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Abstract

We propose Reduced Collatz Conjecture that is equivalent to Collatz Con-
jecture, which states that every positive integer can return to an integer less
than it, instead of 1. Reduced Collatz Conjecture should be easier because
some properties are presented in reduced dynamics, rather than in original
dynamics (e.g., ratio and period). Reduced dynamics is a computation se-
quence from starting integer to the first integer less than it, and original
dynamics is a computation sequence from starting integer to 1. Reduced
dynamics is a component of original dynamics. We denote dynamics of x as
a sequence of either computations in terms of “I” that represents (3*x+1)/2
and “O” that represents x/2. Here 3*x+1 and x/2 are combined together,
because 3*x+1 is always even and followed by x/2. We formally prove that
all positive integers are partitioned into two halves and either presents “I”
or “O” in next ongoing computation. More specifically, (1) if any positive
integer x that is i module 2t (i is an odd integer) is given, then the first t
computations (each one is either “I” or “O” corresponding to whether current
integer is odd or even) will be identical with that of i. (2) If current integer
after t computations (in terms of “I” or “O”) is less than x, then reduced dy-
namics of x is available. Otherwise, the residue class of x (namely, i module
2t) can be partitioned into two halves (namely, i module 2t+1 and i+2t mod-
ule 2t+1), and either half presents “I” or “O” in intermediately forthcoming
(t+1)-th computation.
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The Collatz conjecture can be stated simply as follows: Take any positive
integer number x. If x is even, divide it by 2 to get x/2. If x is odd, multiply
it by 3 and add 1 to get 3 ∗ x + 1. Repeat the process again and again. The
Collatz conjecture is that no matter what the number (i.e., x) is taken, the
process will always eventually reach 1.

The Collatz conjecture can be stated simply as follows: Take any positive
integer number x. If x is even, divide it by 2 to get x/2. If x is odd, multiply
it by 3 and add 1 to get 3 ∗ x + 1. Repeat the process again and again. The
Collatz conjecture is that no matter what the number (i.e., x) is taken, the
process will always eventually reach 1.

The current known integers that have been verified are about 60 bits by
T.O. Silva using normal personal computers [1, 2]. They verified all integers
that are less than 60 bits, but it is not clear whether their method is able to
check extremely large integers, e.g., integers with length more than 100000
bits.

Wei Ren et al. [3] verified 2100000 − 1 can return to 1 after 481603 times
of 3 ∗ x + 1 computation, and 863323 times of x/2 computation, which is
the largest integer being verified in the world. Wei Ren [4] also propose a
new approach on proving Collatz conjecture by exploring reduced dynamics
on Collatz conjecture. This proposed approach provides the linkage between
Collatz conjecture and reduced Collatz conjecture, and the rationale why
exploring empirical and experimental results on reduced Collatz conjecture
dynamics can facilitate the proofing of reduced Collatz conjecture. Wei Ren
[5] proposed to use a tree-based graph to reveal two key inner properties in
reduced Collatz dynamics: one is ratio of the count of x/2 over the count of
3∗x+1 (for any reduced Collatz dynamics, the count of x/2 over the count of
3*x+1 is larger than ln3/ln2), and the other is partition (all positive integers
are partitioned regularly corresponding to ongoing dynamics). Wei Ren et al.
[6] also proposed an automata method for fast computing Collatz dynamics.
All source code and output data by computer programs in those related
papers can be accessed in public repository [7].

1. Preliminaries

Notation 1.1.
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(1) N∗: positive integers;

(2) N = N∗ ∪ {0};
(3) [1]2 = {x|x ≡ 1 mod 2, x ∈ N∗}; [0]2 = {x|x ≡ 0 mod 2, x ∈ N∗}.
(4) [i]m = {x|x ≡ i mod m,x ∈ N∗,m ≥ 2,m ∈ N∗, 0 ≤ i ≤ m− 1, i ∈ N}.

