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Abstract: Decision making is a complex process involving various parts of the brain which are active
during different times. It is challenging to measure externally the exact instance when any given
region becomes active during the decision-making process. Here we try to extract and visualize the
dynamic functional brain activation information from the observed fMRI data. We propose the use
of a regularized deconvolution model to simultaneously map various activation regions within the
brain and track how different activation regions changes with time. Thus, providing both spatial
and temporal brain activation information. The activation information can then be further analyzed
as per need and requirements. The proposed technique was validated using simulated data and
then applied to a simple decision-making task for identification of various brain regions involved
in different stages of decision making. The visualization aspect of the algorithm allows us to actually
see the flow of activation (and deactivation) in form of a motion picture. The dynamic estimate may
aid in understanding the causality of activation between various brain regions in a better way.
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1. Introduction

The use of functional magnetic resonance imaging (fMRI) to study the neuroscientific
underpinnings of decision making has been quite popular and successful. Studies have
revealed various factors that affect decision making like reward [1, 2], risk [3, 4], uncer-
tainty [5, 6], morality [7, 8], and many others. However, these studies have relied on ex-
amining static differences in a contrast model, thereby averaging decision making across
time. However, decision making is a dynamic process [9]. Unfortunately, it is challeng-
ing to design an analysis pipeline to handle continuous processes within the GLM (gen-
eralized linear model) framework.

There are numerous issues that needs to be addressed before any inference can be
made from the raw fMRI time series. First, the useful blood oxygenation level dependent
(BOLD) signal is only 2% - 5% the absolute intensity [10, 11]. Second, because the fMRI
measures the indirect effect of neuronal activity, the neuronal signal is convolved with the
hemodynamic response and is shifted in time by 4-6 seconds [12, 13]. Third, the fMRI time
series is very noisy. A typical fMRI timeseries is confounded with various noise sources
including physiological artifacts like cardiac and respiratory noise, motion artifact, system
induced noise like gaussian and thermal noise, signal drift due to scanner instabilities and
background noise [14, 15].

In traditional task fMRI data analysis, the predicted BOLD response is obtained by
convolving the experiment design with the hemodynamic response function [16]. In case
of decision-making studies, it is difficult to get the exact onset time of individual steps
involved in the decision-making process and thus it is challenging to have an accurate
experiment design that can be used to obtain a reliable predicted response. Moreover, the
entire decision making is a continuous process and different parts of the brain are in-
volved at different time instances [9, 17]. Here we propose the use of a deconvolution-
based technique for estimation and visualization of the continuous dynamic brain activity
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during a simple task binary decision-making task. Instead of estimating the predicted re-
sponse, the observed BOLD time series is used to obtain an estimate of the experiment
paradigm for each voxel, henceforth referred as ‘pseudo stimulus’. It is assumed that the
pseudo-stimulus causes the observed BOLD signal changes and thus can be an accurate
representation of the ongoing dynamic brain activity. The use of hemodynamic response
model corrects for hemodynamic delays observed in the BOLD signal and the inference
from the pseudo stimulus can be time locked to the actual experiment design. Regulari-
zation is also used to reduce the effects of noise. It is shown in the appendix section that
the shape of the extracted pseudo stimulus remains close to the simulated ground truth
even for low SNR observed signals.

Deconvolution models have been used for analysis of fMRI data to extract the hemo-
dynamic response function [18, 19, 20, 21] and its variability [22]. Moreover, deconvolu-
tion models have also been used to identify underlying neural events from the observed
BOLD time series [23, 24, 25]. Commonly, hemodynamic deconvolution models use lasso
regularization (L1 regularization) which results in temporally sparse neuronal activity [26,
27, 28]. One of the main goals was to obtain a obtain a continuous visualization of the
decision-making process while the output of L1 regularization was sparse. The decision-
making task used in this study is also a block design and not event related making a con-
tinuous interpretation more useful. A variant of L1 regularization, L1 regularization of the
first difference of the weight vector, was also tested (described in appendix section) and
the results of that were similar to L2 regularization. Thus, L2 regularization [29] was used
instead which provides a smoother (temporally) more continuous output with smaller
computation time. Output of L1 regularization is also more susceptible to noise as com-
pared to L2 regularization. Moreover, the solution to the L2 regularized cost function can
be obtained using a closed form equation while the solution to L1 regularized cost func-
tion is obtained via an iterative process making L1 regularization time and resource in-
tensive process [30]. Because of the requirements for the application and faster computa-
tion times, L2 regularization was preferred over the standard L1 regularization.

2. Materials and Methods
2.1. Algorithm

Instead of specifying a known onset time and offset time and then convolving with
an HRF and estimating whether a given voxel has significant activation during the time
frame, the current approach instead creates a hypothetical HRF for each time point and
then tests to see which HRFs fit the data that is observed. At each time point, a question
is asked, would an HRF that started here give rise to data like the data being observed?
We can then find times at which an HRF in a particular voxel would have generated data
like the actual data. Thus, we do not need the onset and offset time of a known stimuli.
Instead, we can induce the onset and offset time of a stimuli that would give rise to the
data. We call this a pseudo-stimulus.

