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Abstract: We develop a machine learning (ML) approach for improving the accuracy of the hori-
zontal distribution of the aerosol optical depth (AOD) simulated by the CHIMERE chemistry-
transport model over Northern Africa using Moderate-Resolution Imaging Spectroradiometer 
(MODIS) AOD satellite observations. These observations are used during the training phase of the 
ML method for deriving a regional bias correction of AODs simulated by CHIMERE. The results 
are daily maps of regional bias corrected AODs with full horizontal coverage over Northern Africa. 
We test four types of ML models: multiple linear regression (MLR), random forests (RF), gradient 
boosting (XGB), and multiple layer perceptron networks (NN). We perform comparisons with sat-
ellite and independent ground-based observations of AOD that are not used in the training phase. 
They suggest that all models have overall comparable performances with a slight advantage of the 
RF model which expresses less spatial artifacts. While the method slightly underestimates the very 
high AODs, it significantly reduces biases and absolute errors, and clearly enhances linear correla-
tions with respect to independent observations. This improvement for deriving the AOD is partic-
ularly relevant for high dust pollution regions like the Sahara Desert, which dramatically lack 
ground-based measurements for validations of chemistry-transport modeling which currently re-
mains challenging and imprecise. 

Keywords: mineral dust; North African dust; Saharan dust; Bodélé depression; bias correction; ma-
chine learning; aerosol optical depth; chemistry-transport model; aerosols; particulate matter 
 

1. Introduction 
Particulate matter suspended in the air, called aerosol, has major impacts on the en-

vironment. Scattering and absorption of radiation by aerosols (e.g., desert dust and black 
carbon) significantly modify the Earth’s radiative balance, consequently affecting the cli-
mate system [1–3]. Aerosols are also the major air pollutant, they represent the greatest 
environmental threat for human health, causing more than 3 million premature deaths 
worldwide every year [4]. It’s therefore of a great importance to estimate and forecast the 
spatial distribution and variability of aerosols and how they interact with radiation. This 
last aspect is described by their optical properties, such as the aerosol optical depth 
(AOD). 

Satellite measurements, such as those derived from the Moderate-Resolution Imag-
ing Spectroradiometer (MODIS) spaceborne sensor [5], play a fundamental role for ob-
serving the spatial distribution of aerosols at the global scale. These remote sensing obser-
vations are mainly derived in terms of AOD vertically integrated over the whole atmos-
pheric column, which describe their horizontal distribution. However, they are available 
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only for cloud free conditions and are limited by the overpass time of the (polar orbiting) 
satellite. On the other hand, chemistry-transport models (CTM) such as CHIMERE [6] nu-
merically simulate the hourly 3D evolution of aerosol plumes in the atmosphere, regard-
less of the cloudiness. The accuracy of the CTM simulations depend on the precision of 
the inputs e.g., emissions of atmospheric constituents, wind, vertical velocity fields and 
also on the assumed aerosol properties (e.g., microphysical and optical properties). There-
fore, simulations of the aerosol spatial distribution are prone to bias compared to obser-
vations [7,8]. The biases are linked to uncertainties in the physical parameterizations of 
the model, input data, and numerical approximations [9]. The modeling errors are more 
noticeable in regions lacking ground-based stations for validating and constraining the 
simulations, which is the case of the African continent. 

Several approaches make use of AOD remote observations to assess the surface PM 
concentrations e.g., [10,11]. Other works combine the advantages of the spatial and tem-
poral continuity of modeling-derived aerosol distribution and the good accuracy of the 
satellite observations e.g., [12–14]. Most model constraining techniques use ground in situ 
measurements and rather recently satellite data such as MODIS AOD is also used e.g., 
[15,16] in north african mineral dust emissions inversion and [17] for the Copernicus At-
mosphere Monitoring Service (CAMS). They are mainly based on data assimilation tech-
niques such as variational or filtering approaches [18] which are costly in terms of com-
putation. On the other hand, new approaches use machine learning (ML) techniques for 
correcting model systematic biases with respect to observations, which are quick and com-
putationally efficient. These methods are increasingly being used thanks to the advance-
ment in the development of ML hardware and technology. Until now, these ML bias cor-
rection techniques are mainly used for chemistry-transport model simulations of trace 
gases e.g., [19] or using in situ surface data for aerosols e.g., [20,21], or for post-processing 
forecasts e.g., [22,23]. 

In this work, we develop a new ML-based bias correction for correcting the bias of 
the CHIMERE simulated AOD maps at the wavelength of 550 nm at 13:00 LT (local time). 
The method is applied in a post-processing manner. The correction relies on the good 
accuracy of AOD satellite measurements from MODIS taken at the same wavelength and 
approximately the same time. Observations are only used in the training phase, so the 
method provides full coverage, daily maps of the corrected AODs over the whole CHI-
MERE simulation domain. The method is developed for North Africa using data from the 
year 2021 that we detail in section 2. We discuss in section 3 the performance of four dif-
ferent ML models: multiple linear regression, neural networks, random forest, and gradi-
ent boost model against independent ground-based and satellite observations. 

