX 3070 Numpy 1.18.5,
RAM DDR4 3000Mhz 16GB = 2x8GB Pandas 1.3.3,
operating system ~ Windows LTSC 21H2 Xgboost 1.4.2,
Random seed 615 Scipy 1.5.0
3. Results

3.1. stacking model building

The independent test results of the five individual learners in the L1 layer are as fol-
lows in Figure 4. Among the five classification models, kNN and XGBI have higher ACC
in the test set, which can reach 0.8857 and 0.8520, indicating that these two individual
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learners have excellent essential performance and can be initially designated as solid clas-
sifiers. Compared with the high accuracy index, the F1 of kNN is 0.8859, which further
illustrates the strong classifier properties of kNN in this sample space. The ACC of DTree,
SVM, and MLP is relatively low, which are 0.8313, 0.8313, and 0.8292, respectively, so they
will be initially defined as weak classifiers.

1.0
0.8313 0.8313 0.8509 ‘o
0.8 . 0 °
0.6
0.4
0.2
BN acc . 1
0.0

MLP DTree SVC XGBI kNN
Figure 4. Accuracy and F1 score of all individual learners.

Figure 5 is the confusion matrix of each model on the testing set, where the vertical
axis represents the true label of the sample, and the horizontal axis represents the pre-
dicted label of the model's predicted output. From the confusion matrix, it can be seen that
each model performs well in recognizing class "2". For class "2", the class accuracy of the
SVC is highest at 0.9706, and the C-ACC of the MLP is lowest at 0.8725. Each model has
different degrees of defects in recognizing class "1". The SVM's ACC on class "1" is only
0.66, and the C-ACC of the kNN is only 0.8511. For kNN, XGBl, and DTree, the recognition
errors are relatively evenly distributed among the recognition of classes "0", "1", and "2".
The recognition ACC of kNN for each class has reached more than 0.85, and the recogni-
tion ACC of class "2" has reached 0.95.

MLP(0.8292) SVC(0.8313) DTree(0.8313) XGBI(0.8509) kNN(0.8857)
o 23 1 a 56 3 o 45 0
o ¥ o
2~ 58 36 2~ 43 39 2~ 22 24
= = =
~o 1 38 ~ 0 14 ~ 2 12
o 1 2 0 1 2 0 1 2
yhat yhat yhat yhat

Figure 5. Confusion matrix of all individual learners.

Based on the analysis results of ACC, F1, and testing set confusion matrix, the indi-
vidual learners are summarized as follows:

(1) kNN and XGBI have high ACC, and the misjudgment results for different classes
of soils are relatively evenly distributed, and both have an excellent discriminant effect on
soil class "2". So, they two can be used as solid classifiers to complete the L1 integration.

(2) The ACC of the SVM, MLP, and DTree is low, and it is incidental to misjudge the
soil of class "1" during the model prediction process, but they perform well in distinguish-
ing the soil of class "2" and class "0" respectively. So, they can be used as weak classifiers
to complete the L1 integration.

The five individual learners are trained and integrated as the L1 under the same ex-
perimental environment. Individual learner in the L1 predicts the sample and combines
all the probabilistic prediction sets into a transition data set S. Then, the 203-dimensional
raw data of the training set is output as a 15-dimensional S through the L1. Input S into
the L2 alternative model to complete the model fitting analysis.
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Table 4 compares the ACC and F1 of the nine stacking models before and after sim-
ulated annealing hyperparameter optimization. It can be seen that the ACC of the model
after the simulated annealing hyperparameter optimization has been dramatically im-
proved. The Logist-stacking model has the best performance with an ACC of 0.8923, and
the DTree-stacking model has the worst performance with an ACC of 0.8651. It can be
seen in the table that the inter-class classification ability of each classifier is the same, and
the classification effect is similar, and it can complete the multi-classification task of this

paper.

Table 4. Accuracy and F1 score before and after optimization of each stacking model parameter.