We first explain the algorithm using a single time series and then later extended to
time series of all the voxels within the brain. The entire algorithm is shown in Figure 1.
The most common step in a task fMRI analysis is the generation of an estimated response
time series. The estimated response is obtained by convolving the experiment design with
the hemodynamic response function (HRF). In figure 1, the experiment design is shown
in part (A), typical hemodynamic response is shown in part (B) and the estimated re-
sponse time series is shown in black in part (E) of Figure 1. In this study, we are interested
in obtaining the experiment design from the actual voxel time series. The most straight
forward way of doing that is to use a deconvolution model with the observed time series
and the HRF model. However, the deconvolution models are very sensitive to noise.
Given the fact that the fMRI time series are very noisy, outputs of the deconvolution mod-
els are not reliable. Thus, a different approach must be used to estimate the experiment
design from the observed BOLD signal.
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Figure 1. Summary of the algorithm for extraction of pseudo-stimulus from given time series. (A)
Typical fMRI experiment design. (B) Standard double gamma hemodynamic response function
(HRF). (C) Train of impulses delayed in time. The time delay between each pair of impulse is equal
to 1 TR. (D) The impulse train convolved with the HRF to give time shifted hemodynamic responses.
The time shifted hemodynamic responses are used as regressors in the design matrix. (E) Observed
time series shown as weighted sum of time shifted hemodynamic responses. (F) Extracted pseudo-
stimulus, obtained from the weights of the time shifted hemodynamic responses.

The observed signal is assumed to be a weighted sum of individual hemodynamic
responses at different time instances. The colored plots in part (E) of Figure 1 shows how
the predicted response can be obtained as weighted sums of hemodynamic responses at
different time instances. The first step in the approach is to form the design matrix. The
design matrix consists of 3 main parts. First an impulse function is generated for each TR
(repetition time) (part C). This is convolved with an HRF model to form a series of hemo-
dynamic responses that would have been generated by a pseudo-stimulus at every TR in
the study (part D).

Next a set of cosine basis function which corresponds to the low frequency signal
drift is added to the matrix. The number of cosine basis sets can vary depending upon the
overall experiment paradigm and the total duration of fMRI acquisition. The low fre-
quency fluctuations are generally of the order of once cycle ever 100 — 150 seconds. The
smallest frequency in the cosine basis set corresponds to half cycle in entire scan duration
and the remaining frequencies are integer multiples of it. The sampling frequency of the
cosine basis should be set to be 1/TR Hz. Finally, the last part consists of a constant term
which accounts for offset, absolute baseline intensity of the voxel. The fMRI data is pre-
processed and corrected for motion and temporal signal drift. The cosine basis set and the
constant terms are only to account for any residual signal bias or drift (if any) in the pre-
processed data.

The linear model used for estimation of the pseudo stimulus is specified in equation
1 where Y corresponds to the observed signal, DM corresponds to the design matrix, W
corresponds to the weights for the regressors (pseudo stimulus) and & corresponds to un-
modelled noise. In equation 1, DM € RT x N (N =T + Nc + 1; T is the number of TR in fMRI
data; Nc is the number of cosine basis sets), Y € RT x Nv (Nv is the number of voxels inside
the brain), and W € RN x Nv. There are more features than data points, so L2 regulariza-
tion also known as ridge regression [29] is used to estimate a set of weights, where the
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observed activation levels are the dependent variable. The fMRI time series is noisy and
with the help of L2 regularization the pseudo stimulus can be estimated with decent ac-
curacy even at low SNR (discussed in appendix section). Equation 2 shows the optimiza-
tion equation used for approximation of W where ‘A’ is the regularization constant and ‘I’
is an identity matrix of size ‘N’. Typically, for fMRI studies, different A value is used for
each voxel but here a fixed value of A is used. A discussion about the selection of A value
and why a constant value is used for A is discussed in the appendix section. The closed
form solution for equation 2, which is used for software implementation, is shown in
equation 3.

Y~DM XW + ¢

Equation 1
1 v RN
~ 2
Lw) =55 > (= 1) + 5 D Iwall?
n=1 n=1
Equation 2
in Lw) (DMT-DM+ M)‘l (DMT Y)
argmin L(w)~ | ————— .
& N N
Equation 3

The size of estimated pseudo stimulus matrix W will be N x Nv, where each column
corresponds to the estimated weights for a single voxel. The pseudo-stimulus for each
voxel can be obtained from a subset of W including first T rows and all Nv columns. Each
row in the subset of W can be converted to a 3D volume, corresponding to the size of the
brain, and volumes from consecutive rows corresponds to consecutive time points (TRs).
All T consecutive weight volumes can also be compiled into a single motion picture to
visualize the dynamic process going on inside the brain.

2.2. Experiment Protocol

The experiment was a simple binary decision-making task where the participants
had to decide whether they would download an app or not. A total of 50 different mobile
applications were selected form the Google Play android app store. The apps were rela-
tively uncommon, and a post scan survey was conducted to know how many of the apps
were previously used by the participants. On average participants had used only 3 out of
50 apps, with 8 being the maximum.
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Figure 2. Representation of the experiment protocol. There is a 5 second blank screen before the
beginning of the stimulus. After the stimulus starts, the response during the first 10 seconds is not
considered valid. After 10 seconds, the response by the user is considered valid and it will end the
stimulus bring back the blank screen before beginning the next stimulus.

When inside the scanner, anatomical images were obtained first followed by the
functional scans. The task was to look at the name, logo, screenshot and a short description
of the apps and decide whether to download the app or not. The responses were indicated
by a button press with the right index finger for YES and right middle finger for NO. As
soon as the participant presses the button, there is a blank screen with a small crosshair in
the middle for 5 seconds followed by the details of the next app. The blanking period is to
allow for the blood flow to return to baseline before the beginning of the next stimulus.
The app order was randomized for each participant. The description of the apps was char-
acter matched so that descriptions for all the apps were between 270 to 280 characters.
Also, all the descriptions were fed to a text to speech (TTS) software and the reading time
of the TTS software for all the apps was between 17 and 18 seconds. Considering the 17
second time to read the text, responses were only valid 10 seconds after the beginning of
the stimulus. The participants could respond before 10 seconds, but it doesn’t move to the
next app and those responses (trials) were not considered for analysis. Thus, a button
pressed after 10 seconds initiated a change to the next app. The 10 second window allowed
to discard participants and trial not performed seriously. There was no upper bound time
limit, and the participants can take as long as they want to respond to a particular app.
Figure 2 shows the experiment protocol for a single app.