2. Materials and Methods 
The principle of the AOD bias correction method is to use AOD and other variables 

such as meteorological fields simulated by CHIMERE as inputs of a trained ML-based 
model. The latter derives a posteriori bias corrected AODs that are in better agreement with 
AOD observations from MODIS than those simulated by the model, which are called here-
after “raw” CHIMERE AOD. This is achieved by “teaching” the model how to correct the 
AOD using MODIS measurements during a supervised training stage. A schematic de-
scription of this process is shown in Figure 1. The inference of AOD, also called predic-
tions in other contexts is done in a pixel-by-pixel fashion for all the ground pixels, no 
surrounding regional information is used for the AOD correction. In the following sub-
sections, we describe the dataset used for the training (section 2.1.1 & 2.1.2), the data prep-
aration (section 2.1.3) and then the ML implementation for correcting AOD regional biases 
(section 2.2). 

To do so, we assume that the AOD is a function of the input features, and we try to 
approximate the relationship that maps the features inputs to the correct AOD using sta-
tistical modeling. Statistical models are data driven i.e. require a large database of known 
solutions that covers a wide range of possible situations. 
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Figure 1. Flowchart of the pixel-by-pixel bias correction approach of the CHIMERE AOD estimation. 

2.1 Inputs 
2.1.1 MODIS satellite observations 

The satellite observations used for training the ML model are derived from the 
MODIS spaceborne multi-wavelength radiometer onboard the AQUA platform with an 
overpass time around 13:30 LT. This satellite follows a near-polar sun-synchronous low 
orbit, hovering at 705 km of altitude and within the A-Train constellation. MODIS is ob-
serving structures at 36 spectral bands at a horizontal resolution that ranges from 250 to 
1000 m and a nadir swath 2330 km wide, covering the majority of the Earth’s surface on a 
daily basis [24]. The MODIS AOD product used in this work is the collection 6.1 
MYD04_L2 with 10 km resolution [25,26]. This product is the combination of AOD prod-
ucts derived with the Dark Target [27] and Deep Blue [28] algorithms. The Dark Target 
algorithm is suitable over ocean and dark land (e.g., vegetation), while the Deep Blue al-
gorithm covers the entire land areas including both dark and bright surfaces. This MODIS 
dataset is interpolated at the horizontal resolution of the CHIMERE model (0.45°x0.45°) 
using the mean value method. All MODIS AODs mentioned hereafter refers to the obser-
vations from the AQUA platform, at the wavelength of 550 nm, unless mentioned other-
wise. 

The quality of the reference dataset for supervision is critical for accurate ML model-
ing; therefore, we filter out the low-quality observations by only keeping retrievals with 
the highest quality assurance flag. We verify the quality of the MODIS AODs used here 
by comparison (Figure 2a) with daily averages of direct measurements of the AOD from 
ground-based sun photometers of the AErosol RObotic NETwork [29]. This network im-
poses standardization of instruments, calibration and processing which assure the best 
quality. The comparison (Figure 2a) shows that the AOD observations of MODIS for the 
year 2021 correlates well with the measurements of the eight AERONET stations (the lo-
cation of each station in Figure 3). The Pearson correlation coefficient (r) is 0.88 and the 
root mean squared error (RMSE) is rather low (0.13). The AERONET data being used for 
the comparison are of level 1.5; we convert the AOD from 500 nm to 550 nm using the 440-
675 nm Angstrom exponent provided by the same station. 
2.1.2 CHIMERE simulations 

CHIMERE is an Eulerian CTM that simulates the formation, deposition, and 
transport of aerosols and other atmospheric species [30]. It is capable of simulating phe-
nomena from the local scale e.g., urban heat island up to hemispherical scale. The princi-
ple is to use the available information about the earth's atmospheric composition, and the 
earth surface including source emissions, then simulate the evolution of the atmospheric 
species taking into account the internal forcing e.g., wind, and external forcing e.g., 
shortwave incoming radiation. The computation of the evolution of the plumes is done 
by numerically solving the transport equation and using a chemistry interaction scheme. 
CHIMERE is used as a tool to forecast and analyze the daily air quality in terms of partic-
ulate and gaseous pollution [31]. It is widely used for aerosols, and aerosol precursors 
research e.g., [32–36]. 

The CHIMERE simulations used as inputs for the ML model are derived for the 12 
months of the year 2021 using CHIMERE-2017 version [37] over the region of North Africa 
and Arabian peninsula (10 to 38°N 19°W to 53°E). The horizontal resolution is 0.45° x 0.45° 
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on a regular grid; while the vertical resolution is composed of 20 layers of increasing thick-
ness, from approximately 30 m at the surface level to 675 m (upper limit around 500 hPa). 
Aerosols are distributed into 10 size-classes (also denoted as bins), from 0.05 μm to 40 μm. 
The AOD is calculated for all the aerosol species considered in the simulation under an 
external mixing hypothesis. This is calculated using online Fast-JX (version 7.0b) photol-
ysis computations [38] providing the optical properties [39] and the aerosols concentra-
tion. The computation is done at five wavelengths (200, 300, 400, 600, and 999 nm); in this 
work we use the interpolated 400 nm AOD to 550 nm using the 400-600 nm Angstrom 
exponent. 