3 ∗ x + 1 is always followed by x/2, we thus can represent required com-
putations as (3 ∗ x + 1)/2 and x/2, which are denoted by I(x) and O(x),
respectively.

Note that, I(x) and O(x) can be simply denoted as I(·) and O(·), or
I and O, respectively. Obviously, ∀x ∈ N∗, I(x) = (3 ∗ x + 1)/2 > x,
O(x) = x/2 < x. That is the reason we call the notations as I (to represent
“Increase”) and O (to represent “dOwn”).

Definition 1.2. Collatz transformation, denoted as f(·), where f(·) = I(·) =
(3 ∗ x + 1)/2 if x ∈ [1]2, and f(·) = O(·) = x/2 if x ∈ [0]2.

Remark 1.3.

(1) We assume f 0(x) = x.

(2) fn(fn−1(...f2(f1(x)))) can be written as f1‖f2‖...‖fn(x), where fi(·) ∈
{I(·), O(·)} (i = 1, 2, ..., n) and “‖” is the concatenation of two Collatz trans-
formations (either “I” or “O”). For simplicity, we just denote fi(·) as f ∈
{I, O}.

Example 1.4.

(1) The Collatz transformations for 1 from starting to 1 is IO, because 1 →
4 → 2 → 1.

(2) The Collatz transformations for 3 from starting to 1 is IIOOO, because
3 → 10 → 5 → 16 → 8 → 4 → 2 → 1.

Notation 1.5. | · |. “|x|” returns the length of x ∈ {I, O}≥1, in terms of the
total count of I and O. E.g., |IIOO| = 4.

Definition 1.6. IsMatched : x × c → bool. It takes as input x ∈ N∗
and c ∈ {I, O}, and outputs bool ∈ {True, False}. If x ∈ [1]2 and c = I,
or if x ∈ [0]2 and c = O, then output bool = True; Otherwise, output
bool = False.
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Remark 1.7. Simply speaking, this function checks whether the forthcoming
Collatz transformation (i.e., c ∈ {I, O}) matches with the current integer x.
That is the reason we call it “Is Matched”.

Definition 1.8. GetS : s × i × j → s′. It takes as input s, i, j, where s ∈
{I, O}|s|, 1 ≤ i ≤ |s|, 0 ≤ j ≤ |s| − (i − 1), i ∈ N∗, j ∈ N, and outputs s′

where s′ is a segment in s that starts from the location i in s and |s′| = j.
Note that, GetS(·, ·, 0)(x) = x when j = 0.

Example 1.9. GetS(IIOO, 1, 1) = I, GetS(IIOO, 1, 2) = II,
GetS(IIOO, 1, 3) = IIO, GetS(IIOO, 1, 4) = IIOO.

Remark 1.10.

(1) s′ is a selected segment in s that starts from the location i and has the
length of j. That is the reason we call this function as “Get Substring”.

(2) Simply speaking, this function outputs the Collatz transforms from i to
i + j − 1 in an inputting transformation sequence s ∈ {I, O}|s|.
(3) Especially, GetS(s, 1, |s|) = s. GetS(s, |s|, 1) returns the last transforma-
tion in s. GetS(s, 1, 1) returns the first transformation in s. GetS(s, j, 1)
returns the j-th transformation in s.

(4) Note that, GetS(·) itself is a function. In other words, it can be looked
as GetS(·)(·). For example,
GetS(IIOO, 1, 1)(3) = I(3) = (3 ∗ 3 + 1)/2 = 5,
GetS(IIOO, 1, 2)(3) = II(3) = I(I(3)) = I(5) = (3 ∗ 5 + 1)/2 = 8,
GetS(IIOO, 1, 3)(3) = IIO(3) = O(II(3)) = O(8) = 8/2 = 4,
GetS(IIOO, 1, 4)(3) = IIOO(3) = O(IIO(3)) = O(4) = 4/2 = 2 < 3.