A total of 22 undergraduate students from a large western university participated in
this study. The participants received bonus course credits for their participation. There
were 9 males and 12 females (one participant choose not to specify their gender) with an
average age of the population being 20.86 + 1.75 years (min = 19, max = 26). 21 out of 22
participants were right hand dominant. The participants were asked for fill out an in-
formed consent and an MRI safety screening form prior to being in the MRI scanner. An
institutional review board (IRB) approval was also obtained for the experiment. The par-
ticipants were also given instructions about the task and practiced the task on a laptop
outside the scanner. The practice task had the exact same user interface, but the apps used
in the practice were different from the apps used in actual experiment.

The MR scans were performed on a 3T Siemens Skyra scanner. The anatomical scans
were acquired using a MPRAGE pulse sequence with repetition time (TR) of 1900 milli-
seconds and an echo time (TE) of 2.49 milliseconds. Anatomical scans consist of 192 sag-
ittal images (each 0.9 mm thick) with an in-plane resolution of Imm x Imm. The functional
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scan were acquired using a multiband echoplanar imaging (MB-EPI) pulse sequence [31]
with a TR of 545 milliseconds and a TE of 29 milliseconds. Each functional volume was
acquired with 48 axial slices (6 slices acquired at once because of multiband) of thickness
3.3 mm and in-plane resolution of 3.25mm x 3.25mm. As the participants responded at
their own pace for each stimulus, the total scan time and thus the total number of func-
tional volumes acquired varied from 1496 (~15 mins) to 3129 (~29 mins).

2.3. fMRI Data Analysis

The preprocessing is done using SPM 12 toolbox [32] on MATLAB 2020a. The pre-
processing includes

e  Formotion correction, rigid body affine transformation is applied to all the functional
volumes to align them to the first functional volume. The rigid body transformation
accounts for 6 degrees of freedom that includes 3 translation and 3 rotational mo-
tions.

e  After motion correction the functional and anatomical volumes are coregistered. A
3D affine transform with 12 degrees of freedom is used to align the anatomical and
mean functional volume.

e  Next theimages are normalized by mapping both anatomical and functional volumes
onto the MNI152 brain atlas [33]. The functional volumes were mapped onto the atlas
with a spatial resolution of 3mm x 3mm x 3mm while the anatomical volumes were
mapped onto the atlas with spatial resolution of Imm x Imm x Imm.

e  Temporal signal drift was reduced and spatial smoothing was applied to all the func-
tional volumes. Signal drift was estimated and reduced using a Principal Compo-
nents Analysis based technique [34]. The spatial smoothing was performed using a
3D Gaussian kernel with a full width half maximum (FWHM) of 5 mm.

¢  Thenormalized volumes are then segmented into gray matter, white matter, cerebro-
spinal fluid (CSF), skull and skin. The segmented gray matter, white matter and CSF
volumes are used to obtain a brain mask. Any voxels outside the brain region were
discarded from further analysis to reduce the amount of data and computation time.

Before explaining each component of the estimation, we will lay out the overall process.
e Extract the pseudo stimulus for each voxel

*  Normalize the response times

*  Average together all of a single participants response level across all trials.

*  Repeat for only the trials with a yes and only the trials with a no answer.

*  Use clustering to compress the 50,000+ voxels’ responses into 20 clusters.

The preprocessed data is then used to extract the pseudo-stimulus for each partici-
pant. First the entire 4D fMRI volume is converted to a 2D matrix of size T x Nv. Nv is the
total number of voxels that lie within the brain region and T is total number of brain vol-
umes in the data. Each column of this matrix corresponds to that voxel’s time series. This
is the matrix “Y” as described in section 2.1. From the matrix “Y’, the weight matrix is esti-
mated which is of size N x Nv, where N corresponds to the number of regressors in the
design matrix. The first “T" rows of the weight matrix correspond to the pseudo stimulus
estimate for each of the Nv voxels. The voxel-wise pseudo-stimulus is estimated for all
the participants.

The response times varied across apps and across participants thus a one-to-one com-
parison is not possible. All the stimuli where participants responded before 10 seconds
were discarded. The average number of stimuli that were discarded per participant was
5.3 (min = 0; max = 16; median = 4). Thus, it can be assumed that all the responses were at
least 10 seconds long and with 5 seconds blanking period making a total time of 15 sec-
onds. To have uniformity in analysis, the onset of the stimulus is considered as the


https://doi.org/10.20944/preprints202209.0217.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 September 2022 doi:10.20944/preprints202209.0217.v1

reference point and 13 seconds (25 TRs, including the reference point) before and after the
reference point are considered for each app. Thus, for each stimulus, a fixed length win-
dow is obtained which is centered at the onset of stimulus. This fixed window allows us
to compare the response across different apps and participants. For each participant, the
pseudo-stimulus in the fixed window across all the apps is averaged together to obtain a
participant level response to the stimulus.

For each participant, the pseudo-stimulus is used to obtain the participant level re-
sponse to the app download decision. The participant level response matrix is of size 49 x
Nv (the reference point being the 25th row). Let’s assume that the kth trial began at time
instance tk. Corresponding to that, the time window would be [tk — (24) ® TR] to [tk + (24)
¢ TR]; fork={1, 2, 3, ..., 50}. For a given participant, all the 49 x Nv matrices (correspond-
ing to each value of k) are averaged together to have single participant level response to
the app.