The simulation boundary and initial conditions are taken from the Laboratoire de 
Météorologie Dynamique general circulation model coupled with the Interaction with 
Chemistry and Aerosols (LMDz-INCA) [40]. The CHIMERE simulation is run in offline 
mode using National Oceanic and Atmospheric Administration (NOAA) meteorological 
final analysis data and Weather Research and Forecasting Model (WRF) version 4.1.1 [41]. 
MELCHIOR2 (Modèle Lagrangien de Chimie de l’Ozone à l'échelle Régionale) [42] is used 
as chemistry interaction scheme. A 2015 based emission inventory is used from the Emis-
sions Database for Global Atmospheric Research EDGARv5.0 [43] for the gaseous and 
particulate matter anthropogenic emissions. The dust emission scheme implemented in 
CHIMERE requires the knowledge of soil properties and wind conditions. This module 
allows for the computation of dust aerosols emissions and their size distribution, by mod-
eling the processes of sandblasting and saltation [44,45]. It takes into account uplifts of 
both silty and sandy soils, which are emitted from the north Algerian region and the Sa-
hara respectively [46]; but a non-negligible uncertainty remains in the modeling of Sa-
haran dust emission and transport [47].  

An evaluation of the accuracy of this AOD simulated by CHIMERE with respect to 
AERONET reference measurements is shown in Figure 2b. It shows that for high pollution 
cases, the CHIMERE AOD is clearly overestimated with respect to the AOD measured by 
the AERONET sun photometers the mean bias (MB) is equal to 0.16, but the inverse is 
observed in the background AODs. The correlation coefficient is less than for the compar-
ison of MODIS with AERONET AOD (0.63, compared to 0.88 for MODIS). The RMSE is 
greater, being 0.46 for CHIMERE AOD against 0.13 for MODIS. The same behavior is no-
ticed for the mean absolute error (MAE). Other chemistry-transport models have also 
shown biases in the AOD simulated in north africa, with comparable overestimation e.g., 
[48]. 

(a) (b) 

  

Figure 2. Scatter plot of 966 collocated data points comparing the AOD550 
measured by 8 AERONET sun photometers for the year 2021 with (a) MODIS 
satellite observations and (b) simulated AODs by the CHIMERE chemistry-
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transport model. The black line is the y=x line with the gray shaded areas 
representing the ±20% interval of its slope.  

The map of the annual median difference between the AOD from CHIMERE and 
MODIS (Figure 3) shows that the major overestimation is located over most of the Saharan 
desert. The positive bias of CHIMERE AOD is most pronounced over a region northeast 
of the lake of Tchad named the Bodélé depression, where half of the days from 2021 ex-
press a bias larger than unity. Mineral dust is frequently emitted from this region (Sup-
plementary data, Figure S1b), around 100 times per year [49]. Yearly emissions from this 
single spot (17.8°E; 16.9°N) go up to 40 million tons of dust. The large positive biases of 
raw CHIMERE simulations are possibly linked to the uncertainties in the inputs of the 
dust emission model e.g., near surface wind speed and friction velocity, but it can also be 
due to the refractive index used in the AOD computation. 

On the contrary, over the Arabian Peninsula and Northern Egypt, the AOD is slightly 
underestimated by CHIMERE, as compared to MODIS. We see a low correlation (0.53) 
between the two estimations, and a high standard deviation with an RMSE of 0.62 and a 
MAE of 0.35. 

 

Figure 3. The median of the difference between CHIMERE and MODIS AOD550 
for the year 2021 in the simulation domain of north Africa. The stars show the 8 

AERONET stations used for the comparisons in Figure 2. 
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The bias of CHIMERE raw AOD 
simulation output with respect to MODIS 
AOD is assessed for different raw AOD 
intensities (Figure 4) for the whole year. 
We clearly see the higher the AOD of 
CHIMERE the more overestimating it is; 
the linear fit has a slope of 0.79 and the 
intercept value is low (-0.2). The linear 
correlation of the bias with the raw AOD 
is the highest correlation compared to 
other CHIMERE variables like PM25, 
PM10 (not shown). The exact reason for 
this linear relationship is unknown, an in-
vestigation on the cause of the bias is un-
der consideration. But the method that 
we describe in this paper is a ML model 
designed for improving these biases a 
posteriori. 
2.1.3 Dataset preparation 

We selected the days used for the training following the common convention in the 
machine learning field; i.e. splitting the whole 12 months of 2021: 66% is used in the train-
ing and validation stage, and the other 33% is kept for testing the performance of the mod-
els. 

The training data size and diversity is important for a good generalization of a ML 
model. In order to avoid the bias induced due to the seasonal variability, we take two 
thirds of each month of 2021 for building the models, i.e. days from 1st to 20th for the train-
ing and validation, which make up 240 days from 2021. We call this dataset DTrain and it is 
composed of around 1.4 million cloud free ground pixels. Then from the 21st to the end of 
each month for testing the models, which makes up 122 days that are not used in the 
training process, we call this dataset DTest and it is composed of around 0.7 million CHI-
MERE simulation ground pixels. Dataset DTrain is constituted of sequences of consecutive 
yet shuffled data, the correlation between a training subset and a validation subset is lim-
ited due to the decorrelation time scale of the atmospheric processes. This is a key point 
to ensure that the test dataset is independent and that the scores computed are robust to 
evaluate the generalization skill of the model. We excluded the days 23, 24, and 25 of Sep-
tember 2021 because of the unavailability of MODIS observations. 