Before Optimization After Optimization

acct f1 acct acc_0 acc_1 acc_2 f1
DTree 0.6047 0.5959 0.8651 0.8520 0.7573 0.9869 0.8628
RF 0.6212 0.5809 0.8694 0.8553 0.7735 0.9804 0.8677
ada 0.5306 0.4467 0.8716 0.8520 0.7832 0.9804 0.8703
XGB 0.6059 0.5248 0.8760 0.8520 0.7961 0.9804 0.8749
LSVM 0.6318 0.5995 0.8760 0.8586 0.8026 0.9673 0.8754
svC 0.6247 0.5910 0.8792 0.8586 0.7994 0.9804 0.8783
kNN 0.6153 0.5965 0.8825 0.8586 0.8252 0.9641 0.8822
MLP 0.6294 0.6007 0.8879 0.8750 0.8155 0.9739 0.8872
Logist 0.6459 0.6123 0.8912 0.8750 0.8252 0.9739 0.8905

3.2 Applicability verification of model

In order to further verify the ACC of the model in different samples, we introduced
a new dataset: the validation set. 2831 sample points in the validation set inputted nine
stacking models.

It can be seen from Table 5 that the ACC of the nine stacking models on the validation
set is quite different. The LSVM-stacking model has the best performance with an ACC of
0.9488, and the Ada-stacking model has the worst performance with an ACC of 0.6708. In
addition, each classifier has significantly improved the recognition effect of class "1", and
the recognition effect of class "2" is also slightly improved. Instead, the main classification
errors are concentrated in recognizing class "0". The C-ACC of the LSVM-stacking model
in both class "1" and class "2" has reached 1.0, and the C-ACC in class "0" has also reached
0.7940, which is much higher than other stacking models, indicating that the LSVM-stack-
ing model has the best applicability in the validation set.

Table 5. Accuracy of each stacking model on validation set.

acct acc 0 acc 1 acc 2 fl
Ada 0.6708 0.0000 0.8223 0.9641 0.5177
DTree 0.7400 0.0000 0.9701 1.0000 0.5756
XGBI 0.7513 0.0000 1.0000 1.0000 0.5841
Logist 0.7835 0.4091 0.9673 0.8469 0.7483
svC 0.9022 0.6065 1.0000 1.0000 0.8799
kNN 0.9036 0.6577 0.9963 0.9735 0.8874
RF 0.9050 0.6335 0.9897 1.0000 0.8842
MLP 0.9131 0.6506 1.0000 1.0000 0.8930
LSVM 0.9488 0.7940 1.0000 1.0000 0.9401

Finally, LSVM is determined to be an L2 function.
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Figure 6. The final process structure of the algorithm.

4. Discussion

The representative XGBoost ensemble learning algorithm is an excellent machine
learning algorithm with better stability than a single individual learner, but not all ensem-
ble learning algorithms can complete the classification task well. The stacking model pro-
posed in this paper is not entirely based on the tree model, and its final performance is
not necessarily better than the traditional classifier model. However, using more types of
individual learners in the L1 can better consider the diversity of the data set, improving
the model's applicability ability. Greater adaptability is why a brand-new validation set is
introduced to validate the model. If we want to choose a simple classification model, kKNN
can do the job well. When dealing with hyperspectral data, the data dimension is high,
and there is much redundant information. It is necessary to filter the data information
through L1. The preliminary judgment result of L1 is given to L2 for analysis and judg-
ment, which also can reduce the workload of L2 functions.

5. Conclusions

In this paper, an ensemble learning model based on black soil hyperspectral data is
designed to complete the classification of SOM content classification quickly. Five indi-
vidual learners are selected as L1 to improve the applicability ability of the model, and
the simulated annealing algorithm is used to complete the hyperparameter optimization
of the LSVM-stacking model after 500 iterations. The regularization parameter of the best
model is C=0.34. The ACC on the testing set before the parameter adjustment is 0.6318,
and the ACC on the testing set after the parameter adjustment is 0.8760. In the independ-
ent validation set data, the ACC of the LSVM-stacking model is 0.9488 higher than other
stacking models, which can improve the C-ACC of class "1" to 1.0. The classification ability
of this stacking model is more balanced than before the parameter adjustment, and the F1
has also improved accordingly.
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