The participant level response shows how the brain activity of the participant
changed when responding to the app download decision. Three separate responses were
obtained for each participant, one for all the apps, one for apps for which the participant
decided to download (YES apps) and the last one for the apps the participant didn’t decide
to download (NO apps).

Finally, considering the response for each voxel as features, the voxels are clustered
into 20 different groups using the k-means clustering approach. For each cluster, a repre-
sentative response is obtained by grouping the voxel response for all the voxels belonging
to same cluster. At the end of clustering the 49 x Nv matrix is converted to a 49 x 20 matrix
with each column containing the temporal response to a single cluster.

The clustering and representative cluster response was obtained for all participants.
However, the cluster assignment for k-means clustering is randomized and a correlation-
based post processing step was used to match the clusters across all participants. The
group level analysis was performed by combining the spatial clusters and cluster response
for all participants. Useful information can be extracted from the spatial clusters and clus-
ter-wise response.

3. Results and Discussion

The modified deconvolution algorithm was first tested on a synthetic data with sin-
gle time series. Figure 3 shows the results for simulated data. Figure 3a shows the actual
experiment design used to generate a synthetic time series and the estimated pseudo-
stimulus. The actual experiment stimulus was convolved with the hemodynamic response
function to generate the synthetic BOLD time series. Figure 3b shows the clean (black dot-
ted) and noisy (grey) synthetic BOLD time series along with the reconstructed time series
(blue) as estimated by the proposed algorithm. The noisy time series consists of thermal
noise and signal drift components added to the clean signal. The estimated signal
drift/baseline is also shown in figure 3b in red. From figure 3a, it can be observed that the
estimated pseudo-stimulus closely follows the actual stimulus. The Pearson correlation
coefficient is computed to quantify the similarity between the actual and estimated stim-
ulus. The correlation between the actual and estimated stimulus is 0.9126. Another inter-
esting thing to observe is that the short duration stimuli are estimated with a relatively
lower amplitude and longer duration. A potential explanation for that could be the satu-
ration effect of the sum of individual HRF. For example, if the amplitude of the estimated
response saturates after summing over 6 HRFs then any stimulus lasting smaller than 6
TRs will have a relatively smaller amplitude than other stimuli which are longer than 6
TRs. Thus, one limitation that can be identified here is the low sensitivity of the approach
in detecting short duration stimuli when present along with longer duration stimuli.
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Figure 3. (a) The actual (top) and estimated (bottom) stimulus for a synthetic timeseries data. (b)
synthetic time series. Noisy time series was obtained by adding gaussian noise and signal drift to
the clean time series. The noisy time series was used as input for the proposed approach to obtain
the estimated time series and estimated signal drift (baseline).

The proposed algorithm was used to estimate the pseudo-stimulus for all the voxels
of the brain while performing a simple binary decision-making task. The estimated
pseudo-stimulus for all the voxels can be visualized in form of a motion picture where
each frame corresponds to a single time instance. The visualization of the pseudo stimulus
for the brain responding to the app download decision is shown in Video 1. The anima-
tion shows the average response across all participants. The relative time is shown on top.
The instance when the screenshot for a new app appears (beginning of new trial) is con-
sidered as T=0. The entire visualization if from 25 TRs (13.5 seconds) before the reference
point to 25 TRs after the reference point. The 25 TRs after the reference point show the
initial process of information gathering and early decision making. The 25 TRs before the
reference point captures the events happening during the final decision-making process
and the blanking period between two stimuli. The button press happens 5 seconds before
the reference point. Thus, anything happening before that can be considered to be a part
of the final decision-making task. The brain activity between the reference timepoint and
5 seconds before it indicates what happens after the end of stimulus during rest period.
The pseudo-stimulus amplitude is normalized and converted to z-score. The amplitude
corresponds to the strength of activation at any given time instance (estimated from the
actual BOLD fMRI time series). The activation strength is corrected for the hemodynamic
response delay and thus can be time locked with the experiment paradigm. From the an-
imation a flow of brain activity can be observed in some of the regions, especially the
visual cortex regions. The activity starts to peak with the onset of stimulus, it peaks for a
while and then it drops below baseline for some time (deactivation) before reaching the


https://doi.org/10.20944/preprints202209.0217.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 September 2022 d0i:10.20944/preprints202209.0217.v1

baseline again towards the end of resting period. Different brain regions being activated
at the same time can be visualized simultaneously.

T -13.1 sec.

Video 1: Visualization of the pseudo-stimulus (normalized) across time. Different axial slices are
visualized with Left hemisphere towards bottom and Right hemisphere towards top.

The temporal response for voxels in different brain regions is shown in Figure 4. At
first the temporal response may seem very similar to the hemodynamic response obtained
using the FIR modeling of the fMRI data [35] but there is a fundamental difference here.
The hemodynamic response represents the response of the brain to a given stimulus. The
hemodynamic response is obtained by averaging sections of the actual BOLD response
and can be considered as the output of the brain to a stimulus. The temporal response or
pseudo-stimulus on the other hand represents the perceived input to the brain (can be
different for different regions). An experiment paradigm is usually considered as an input
to the brain but not all brain regions respond to it at the same time. Some brain regions
may receive an indirect input signal from other brain regions which directly respond to
the external experiment paradigm. The input to such indirect regions would be different
from the experiment paradigm. Thus, the input to all brain regions may not be the same
and varying input to different parts of the brain is estimated in form of pseudo-stimulus
or temporal response. By knowing the estimated input to different brain regions, it can be
possible to identify at what time instance a given brain region was triggered. Apart from
that, the hemodynamic response is convoluted with the HRF and is delayed by a few sec-
onds w.r.t to actual stimulus [12] which is not the case with pseudo-stimulus. The algo-
rithm corrects for HRF delays, and the temporal response can be time locked with the
experiment paradigm providing a better temporal understanding of the dynamic pro-
cessing of the brain.
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Figure 4. Estimated pseudo-stimulus (temporal response) for different voxels inside the brain. The
plots in light grey corresponds to the temporal response from single subjects while the dark black
plot is the average across all participants. The vertical dotted line indicates the time instance of but-
ton press and beginning of the stimulus.