Besides the simulated AOD, the local variables related to the atmospheric composi-
tion taken from CHIMERE which are used as inputs of the ML models are the following: 
vertical concentration profiles of dust, organic carbon, particulate matter (PM10 and PM2.5 

with diameter smaller than respectively 10 and 2.5 μm), carbon monoxide (CO), ammonia 
(NH3), toluene, ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), nitrous acid 
(HNO), sulfuric acid (H2SO4), specific humidity, water droplets, sea salt, nitric acid 
(HNO3), ROOH, non-methane hydrocarbons (NMHC), OH, and the two compound fam-
ilies NOx and NOy. For these vertical profiles, we consider 4 simulation levels out of the 
20 available, corresponding to approximately 967, 920, 797 and 560 hPa pressure levels. 
The other CHIMERE outputs used as inputs for the ML are related to surface properties 
and meteorological conditions: surface albedo, shortwave radiation flux, soil moisture, 
surface relative humidity, boundary layer height, surface latent heat flux, surface sensible 
heat flux, pressure profile, and relative humidity profile. We don’t include wind fields 
because they do not improve the residuals. All CHIMERE and meteorological variables 
are taken at 13:00 LT which is the closest to the AQUA platform spacecraft overpass time. 
Therefore, DTrain and DTest have a total of 96 features.  

 

Figure 4. Scatterplot showing the linear 
relationship between CHIMERE AOD550 bias 

toward MODIS observations for different 
AOD550 levels represented by the CHIMERE 

AOD550. The colorbar represents the occurrence 
in the year 2021. The green line represents the 
linear fit with the correlation coefficient a and 

the intercept b.  
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These variables used as inputs are selected such that each variable should be related 
directly or indirectly to the aerosol concentration. Choosing a subset of the available var-
iables speeds up computations, mitigates the overfitting and reduces the curse of dimen-
sionality [50]. We keep variables even if they show significant correlations between them 
e.g., PM10 & PM2.5, because we find that this slightly improves the performance of the bias 
correction method. Although most features of DTrain , as well as DTest follow a log normal 
distribution (e.g., PM), the use of the normal logarithm of these variables as inputs of the 
ML degrades its performances by inducing underestimations of the predicted AODs. Pre-
processing by applying standardization/rescaling, and/or outlier removal does not signif-
icantly improve the accuracy either. Therefore, we keep the input data, without any trans-
formation. 
2.2 Bias correction ML models construction 

The fitting problem we try to solve is overdetermined and the high dimensional input 
variables are not independent. We implement several machine learning approaches, tree 
based, a neural networks model, and the more classical linear regression model. We dis-
cuss their performances in section 3. In the following, we describe how the four models 
are built (section 2.3.1 to 2.3.4) using python version 3.8 programming language [51] and 
the web-based interactive computational environment jupyter notebook [52]. 
2.2.1 Multiple linear regression (MLR) 

Multiple linear regression modeling is widely used in several fields thanks to its con-
venience and its ease of use and interpretation. While it is suitable when the variables are 
independent, we tested it here to serve as a performance baseline and compare it with the 
three other more sophisticated models. The training is performed on half of DTrain data that 
have been randomly sampled. We use only half of DTrain to keep the comparison fair be-
tween the other models which use some data from the other half during a tuning phase. 

If F is the function that maps the input features X to the outcome denoted y, our 
objective is to find a function G that approximates F using a set of known solutions 
{Xi,yi}iN. Usually, the function is learned successively by minimizing the expected value of 
some loss function L(y, G(X)). The residuals are assumed normally distributed and have 
a constant variance. In light of these assumptions and that F is linear, we approximate it 
as the following equation (1) : 

𝑦𝑦 =  𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2+ . . .  +𝛽𝛽𝑛𝑛𝑋𝑋𝑛𝑛 + 𝜀𝜀 (1) 

where 𝜀𝜀 represents the error associated with the approximation, βi the coefficient corre-
sponding to the feature pi, and n the number of variables in the feature space which equals 
96 in our case. 

The cost function L (equations 2 and 3) below represents the residuals from the model 
and the observation is solved using the least squares method. 

𝐿𝐿 =  ∑ (𝑦𝑦𝑗𝑗 − 𝑦𝑦′𝑗𝑗)2𝑁𝑁
𝑗𝑗=1    (2) 

     =  ∑ (𝑦𝑦𝑗𝑗 − 𝛽𝛽0 − ∑ 𝛽𝛽𝑘𝑘𝑋𝑋𝑗𝑗,𝑘𝑘
𝑁𝑁
𝑘𝑘=1 )2𝑁𝑁

𝑗𝑗=1  (3) 

where N is the number of the observations available. For this work, we use the linear 
regression model from sklearn v1.0.2 library [53].  
2.2.2 Feed-forward neural networks (NN) 