Besides,
IsMatched(GetS(IIOO, 1, i)(x), GetS(IIOO, i+1, 1) = True (i = 0, 1, ..., 3).

Notation 1.11. Original dynamics of x. It is the sequence of occurred Col-
latz transformations from x to 1.

For example, the original dynamics of 5 is IOOO due to 5 → 16 → 8 →
4 → 2 → 1.

Notation 1.12. Reduced dynamics of x. It is the sequence of occurred Col-
latz transformations from x to the first integer that is less than x.
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For example, the reduced dynamics of 5 is IO due to 5 → 16 → 8 → 4.

Definition 1.13. Collatz Conjecture. ∀x ∈ N∗, ∃L ∈ N∗, such that
(1) s(x) = 1 where s ∈ {I, O}L;
(2) IsMatched(GetS(s, 1, i)(x), GetS(s, i+1, 1)) = True where i = 0, 1, ..., L−
1.

Obviously, Collatz conjecture is held when x = 1. In the following, we
mainly concern x ≥ 2, x ∈ N∗.

Definition 1.14. Reduced Collatz Conjecture. ∀x ∈ N∗, x ≥ 2, ∃L ∈ N∗,
such that
(1) s(x) < x where s ∈ {I, O}L;
(2) GetS(s, 1, i)(x) 6< x, i = 1, ..., L− 1;
(3) IsMatched(GetS(s, 1, j)(x), GetS(s, j+1, 1)) = True where j = 0, 1, ..., L−
1.

Obviously, L must be the minimal positive integer such that s(x) < x.

Theorem 1.15. Collatz Conjecture is equivalent to Reduced Collatz Conjec-
ture.

Straightforward. Please check our another paper[4].

Remark 1.16.

(1) Ordered sequence s = s0‖s1‖...‖sn−1, s ∈ {I, O}L in above proof is original
dynamics (referring to s(x) = 1), which consists of L = Σn−1

i=0 |si| Collatz
transformations during the computing procedure from a starting integer (i.e.,
x) to 1.

(2) In contrast, s0 in above proof is reduced dynamics (referring to s0(x) <
x), which is represented by a sequence of occurred Collatz transformations
during the computing procedure from a starting integer (i.e., x) to the first
transformed integer that is less than the starting integer.

(3) Obviously, reduced dynamics is more primitive than original dynamics,
because original dynamics consists of reduced dynamics. Simply speaking,
reduced dynamics are building blocks of original dynamics.
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(4) We thoroughly study the relation between Collatz conjecture and Reduced
Collatz conjecture [4]. Especially, we also extensively study why Reduced
Collatz conjecture will be much easier to explore, or why reduced dynamics
presents better properties than original dynamics, e.g., period [8], and ratio
[9]. Due to above theorem, we thus only need to concentrate on reduced
dynamics.

Notation 1.17. RD[x]. It denotes reduced dynamics of x that are repre-
sented by {I, O}≥1. Formally, ∀x ∈ N∗, x ≥ 2, if ∃L ∈ N∗ such that
s(x) < x, s ∈ {I, O}L, GetS(s, 1, i)(x) 6< x, i = 1, ..., L− 1, and
IsMatched(GetS(s, 1, j)(x), GetS(s, j +1, 1)) = True where j = 0, 1, ..., L−
1, then s is called reduced dynamics of x, and denoted as RD[x] = s.

Remark 1.18.

(1) Obviously, RD[x ∈ [0]2] = O.

(2) IIOO can be denoted in short as I2O2. IIIOIOO can be denoted in short
as I3OIO2. In other words, we denote I...I︸︷︷︸

n

as In, and we denote O...O︸ ︷︷ ︸
n

as

On where n ∈ N∗, n ≥ 2. We also assume I1 = I, O1 = O.

(3) For example, RD[3] = IIOO, RD[5] = IO, RD[7] = IIIOIOO, RD[9] =
IO, RD[11] = IIOIO. Indeed, we design computer programs [7] that output
all RD[x] for ∀x ∈ [1, 99999999].