Coming back to figure 4, the light-colored lines represent the response for each par-
ticipant while the solid black line represents the averaged response. The temporal re-
sponse is for all the apps irrespective of the download decision by the user. The time in-
stance of button-press and the beginning of the stimulus is indicated with vertical dotted
lines. The beginning of the stimulus initiates a strong activation in the visual cortex region.
The visual cortex activation is caused due to the appearance of the screenshot and app
description after the blank screen. The algorithm does correct for the hemodynamic re-
sponse delays and thus the temporal response can be time locked to the experiment par-
adigm. Once the screenshot is displayed, the participants are likely to engage in the task
of reading the description of the apps. The reading activity causes a gradual and pro-
longed activation of the Lingual gyrus which is involved in identification and recognition
of words [36]. During the same time a prolonged activation is also observed in the Broca
and the Wernike language regions. The activation of this region can be associated with
semantic and syntactic interpretation of the app description [37, 38, 39]. Towards the end
of the stimulus, decision independent activation is observed in the anterior cingulate cor-
tex (ACC). ACC is shown to be involved in decision making tasks, especially outcome
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evaluation before an actual decision is made [40, 41, 42]. Finally, a strong activation is
observed in the left motor cortex just before the button press. Little to no activation is
observed in the right motor cortex during the same time. The left motor cortex activation
is presumably caused due to the finger movement with the right hand to indicate the
download response.

Finally, during the blanking period between two stimuli, activation is observed in
the default mode network. Default mode network has been shown to be a task negative
brain region meaning it gets deactivated during the task and gets activated in the absence
of any specific task [43]. An interesting temporal response is observed for the voxels
within frontoparietal network. The temporal response shows a transient behavior where
the activation peaks near button press and beginning of new stimulus. The transient be-
havior of the temporal response may indicate the involvement of the region in task switch-
ing. Previous studies have suggested the role of frontoparietal network as a flexibility hub
[44] and in task switching [45]. The video 1 and figure 4 show the application of the pro-
posed approach in extracting the dynamic spatial and temporal response to the app down-
load decision making task.
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Figure 5. Difference in pseudo-stimulus for “yes’ (left column) and ‘no” (right column) download
decisions by the participants. The temporal response is shown for voxels in two regions that show
a statistically significant difference between the ‘yes” and ‘no” apps. The p-values for the paired t
test are shown between the subplots. The color coding of the plots is same as in Figure 4.

The temporal response from some of the brain regions depended on the user re-
sponse for the apps. To identify the regions that responded differently for download and
not download decision a paired t-test was performed. The algorithm extracts the pseudo
stimulus for all the apps whose download decision was either “yes’ or ‘no’. A paired t-test
was performed on temporal response of each voxel and all participants. Only two brain
region showed statistically significant difference in temporal response between ‘yes’ and
‘no’ response, the right ventrolateral prefrontal cortex (VLPFC) and the ventromedial pre-
frontal cortex (VMPFC). The VMPFC region has been shown to be involved in decision
making involving reward [2, 46, 47]. Figure 5 shows the temporal response for the voxel
showing the maximum difference in each region. The response is shown for both ‘yes” and
‘no’ apps and for all participants. It can be observed from the figure that there is more
activation for ‘'no’ apps as compared to ‘yes’ apps, right before the final decision time.
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Figure 6: Spatial and temporal results for k-means clustering. Figure shows some of the clusters
with meaningful temporal and spatial response. The response for ‘yes” apps is shown in green, ‘no’
apps is shown in red and the case for all user decision (both yes and no) is shown in blue.

The k-means clustering results is summarized in Figure 6. The figure shows spatial
clusters and the corresponding temporal response for the cluster. The cluster numbers are
randomly assigned by the clustering algorithm and doesn’t relate to the anything related
to the stimulus. The cluster level temporal response is obtained from the centroids of the
k-means. Temporal response and spatial parcellation for all the 20 clusters are shown in
the appendix section. The color scheme corresponds to the user response to the apps. The
pseudo-stimulus for all the voxels were extracted for 3 different cases. First for all the apps
irrespective of their download decision, second, for all the apps where the user decided
to download the apps and third, for all the apps where user decided not to download the
app. The spatial cluster color and the time series color for each of the three cases are also
shown in the figure. For spatial clusters, if there is an overlap in cluster for more than one
cases (which was common) then the cluster color is obtained by mixing the individual
colors. The k-means clustering was able to identify different brain regions based on their
response to the stimuli. The activation peaks in the temporal response for different clus-
ters corresponds to different stages in the decision-making task. The clustering approach
was able to identify different brain regions in an unsupervised fashion. For example, clus-
ters 14 and 16 corresponds to the visual cortex, cluster 2 corresponds to the lingual gyrus
while cluster 18 contains the Broca and Wernicke language regions. All the above-men-
tioned clusters are active after the start of stimulus during the initial phase of information
gathering.

Before the decision is made (indicated by a button press) activity peaks for clusters
5. Cluster 5 consists of spatial regions belonging to the executive control network, ACC,
and dorsolateral prefrontal cortex (DLPFC). DLPFC has been shown to be active towards
the end of the decision-making process [5, 9, 17]. Because of the similar temporal response,
all the different spatial regions are grouped into a single cluster. Cluster 13 consists of the
left motor cortex region while cluster 8 corresponds to the DMN. Motor cortex shows ac-
tivity at the end of the stimulus while the DMN shows activity during the 5 second
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blanking period. Finally, the cluster 3 overlaps with the frontoparietal network and shows
transient activity during the beginning and end of the main stimulus. The role of DMN
and frontoparietal network have been discussed earlier. For clustering it is interesting to
observe that even with an unsupervised clustering approach, it is possible to extract spa-
tial regions with meaningful interpretations.