Neural networks regression is a modeling technique that is increasingly being used 
in many fields thanks to the advancement of big data and parallelized hardware. The 
principle is to use perceptrons stacked in layers to approximate a nonlinear relationship 
[54], where the weight of each perception is learned from a reference dataset by gradient 
backpropagation [50,55,56]. The technique can model non-linear relationships by using 
some activation functions [57]. Optimizing multidimensional functions with neural net-
works is hard because of the proliferation of saddle points [58], but stochastic gradient 
descent algorithms are good at finding the global minimum [59–61]. 
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The training of the NN AOD bias corrector is done using the Tensorflow library 
v2.5.0 [62]. First, we search for a suitable network architecture for the problem by per-
forming 100 trials of feed-forward neural networks with dense layers. The architectures 
are sampled from an arbitrary reasonable hyperparameters search space (Supplementary 
data, Table 1). We use the random search feature of the Keras-tuner 1.0.3 library [63] to 
find the best network. All the tested networks use batch normalized input feed [64], and 
a rectified linear unit [65] as activation function. The use of a dropout layer [66,67] worsens 
the accuracy so we do not use it here. The optimization of the weights of the network is 
done using Adam optimizer [68] –which is a variation of stochastic gradient descent– with 
respect to the mean squared error. Training is run for 100 epochs, we set early stopping in 
the conditions when the validation loss either exceeds 0.1, or stabilizes at 0.01. We notice 
that the increase in the number of neurons (perceptrons) does not improve the accuracy 
of the estimator, and we manage to get the same performance of the best randomly gen-
erated NN model using a bottleneck architecture, with less complexity and fewer param-
eters (Supplementary data, Table 2). The network has 3943 trainable parameters. 
2.2.3 Random forest (RF) 

A random forest regressor [69] is an ensemble model that is widely used in both clas-
sification and regression problems. Each ensemble member called tree [70] is constructed 
using different randomized parameters; the final prediction is the average of all trees pre-
dictions.  

The model is tuned for three key hyperparameters: number of estimators (trees), min-
imum samples in a leaf, and maximum number of features. The tuning is done using the 
brute-force search method with two cross-fold validations on 10000 randomly selected 
ground pixel data from DTrain. Using only a subset of the available training dataset accel-
erates the search process and saves memory. We find out that the best performing RF 
candidate has a maximum of 20 features, minimum samples in a leaf 4, and 100 estimators. 
After that, we perform training of this best model using half of DTrain. The training was 
performed using sklearn v1.0.2. 
2.2.4 Gradient boosting (XGB) 

A gradient boosting regressor [71,72] is also a tree-based modeling technique but 
constructs trees successively in a way that each tree minimizes the preceding trees resid-
uals. The final estimation is the sum of all the trees predictions. 

We use the Tree-based Pipeline Optimization Tool (TPOT) library v0.11.7. It is a ge-
netic programming-based automated ML system that optimizes a series of feature prepro-
cessors and ML models to build a better data processing pipeline for supervised tasks [73]. 
We let TPOT determine the best pipeline for correcting the CHIMERE AOD using 10000 
randomly selected data from DTrain. The number of generations is set empirically to 20 and 
the population size is set to 20, increasing further these numbers slows the search process. 
The best pipeline suggested by TPOT uses XGBoost model (XGB) [72] which is a variation 
of the gradient boost model that uses L1 and L2 regularization, preceded by the zeros and 
non-zeros counts as features. The post-processor XGB is made of 100 estimators, with a 
maximum depth of 9 and a minimum child weight of 17 (see the documentation [74] for 
more details about the meaning of those hyperparameters). The best pipeline suggested 
by TPOT is retrained using half of DTrain dataset that were randomly sampled. 

3. Results and discussion 
This section presents an evaluation of the performance of the trained AOD bias cor-

rectors, with respect to DTest MODIS observations (section 3.1) and ground based AERO-
NET measurements (section 3.2). While the training is performed partially using a Quadro 
P620 GPU, the prediction runs only on a single thread of a CPU (i9 2.30GHz). The time 
cost of the training and the inference of the models is a key indication of the usability of 
the developed method. The training of the ML models did not take a long time, in fact the 
MLR takes a few seconds, and NN, RF, and XGB training does not exceed one hour each 
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(without counting the hyperparameter search step which is much longer). Concerning the 
inference time, all approaches perform the daily correction in less than half a second (Ta-
ble 1) which allows for a potential use of these models in real time, we note a slightly 
quicker inference for MLR and NN. 
3.1 Comparison against independent MODIS observations 

We compare the estimations of the AOD from raw CHIMERE and the inferences from 
the ML models with respect to MODIS observations that are not used for their training 
(Table 1). The table shows that the ML models corrected successfully the raw CHIMERE 
AODs to a certain extent. They all show a comparable improvement of the AOD correc-
tion, with both larger correlation coefficients with MODIS AOD (between 0.62 to 0.71) and 
smaller RMSE (from 0.19 to 0.21) and MAE. The improvement in AOD estimation is no-
ticeable looking at the raw CHIMERE AODs performance (r of 0.56 and RMSE of 0.65). 
We note that the XGB and RF are the best-performing bias correctors in terms of correla-
tion coefficient (0.71) and RMSE (0.19). The NN model follows with the same RMSE but 
slightly lower correlation coefficient (0.69). Lastly, the MLR corrector offers a slightly 
lower correlation coefficient (0.62) and higher RMSE (0.21). 