(4) In fact, we proved some results on RD[x] for specific x, e.g., RD[x ∈
[1]4] = IO, RD[x ∈ [3]16] = IIOO, RD[x ∈ [11]32] = IIOIO, et al. [5].

(5) In fact, we formally proved that the ratio exists in any reduced Collatz
dynamics [9]. That is, the count of x/2 over the count of 3 ∗ x + 1 is larger
than log23. We also proved that reduced dynamics is periodical and its period
equals 2 to the power of the count of x/2 [8]. More specifically, if there exists
reduced dynamics of x, then there exists reduced dynamics of x + P , where
P = 2L and L is the total count of x/2 computations in reduced dynamics
of x (i.e., L = |RD[x]|). Moreover, the ratio and period can also be observed
and verified in our proposed tree-based graph [5].

Example 1.19. RD[5] = IO, if and only if

I(5) = (3 ∗ 5 + 1)/2 = 8 6< 5;

IO(5) = O(I(5)) = O(8) = 8/2 = 4 < 5;
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IsMatched(GetS(1, 1, i)(5), GetS(1, i + 1, 1)) = True, i = 0, 1.

Example 1.20. x ∈ N∗, x ≥ 2. If RD[x] exists, then

(1) s(x) < x, where s = RD[x];

(2) GetS(s, 1, i)(x) 6< x, where i = 1, 2, ..., |s| − 1;

(3) IsMatched(GetS(s, 1, j)(x), GetS(s, j+1, 1)) = True where j = 0, 1, ..., |s|−
1.

Proposition 1.21. ∀x ∈ N∗, x ≥ 2, if RD[x] exists, then RD[x] is unique.

Proof Straightforward. Given x, either I(x) or O(x) is deterministic and
unique. Similarly, given x, s′(x) is deterministic and unique, where s′ =
GetS(s, 1, i), s = RD[x], i = 1, 2, ..., |s|. Thus, s is unique for any given x. ¤

Remark 1.22.

(1) We assume RD[x = 1] = IO, although IO(1) = O((3∗1+1)/2) = O(2) =
2/2 = 1 6< x. In other words, we assume the reduced dynamics of x = 1 is
IO. In the following, we always concern x ≥ 2, x ∈ N∗.
(2) As Collatz conjecture is equivalent to Reduced Collatz conjecture (recall
Theorem 1.15), we thus only need to prove Reduced Collatz conjecture is true.
By using notation RD[x], we thus only need to prove ∀x ∈ N∗,∃RD[x].

Proposition 1.23. Given x ∈ N∗, if RD[x] exists, then RD[x] ends by O.

Proof Straightforward due to I(x) = (3 ∗ x + 1)/2 > x. Suppose ∃x ∈ N∗,
x ≥ 2, s(x) 6< x, RD[x] = s‖I. Then, {s‖I}(x) = I(s(x)) > s(x), thus
RD[x] = {s‖I}(x) 6< x. Contradiction occurs. ¤

Proposition 1.24. RD[x ∈ [0]2] = O, RD[x ∈ [1]4] = IO.

Proof Straightforward. ¤

Notation 1.25. SRD = {s|x ∈ N∗,∃RD[x], s = RD[x], s ∈ {I, O}≥1}.

That is, ∀x ∈ N∗, if ∃RD[x], then RD[x] = s will be included in SRD,
which is a set of existing reduced dynamics.