The proposed technique shows promising results in identification and visualization
of the dynamic brain behavior. However, the algorithm is still in its early development
stage and can be improved further. The results for a binary decision making task suggest
that regularized deconvolution methods can be used to extract and visualize whole brain
dynamic activation information from noisy fMRI data. There are some challenges that ex-
ist for effective operation of the proposed approach. First, there are a few hyper-parame-
ters in the algorithm and the best combination of the hyper-parameters can still be ex-
plored. The set of hyperparameters used for obtaining the results shown in this paper
were obtained from testing on synthetic and simulated data. The hyperparameter that has
the maximum effect on the estimation of pseudo-stimulus is the regularization constant.
Setting it too small may result in a noisy estimate while setting it too large may reduce the
resolving ability for smaller stimuli. Some effects of the regularization constant for the
closed form solution have been tested and described in the appendix section. Some of the
earlier studies have shown SNR based regularized constant value selection techniques,
mainly targeted for iterative L1 regularization [Urufiuela et al., 2021].

As discussed earlier, another limitation is the inability to fully resolve smaller (short
time) stimuli due to the saturation effect. Because of its sparse nature, L1 regularization
approach may provide superior results for identification of neuronal activation in an
event related experiment design. One more limitation lies in the selection of the HRF. It
has been tested that, small variations in amplitude and time shifting doesn’t have a large-
scale effect on the estimation of the pseudo-stimulus. The details of the HRF variability
have been discussed in the appendix section. However, a large variation in the HRF may
result in inaccurate results. Another possible future work can be to use and check the ef-
fects of regions specific HRF models for estimation of the pseudo-stimulus.

4. Conclusion

The main objective of this paper is to present a technique that can be used to estimate
and visualize the dynamic nature of whole brain activity. The proposed technique is based
on the linear deconvolution model. The technique was applied to a simple binary deci-
sion-making task and various regions involved in the decision-making process were iden-
tified. The focus was more on the approach itself rather than the decision-making infer-
ences and thus the discussion about the neurological interpretation is limited. However,
a detailed analysis was conducted on the algorithm itself. From the results, it can be shown
that the proposed algorithm is capable of extracting the region level stimuli as seen by the
brain. The so-called pseudo-stimuli is also visualized in form of a motion picture which
clearly shows the dynamic brain activity across whole brain. Along with that, with a little
post processing, meaningful spatial clusters can also be obtained in an unsupervised man-
ner by using the extracted pseudo stimuli. There are many aspects of the algorithm that
can be improved but the identification of whole brain activity information can be very
useful for future research and in better understanding the dynamic process happening
inside the brain during various tasks.
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Appendix A: Synthetic Data with Varying Noise

The effect of noise was tested on the estimation of the pseudo stimulus using syn-
thetic single time series data. For a given experiment paradigm, multiple time series were
generated using different noise variance. For each case, the pseudo stimulus was esti-
mated using the proposed algorithm. All the parameters of the algorithm were kept same.
Figure Al (on the right) shows the estimated pseudo stimulus for varying noise levels.
The correlation between the actual experiment paradigm and the pseudo stimulus is also
displayed in the top right corner of each subplot. Figure also shows (on the left) the actual
noisy time series and reconstructed time series along with baseline for varying noise sce-
narios. A total of 5 different noise levels were tested where the signal to noise ratios (SNR)
were SNR = {10, 4, 2, 1, 0.5}. The accuracy of the estimated pseudo stimulus decreases with
increasing noise level which can be directly observed in decreasing values of the correla-
tion between the estimated and the actual stimulus with increasing noise.

Appendix B: The Effect of Regularization Constant

In terms of linear systems analysis, the process of extracting the pseudo stimulus
from the observed BOLD signal is a simple deconvolution problem. However, because of
the presence of noise, simple deconvolution is not very effective. Hence a regularized de-
convolution approach is preferred here. The main advantage of the proposed approach is
the ability to detect the pseudo stimulus even from a noise BOLD time series. Regulariza-
tion plays a major role in estimating the pseudo stimulus. The effect of regularization is
also tested for the proposed algorithm. Figure A2 demonstrates the effect of regularization
on the extraction of pseudo stimulus. A total of 5 different regularization constant values
were tested (A = {5 x10-1, 5 x102, 5 x103, 5 104, 5 x10-%}). From the figure it can be observed
that for very small values of regularization, the effect of noise is significant, and the ex-
tracted pseudo stimulus is not meaningful. On the other hand, for very large values of
regularization constant, even useful signal has been treated as noise and only the very
dominant effects in the experiment design are extracted. The reconstructed signal is also
not anything like the noisy or the clean BOLD signal. Thus, too much or too little regular-
ization is of no use, which is also supported by the correlation values between actual and
estimated pseudo stimulus. Taking reference from the simulated data, the regularization
constant for the entire algorithm was chosen to be 1 x 102
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Figure A1: Comparison of the (left) time series reconstruction and (right) estimated pseudo stimulus
for different noise levels. Varying noise levels are indicated using signal-to-noise ratio (SNR).