Table 1. Average performance of each AOD bias corrector and raw CHIMERE on DTest with respect to MODIS AOD. t: daily mean 
inference time cost; r: Pearson correlation coefficient; RMSE: Root Mean Squared Error; MAE: Mean Absolute Error; Skp: Pearson’s 

Coefficient of Skewness; μ: mean; percentages show the percentiles of the error. The metrics are calculated for the 737129 pixels 
making DTest. 

 t(s) r RMSE MAE Skp μ min 25% 50% 75% max 
RAW N/A 0.56 0.65 0.37 2.55 0.24 -3.57 -0.09 0.03 0.39 6.95 
MLR 0.19 0.62 0.21 0.13 -3.9 0 -4.15 -0.06 0.03 0.1 2.49 
NN 0.35 0.69 0.19 0.12 -3.18 0 -4.04 -0.06 0.02 0.09 5.09 
RF 0.22 0.71 0.19 0.12 -3.45 0.01 -4.21 -0.05 0.03 0.1 2 

XGB 0.3 0.71 0.19 0.12 -2.93 0.01 -3.96 -0.06 0.02 0.09 2.47 
The AOD correction biases distribution –the AOD estimation bias in this work being 

the difference between the modeled/estimated value and the MODIS observed value– 
show that they are bell shaped centered around a small positive value, suggesting an over-
all positive overcorrection of the raw AOD (Figure 5). This is consistent with the positive 
values of the medians (50% percentile) and the negative skewness in Table 1. The means 
on the other hand are near or equal to zero, which is expected since the models are trained 
by minimizing the mean squared error. 

The model’s biases spreads are similar as well. The most underestimated AOD value 
is from the RF model with a minimum bias of -4.21, and the least underestimating model 
is the XGB with a minimum bias value of -3.96. The maximum bias values on the other 
hand, which correspond to the extreme underestimation of the AOD is from the NN 
model with a maximum bias of 5.09; while the best model in terms of underestimation is 
the RF model with a maximum bias of 2. 

We observe that the distribution of the raw AOD biases of CHIMERE (Figure 5) are 
skewed towards higher values, this is because more background AOD pixels are available 
which are underestimated by CHIMERE, while in the high AOD episodes, the raw CHI-
MERE AOD overestimate it. The overestimation occurs in most of the dust emission epi-
sodes with very large bias values as shown in Figure 3, which is why the biases RMSE is 
high, and median bias is positive (0.03) in Table 1. 
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Figure 5. Histogram showing the frequency per 0.02 bin 
size bias, which is the difference between modeled (raw 

CHIMERE) or corrected (ML-models) AOD550 and 
satellite observed AOD550 from MODIS for DTest. 

 
The most important feature from the training vector is the CHIMERE raw AOD as 

suggested by the RF and XGB models (not shown). So an analysis of the correction versus 
the a priori AOD can indicate how impactful the a priori AOD in terms of intensities on 
the predicted AOD. The bias in the AOD correction of the different ML models is found 
to be only slightly dependent on the a priori (raw) AOD levels (Figure 6). We observe for 
all of them that in high a priori AOD (above 0.5 value), the correction bias can be high, 
while in low a priories the AOD correction is quite good and expresses low bias typically 
under 0.3 in most of the pixels. This may be attributed to the fact that more pixels available 
for training have a typical low background AOD level. 

(a) (b)  

   (c) (d) 

  

Figure 6. Scatterplots showing the AOD correction bias amplitudes of (a) MLR, (b) NN, (c) 
RF and (d) MLR in terms of different a priori AOD intensities represented by the 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 September 2022                   doi:10.20944/preprints202209.0186.v1

https://doi.org/10.20944/preprints202209.0186.v1


 11 of 21 
 

 

CHIMERE AOD550 for DTest. The green line represents the linear fit with a slope a and the 
intercept b. Colormap represents the occurrence.  

The analysis of the predicted AOD of the different models varies according to the 
AOD level (Figure 7). In low AOD levels (under 1) the models correct to an acceptable 
degree the AOD of CHIMERE most of the time as shown with the yellow colormap, with 
a slight undercorrection for high AOD levels. The MLR model (Figure 7a) expresses some 
negative AOD pixels, this is an artifact (see also Figure 8c) associated with the use of neg-
ative regression coefficients, which improves the overall performance of the MLR model. 
The best performer among the ML models is the XGB (Figure 7d) with a linear fit slope of 
0.52 followed by the RF model. 

(a) (b)  
 

  
 

(c) (d)  

  

 

Figure 7. Scatterplots showing the corrected AOD550 of (a) MLR, (b) NN, (c) RF 
and (d) MLR in terms of different AOD levels represented by the MODIS 

AOD550 for DTest. The green line represents the linear fit with a slope a and the 
intercept b. The gray lines represent the lines y=x. Colormap represents the 

occurrence. 

 

The bias corrected AOD of CHIMERE predicted with the four ML models (Figure 8c-
f) are compared with MODIS AOD measurements (Figure 8a) and with CHIMERE raw 
AOD simulation (Figure 8b). It is worth noting that a clear added-value of the corrected 
AOD maps is the full geographical coverage of this estimation. They are not affected by 
the cloud cover nor by the satellite swath size, while offering a better accuracy than the 
raw CHIMERE simulations. The ML models successfully correct the AOD, by reducing 
the raw CHIMERE values in the high emission regions such as the Sahara and by increas-
ing the low AOD values over the Northern Arabian Peninsula for better matching MODIS 
measurements. Despite the independent pixel-by-pixel processing, the horizontal struc-
tures of the corrected AOD features are continuous and homogeneous in most of the re-
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gions. This is found for most of the dates of DTest (see data availability clause). Some ex-
ceptions are encountered such as some discontinuities seen near the southwest coast of 
North Africa on 30 September 2021 for the NN and MLR predictions (Figure 8c-d). Dis-
continuities in the AOD are observed that do not reflect the natural concentration gradient 
found in dispersed dust plumes. In the case of MLR (Figure 8c), the issue also seen previ-
ously in (Figure 7a) is associated with the use of negative regression coefficients. For the 
NN model, the issue could be explained by the fact that multiple layer perceptrons may 
not extrapolate well the non-linear relationships outside the training set [75]. XGB and RF 
bias correctors do not show such artifacts (Figure 5e-f). Yet we notice that XGB is a bit 
noisier, suggesting an overfit to the MODIS AOD pixels noise. In fact, [69] suggests that 
using a random selection of features to split each node in tree based models yields error 
rates that compare favorably to adaptive boosting (Adaboost), but are more robust with 
respect to noise. 