Proposition 1.26. O ∈ SRD, IO ∈ SRD.
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Proof Straightforward. RD[x ∈ [0]2] = O and RD[x ∈ [1]4] = IO by Propo-
sition 1.24. ¤

Theorem 1.27. (Subset Theorem.) Suppose s ∈ SRD, |s| ≥ 2, x ∈ N∗,
i = 0, 1, ..., |s| − 2. We have

(1.1) {x|GetS(s, 1, i + 1)(x) ∈ [1]2} ⊂ {x|GetS(s, 1, i)(x) ∈ [0]2};
(1.2) {x|GetS(s, 1, i + 1)(x) ∈ [0]2} ⊂ {x|GetS(s, 1, i)(x) ∈ [0]2};
(2.1) {x|GetS(s, 1, i + 1)(x) ∈ [1]2} ⊂ {x|GetS(s, 1, i)(x) ∈ [1]2};
(2.2) {x|GetS(s, 1, i + 1)(x) ∈ [0]2} ⊂ {x|GetS(s, 1, i)(x) ∈ [1]2}.

Proof When i = 0, there exists two and only two cases as follows:
(1) If GetS(s, i + 1, 1) = O, then GetS(s, 1, i)(x) ∈ [0]2. There exists two

subcases as follows:
(1.1) If GetS(s, i + 2, 1) = I, then
O(GetS(s, 1, i)(x))) ∈ [1]2

⇒ GetS(s, 1, i)(x)/2 ∈ [1]2
⇒ GetS(s, 1, i)(x) ∈ [2]4 ⊂ [0]2.

Thus, {x|GetS(s, 1, i + 1)(x) ∈ [1]2} ⊂ {x|GetS(s, 1, i)(x) ∈ [0]2}.
(1.2) If GetS(s, i + 2, 1) = O, then
O(GetS(s, 1, i)(x))) ∈ [0]2

⇒ GetS(s, 1, i)(x)/2 ∈ [0]2
⇒ GetS(s, 1, i)(x) ∈ [0]4 ⊂ [0]2.

Thus, {x|GetS(s, 1, i + 1)(x) ∈ [0]2} ⊂ {x|GetS(s, 1, i)(x) ∈ [0]2}.
(2) If GetS(s, i + 1, 1) = I then GetS(s, 1, i)(x) ∈ [1]2. There exists two

subcases as follows:
(2.1) If GetS(s, i + 2, 1) = I, then
I(GetS(s, 1, i)(x))) ∈ [1]2

⇒ (3 ∗GetS(s, 1, i)(x) + 1)/2 ∈ [1]2
⇒ 3 ∗GetS(s, 1, i)(x) + 1 ∈ [2]4
⇒ 3 ∗GetS(s, 1, i)(x) ∈ [1]4
⇒ GetS(s, 1, i)(x) ∈ [3]4 ⊂ [1]2.

Thus, {x|GetS(s, 1, i + 1)(x) ∈ [1]2} ⊂ {x|GetS(s, 1, i)(x) ∈ [1]2}.
(2.2) If GetS(s, i + 2, 1) = O, then
I(GetS(s, 1, i)(x))) ∈ [0]2

⇒ (3 ∗GetS(s, 1, i)(x) + 1)/2 ∈ [0]2
⇒ 3 ∗GetS(s, 1, i)(x) + 1 ∈ [0]4
⇒ 3 ∗GetS(s, 1, i)(x) ∈ [3]4
⇒ GetS(s, 1, i)(x) ∈ [1]4 ⊂ [1]2.
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Thus, {x|GetS(s, 1, i + 1)(x) ∈ [0]2} ⊂ {x|GetS(s, 1, i)(x) ∈ [1]2}.
We can prove similarly for i = 1, 2, ..., |s| − 2. ¤

Corollary 1.28. Suppose s ∈ SRD, |s| ≥ 2, i = 0, 1, ..., |s| − 2, x ∈ N∗. We
have

(1.1) {x|GetS(s, 1, i + 1)(x) ∈ [1]2} = {x|GetS(s, 1, i)(x) ∈ [2]4};
(1.2) {x|GetS(s, 1, i + 1)(x) ∈ [0]2} = {x|GetS(s, 1, i)(x) ∈ [0]4};
(2.1) {x|GetS(s, 1, i + 1)(x) ∈ [1]2} = {x|GetS(s, 1, i)(x) ∈ [3]4};
(2.2) {x|GetS(s, 1, i + 1)(x) ∈ [0]2} = {x|GetS(s, 1, i)(x) ∈ [1]4}.