Appendix C: The Effect of HRF Variability

One of the assumptions made in the algorithm is the model for hemodynamic re-
sponse function. The canonical double gamma HREF is used in estimation of the pseudo
stimulus. However, it has been shown in previous studies that there is a variability in the
HRF function from individual to individual. The effect of HRF variability was also
checked for the proposed algorithm. To check the effect of HRF variability, the synthetic
time series was generated using a different HRF than used in the algorithm. The results
for HRF variability are shown in figure A3. As shown in subplot (a), the synthetic time
series was generated using the original HRF model shown in blue. Two separate HRF
model were then used independently to estimate the pseudo stimulus. The variation in
the HRF includes difference in peak amplitude, time to peak and full width half maxima
(FWHM). Subplot (c) and (d) shows the original and reconstructed time series for both the
HRF models. Subplot (b) shows the extracted pseudo-stimulus using different HRFs. The
correlation between the pseudo stimulus and the actual experiment stimulus is also
shown in the subplot.


https://doi.org/10.20944/preprints202209.0217.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 September 2022

d0i:10.20944/preprints202209.0217.v1

) . _A=sx10” ) . Actual
] 4 .
12 pt ‘\ J/ \\ —I
T & ,f Y . ““i 0.5F )
10 / \\ Tl lisT B Noisy
L S — = = Clean 0
8 BISelfles 50 100 150 200 250
- A | ¢ = |
50 100 150 200 20 e ’ Es“""atec‘- (A= 5"(10 ) i ;
- Sl 0.06} 1
Ptk | 0.04 1
( H 1 0.02f
iR / I ol r=0.711
" o i A ) v 4 ) ‘ ‘ ‘
- 50 100 150 200 250
o7 ‘* —— -Clean ‘ Estimated. () = 5x102)
. . Baseline J k : ! i
50 100 150 ~200 0.2r 1
= A=5x10" 01k |
12 {f ‘\ ‘I O 2 L L L =L O .8
- - 50 100 150 200 250
- | Estimated. (A = 5x107)
L VEI"‘SY T T T T
o ——— Reconstructed |05 [ 5
Baseline
50 100 150 200 T o)
" = 5x10° o5l r=0.8952
L L f L )
12 I 50 100 150 200 250
1 A\ Estimated. (A = 5x10™)
. = =W f | 2r T T T T 5
10 e HNoisy 1k 2
b it — = = Clean
9 = Resonstructed | 5
Baseline
200 m 4| =0, 5
50 100 150 200 250
Estimated. (A = 5x107)
9 ol ]
oo v 1
———Clean L
Reconstructed | -2 r - 0.5 12
Baseline 1 L L
25l

L
200 250 50 100 150 200 0

(k)

Figure A2: Comparison of the (left) time series reconstruction and (right) estimated pseudo stimulus
for different regularization constant. Varying regularization constant values are indicated on the
top of the subplots.

It can be observed from subplot (b) that the variation in amplitude has no significant
difference in the extracted pseudo stimulus. However, the difference in peak time does
have some effect. Depending on the difference in the peak time, the extracted pseudo
stimulus appears to be either forward or reverse time shifted. The amount of time shift is
equal to the difference in the two HRF model. The HRF model with larger FWHM extracts
smoother (less high frequency components) pseudo-stimulus. For large FWHM, the over-
lap between adjacent HRF in the design matrix is more as compared to shorted FWHM
and thus the extracted pseudo stimulus appears smoother. Overall, the correlation of the
extracted pseudo stimulus with the actual experiment stimulus is high and useful infor-
mation can be extracted from both the cases.
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Appendix D: K-means Clusters

K-means clusters

Figure A4: Spatial clusters obtained after k-means clustering. The clusters are color coded, and the
color bar represents the color corresponding to cluster numbers.

The spatial clusters and the corresponding time series for all 20 clusters is shown in
figures A4 and A5 respectively. The spatial clusters are shown for all the apps (irrespective
of the response) while the representative time series for all the clusters is shown for all 3
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Figure A5: Temporal for each of the 20 spatial cluster shown in figure A4. The response for ‘yes’
apps is shown in green, ‘no” apps is shown in red and the case for all user decision (both yes and
no) is shown in blue. The x-axis represents normalized time that is centered at the beginning of new
app (new stimulus) while the y-axis represents averaged normalized amplitude.

Appendix E: Effect of A

One of the important parameters for regularized linear deconvolution is the regular-
ization constant ‘A’. Often a different value of A is used for each voxel due to different
SNR (signal to noise ratio). Moreover, for L1 regularization, the value of A is updated after
every iteration. The effect of A on the estimation of pseudo stimulus was tested using syn-
thetic data. Synthetic time series with varying noise level was generated. The pseudo stim-
ulus was estimated using different values of A and a correlation was computed between
the actual experiment design and the estimated pseudo stimulus. The plots of A vs corre-
lation for different SNR is shown in figure A6. Section (a) and (b) of figure A6 shows the
results for 2 different time series. In each section, the top subplots show the ground truth
and the noisy (observed) time series for different SNR. The bottom subplots show the
change in correlation between the actual and estimated (pseudo stimulus) experiment de-
sign as a function of A. It can be observed from the figure that there is a range of A values
for which the correlation between the actual and estimated experiment design remains
almost constant (high correlation value plateau region). The range of A becomes smaller
with decreasing SNR but for a certain range of A values, a high correlation is observed
irrespective of the SNR or time series type. The simulation results suggest that as long as
a constant A value is selected within the plateau region, the estimated pseudo stimulus
would be accurate irrespective of the absolute SNR of the voxel’s time series. Thus, a
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constant A value was used for analysis. Moreover, having a constant A value reduces the
computational complexity and computation time.
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Figure A6: Effect of regularization constant (A) on estimation of pseudo stimulus. Results shown for
varying SNR for two different types of synthetic data (a) and (b). Each column represents results for
a different SNR indicated above the top subplot. The top subplot shows the ground truth and the
noise time series. The bottom subplot represents the correlation between actual (ground truth) and
estimated (pseudo stimulus) as a function of A.