(a) MODIS measurements AOD (b) Raw CHIMERE AOD 

  
(c) MLR Corrected AOD (d) NN Corrected AOD 

  
(e) RF Corrected AOD (f) XGR Corrected AOD 

  

Figure 8. Horizontal distribution of the AOD550 on 30 September 2021 (not used training) from (a) MODIS satellite 
observations, (b) raw CHIMERE simulation, (c) MLR, (d) NN, (e) RF, (f) XGB. The AOD predictions of the rest of 

the days are available from the link found in the data availability clause. 
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Figure 9 shows an evaluation of the performance of the four bias correctors in terms 
of the median bias of the AOD correction over the whole testing dataset, DTest. The median 
bias does not exceed 0.3 in most of the domain, and it is clearly smaller than that of raw 
CHIMERE simulations (Figure 3). Similar biases are seen for the four correctors, with 
some positive, and negative biases for some regions characterized by high annual mean 
AOD values (supplementary data, Figure S1.b), and they are smaller in absolute terms for 
RF and XGB particularly over the Arabian Peninsula and the southwestern part of the 
Sahara. A common behavior for all the ML models is that they highly underestimate the 
AOD over a zone (10° to 20°E, 14° to 20°N) corresponding to the Bodélé depression (Figure 
9). 

The Bodélé depression region is a known major source of desert dust [49]. The region 
is part of what was the paleolake Megachad which was the biggest lake on the planet 7000 
years ago [76]. Mineral dust emissions from the Bodélé depression region are generally 
fine sized dominated by quartz, with admixtures of clay minerals and Fe-oxyhydrates 
[77]. Therefore, they are brighter (higher reflectance) and whiter (flat reflectance spec-
trum), compared to the rest of the Sahara plumes [78] (supplementary data, Figure S1.a). 
Indeed, Algerian Sahara dust [79] and the Bodélé depression region dust [80] have differ-
ent refractive indices. Unlike the CHIMERE CTM model, the aerosol retrieval algorithm 
Deep Blue uses two different single scattering albedo for the dust AOD retrieval [78], one 
for the redder dust, and one for the whiter dust. Furthermore, an upper limit of 3.5 is set 
for the AOD values (Figure 10) [25]. 

Improving the accuracy of near surface wind speeds, the representation of particle 
size and the aerosol optical properties within CHIMERE may reduce the bias in the AOD 
simulated in North Africa, but this is beyond the scope of this paper.  
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(a) (b) 

  
(c) (d) 

  

Figure 9. The median of the difference between CHIMERE bias corrected AOD550 and MODIS AOD550 for the dates 
of DTest for the (a) MLR, (b) NN, (c) RF, and (d) XGB ML models. 

 

 

 

Figure 10. Scatter plot of 
MODIS and raw CHIMERE 

AODs in the region of Bodélé 
depression. Colormap 
indicates occurrence. 

 

As the AOD correction models are trained using MODIS Aqua data, one need to en-
sure that the models are temporally stable and usable outside the Aqua overpass time 
(13:30 LT). For this purpose, we correct the raw CHIMERE AOD outputs at 10:00 LT using 
the RF model, then compare the inferred AODs to MODIS observations from the satellite 
Terra which has a local overpass time of 10:30. We choose only the RF model to perform 
the upcoming analysis because the statistical performance of the other ML models is sim-
ilar. The comparison shows that the correlation and residuals improvement is comparable 
to the corrected AODs at 13:00. From Table 2, we see that the residuals (RMSE, MAE, MB) 
are reduced, e.g., a reduction of 0.68% is observed in the RMSE; the correlation is increased 
to 0.68 from 0.52. This good AOD correction for a morning hour implies the possibility to 
use the correction method for more daytime simulation hours, yet we remain conservative 
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on the use of the AOD correction method during night hours as the ML model will more 
often have to extrapolate to unseen situations e.g., very low boundary layer height, low 
temperature, etc. 

Table 2. Correlation and residuals of AOD estimations for the year 2021 against MODIS Terra ob-
servation. The raw AODs are CHIMERE outputs at 10:00 LT and for the corrected AOD with the RF 
model. Number of data 3.7 million. 

 
 r RMSE MAE MB 

RAW 0.52 0.59 0.34 -0.23 
RF-corrected 0.68 0.19 0.12 -0.03 

 
3.2 Comparison with AERONET stations 

The performance of the RF model along with that of MODIS is assessed against col-
located AERONET measurements in the 8 stations for testing dates (Table 3). We see an 
improvement of r from 0.54 for the raw AOD to 0.73. The residuals also improved as the 
RMSE and MAE dropped from 0.45 and 0.27 to around 0.16 and 0.12 respectively. The MB 
is significantly reduced from 0.18 to around 0.6 for the corrected AOD. Figure 11 provides 
an illustration of the daily evolution and temporal consistency of the performance of the 
RF model, note that we also include the days used in the training phase, but we will re-
strict the analysis on the testing dates. We chose the station of Cairo for this purpose be-
cause of its good data coverage of the period, and because it shows situations of positive 
and negative corrections of the biases (the same figure for the other sites can be found at 
the link in the data availability clause). A suite of high AOD episodes are seen in March 
and April and also from 24 to 29 October 2021. In those cases, raw AODs simulated by 
CHIMERE are clearly overestimated with respect to AERONET measurements. The ML-
based correctors reduce the AOD values for clearly approaching the sun photometer 
measurements, while still depicting the AOD peaks. On the other hand, CHIMERE simu-
lations underestimate the AOD in the periods of 20-27 June and 21 to 30 September. In 
those cases, the bias corrector increased the AOD to reach the appropriate values close to 
both AERONET and MODIS measurements. In cases when raw CHIMERE AODs are cor-
rect (e.g., on 20-21 May), the bias corrector does not modify the AOD, remaining around 
0.24. 

Table 3. Correlation and residuals of 330 AOD estimations on testing dates that are collocated with 
the 8 AERONET stations. 

 r RMSE MAE MB 
MODIS 0.85 0.12 0.09 0.03 
RAW 0.54 0.45 0.27 0.18 

RF 0.73 0.16 0.12 0.06 
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Figure 11. Time series of AOD550 in Cairo during the year 2021 from AERONET ground-based sun photometer measurements, raw 
CHIMERE simulations, ML-corrected AODs and MODIS. The gray areas represent dates used for training the models. 

4. Conclusion and perspectives 
In this work, we develop a new ML-based model for correcting a posteriori the biases 

of CHIMERE chemistry-transport model simulations of the AOD, by training it with 
MODIS satellite measurements. This approach provides full coverage daily maps of 
AODs over North Africa with a clearly better agreement with satellite and ground-based 
observations than the raw CHIMERE simulations. AODs corrected by the ML models 
show substantially higher correlations and lower errors (RMSE and MAE) than the raw 
AOD simulations, as compared to MODIS satellite measurements. The RMSE of the AODs 
is reduced from 0.65 (raw CHIMERE) to 0.19 (RF bias corrector) and the correlation coef-
ficient r increased from 0.56 to 0.71 (respectively for raw CHIMERE and the RF corrector). 
The bias corrector reduces the overestimations in the AOD maps over the Saharan desert 
and the underestimations over the Arabian Peninsula, yet a slight over correction is ob-
served in low pollution regions. 
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Out of the four ML-based bias correctors, the best results are found for the RF regres-
sor which gives a spatially smooth AOD in good agreement with MODIS AODs. The other 
bias correctors used here (MLR, XGB, and NN) also increase the accuracy of the AOD, but 
showed spatial artifacts, some of them linked to overfitting. The AOD correction was 
tested for a time of the day other that the one used for the training. The comparison of the 
CHIMERE AOD correction at 10:00 LT against that of MODIS Terra which has a close 
overpass time (10:30 LT), show that the RF correction expresses as good results as against 
MODIS Aqua (used in the training). This is a step towards validating the AOD correction 
for a usage at any day time of the CHIMERE simulation raw outputs. 

We also notice at high AOD value; the models underestimate the AOD compared to 
MODIS observation. Evaluation of the daily consistency of the corrected AOD shows that 
overestimation of peaks and underestimated background values at a given location 
(shown for Cairo) have been successfully improved. 

As the ML models are trained using analysis data, the AOD correction applied on 
forecasts will probably be less accurate. An adaptation of the ML models for handling 
forecasts is in our perspective. Furthermore, a deep understanding on the different fea-
tures contribution will help improve the temporal stability and the spatial artifacts. 

We think that the results of our method could potentially be used as a gap filling 
system for the global MODIS AOD maps. Additionally, further development will be con-
ducted for correcting the CHIMERE vertical profile of the aerosols concentration using 
state of the art retrievals of the 3D distribution of aerosols, such as AEROIASI [81] which 
uses the Infrared Atmospheric Sounding Interferometer (IASI) thermal infrared measure-
ments for coarse particles; AEROS5P [82] which uses TROPospheric Ozone Monitoring 
Instrument (TROPOMI) measurements for fine particles. 

Supplementary Materials: The following supporting information can be downloaded at: 
www.mdpi.com/xxx/s1. 

(a) 

 
(b) 

 

(c) 

 

Figure S1. (a) MODIS true color showing the mineral dust emitted 
from Bodélé depression region on 23 March 2021. (b) Average 
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MODIS AOD550 values for 2021. (c) Number of observations used in 
the computation of the average AOD550 of panel (b) 

Table 1. The network architecture search space 

Hyperparameter Minimum value Maximum value Increment 
Number of layers 10 50 10 

Number of perceptrons 10 50 10 
Batch size 5000 20000 1000 

Table 2 The best architecture for the NN regressor. 

Layer type Output shape Number of parameters 
Batch normalization 96 384 

Dense 30 2910 
Dense 20 620 
Dense 10 210 
Dense 1 11 
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