Appendix F: L1 regularization of first difference

The first difference of the ground truth (experiment design) has a sparse nature.
Thus, a different regularization function was also tested. Equation Al below shows the
loss function which consists of 2 parts. The first part, E(w) (equation A2), is the error be-
tween the actual and the predicted response while the second part, R(w) (equationA3),
describes the new regularization function. This regularization function is the L1 norm of
the first difference of the weight vector. The gradient for the regularization function,
which is derived in appendix G, is given in equation A4. The new regularization function
was first tested on synthetic data with different SNR and then applied to real fMRI data.
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Figure A7: Comparison of L1 of the first difference and L2 regularization on synthetic time series
data. Left column subplot shows synthetic noisy time series (grey) with reconstruction using differ-
ent regularization shown in red (L1 first difference) and blue (L2). Right column subplots show
ground truth experiment design (grey) with estimated pseudo stimulus using different regulariza-
tion shown in red (L1 first difference) and blue (L2). Each row subplot corresponds to a different
SNR value indicated in the title of the left subplots.
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Equation A4

Figure A7 shows results of the new regularization function on synthetic data. The left
column shows the noisy time series (grey) and the reconstructed time series for L2 regu-
larization (blue) and the L1 regularization of the first difference of w (red). The right col-
umn shows the ground truth (grey) and the estimated pseudo stimulus using L2 regular-
ization (blue) and the L1 regularization of the first difference of w (red). Each row corre-
sponds to the synthetic data with different SNR, as indicated on top of the left subplots. It
can be observed that the estimated pseudo stimulus for L1 of first difference and L2 reg-
ularization both are very similar in nature. Due to sparse nature of L1 regularization, the
pseudo stimulus appears more rectangular in shape. Both the estimated pseudo stimuli
show high correlation with the ground truth. Pearson correlation coefficient was com-
puted between the ground truth and the estimated pseudo stimulus using both the ap-
proach. In the figure, C10 indicates the correlation between the ground truth and pseudo
stimulus obtained using L1 regularization of the first difference, C20 indicates the corre-
lation between the ground truth and pseudo stimulus obtained using L2 regularization,
while C12 indicates the correlation between the pseudo stimulus obtained using L1 regu-
larization of the first difference and L2 regularization. The correlation values suggest that
L2 regularization performs slightly better than the L1 regularization of the first difference.
The performance of the L1 regularization degrades more with decrease in SNR as com-
pared to L2 regularization.

The group level spatial and temporal results for L1 regularization of the first differ-
ence is shown in Figure A8. The solution to the optimization using L1 regularization of
the first difference was solved by an iterative process. As discussed in appendix G, a mod-
ified pipeline was used to obtain group level results. The group level results are very sim-
ilar to the results obtained using L2 regularization. The temporal smoothing of the pseudo
stimulus may be caused by the averaging of response across all the trials and participants.
The positive and negative peaks time locked to the experiment design is observed. The
spatial clusters 2 and 3 overlap with the visual cortex regions and the temporal response
shows a positive peak at the beginning of the trial. The clusters 19 and 20 overlap with the
default mode network and their temporal response peaks during the blanking period (be-
tween the button press and beginning of the new trial). As discussed earlier, default mode
network is a task negative network, and the temporal response for clusters 19 and 20
seems to be following that trend. Spatial cluster 13 overlaps with the brain regions of
DLPFC, VMPFC and ACC. The temporal response for cluster 13 peaks towards the end of
the decision-making process, which is similar to results observed for L2 regularization
and discussed in section 3 above. The motor cortex overlaps with cluster 7 and the tem-
poral response has a dominant peak towards the end of the trial as observed for results of
L2 regularization.

However, the main limitation of iterative approach is the computation time required
for voxel wise full brain analysis. A timing analysis was performed on synthetic data. To
estimate the pseudo stimulus using an iterative approach on a synthetic time series of 2048
time points, takes on an average (averaged over 20 runs) slightly more than 5 seconds for
1000 iterations. Convergence was achieved between 1000 and 2000 iterations. Assuming
about 60,000 voxels within the brain region for a 3mm x 3mm x 3mm resolution volume,
the total time required to perform voxel-wise analysis for a single subject would be 300,000
seconds (60,000 x 5) or about 83 hours. For a group of 20 participants that would be more
than 2 months. A reduction in time can be achieved by using parallel processing and high-
performance computing centers but still the time required to perform voxel-wise analysis
would be much higher for iterative approach as compared to L2 regularization with
closed for solution, which only takes few minutes to couple of hours for a single
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participant. Thus, if similar results are obtained, it is much more practical to use the
faster L2 regularization over other iterative regularization approaches.

Figure A8: Spatial and temporal results for L1 regularization of the first difference. The spatial maps
correspond to k-means clusters. The cluster numbers are indicated on top of the time series subplot.
The temporal plot shows the mean response of the clusters to “YES” apps (green), ‘NO’ apps (red)
and ‘all” apps (blue). The temporal response is centered at the beginning of the new trial. The in-
stance of button press and beginning of new trial is indicated with dotted lines.

Appendix G: Gradient computation for R(w)

This section derives the gradient of the regularization loss function for L1 regulari-
zation of the first difference. The regularization loss function is shown in equation A5. The
computed gradient for the weight for the kth time point is shown in equation A10. Because
the gradient requires the weight from the previous and next time point, equation A10 is
only valid for 1< k < T. For the values of ‘k’ outside the range, we assume wk to be zero.
Corresponding to that the gradient for the weights for the first and the last time point is
shown in equations A1l and A12 respectively.

T-1

RW) = 2 ) Wiy = W
k=1

Equation A5
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