Proof Straightforward by Theorem 1.27. ¤

Remark 1.29.

(1) Corollary 1.28 states that residue classes are partitioned regularly into
halves and either half will present either I or O in next intermediate trans-
formation.

(2) Note that, Theorem 1.27 is not only guaranteed for reduced dynamics,
but also for original dynamics.

A new notation I ′(·) is introduced hereby to reveal the relations among
I(x + P ), I(x) and I ′(P ).

Notation 1.30. I ′(x) = (3 ∗ x)/2.

Example 1.31.

(1) I(3 + 16) = (3(3 + 16) + 1)/2 = (3 ∗ 3 + 1)/2 + 3 ∗ 16/2 = I(3) + I ′(16),
I(3) = (3∗3+1)/2 = 5, I ′(16) = 3∗16/2 = 24 ∈ [0]2, 5 > 3, 5+24 > 3+16.
Thus, either next transformation for 3+16 and 3 is I.

(2) II(3 + 16) = I(I(3) + I ′(16)) = (3 ∗ (I(3) + I ′(16)) + 1)/2 = (3I(3) +
1)/2 + 3I ′(16)/2 = II(3) + I ′I ′(16),

II(3) = I(5) = (3 ∗ 5 + 1)/2 = 8, I ′I ′(16) = I ′(24) = 3 ∗ 24/2 = 36 ∈ [0]2,
8 > 3, 8 + 36 > (3 + 16). Thus, either next transformation is O.

(3) IIO(3 + 16) = O(II(3) + I ′I ′(16)) = IIO(3) + I ′I ′O(16),
IIO(3) = 8/2 = 4, I ′I ′O(16) = 36/2 = 18 ∈ [0]2, 4 > 3, 4 + 18 = 22 >

(3 + 16). Thus, either next transformation is O.

(4) IIOO(3 + 16) = O(IIO(3) + I ′I ′O(16)) = IIOO(3) + I ′I ′OO(16)
IIOO(3) = 4/2 = 2, I ′I ′OO(16) = 18/2 = 9, 2 < 3, 2+9 = 11 < (3+16).

Thus, either reduced dynamics ends.
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For better presentation, we thus introduce two functions as follows:

Definition 1.32. IsEven : x → bool. It takes as input x ∈ N∗, and outputs
bool ∈ {True, False}, where bool = True if x ∈ [0]2 and bool = False if
x ∈ [1]2.

Definition 1.33. Replace : s → s′. It takes as input s ∈ {I, O}≥1, and
outputs s′ ∈ {I ′, O}≥1, where GetS(s′, i, 1) = I ′ if GetS(s, i, 1) = I, and
GetS(s′, i, 1) = O if GetS(s, i, 1) = O, for i = 1, 2, ..., |s|.

Remark 1.34.

(1) Simply speaking, replacing all “I” in “s” respectively by “I ′” will result in
“s′”.

(2) Obviously, ∀s ∈ {I, O}≥1, |s′| = |s| where s′ = Replace(s).

Lemma 1.35. (1) If P ∈ [0]2, x ∈ N∗, then IsEven(x + P ) = IsEven(x).
(2) If P ∈ [0]2, x− P > 0, x ∈ N∗, then IsEven(x− P ) = IsEven(x).

Proof Straightforward. Due to P ∈ [0]2, if x ∈ [1]2, then x+P, x−P ∈ [1]2;
If x ∈ [0]2, then x + P, x − P ∈ [0]2. Thus, IsEven(x + P ) = IsEven(x) =
IsEven(x− P ). ¤

Remark 1.36. Above lemma states that if P ∈ [0]2, the first Collatz trans-
formation of x + P (or x− P > 0) is identical with that of x.

Lemma 1.37. s(x + P ) = s(x) + s′(P ), where s ∈ {I, O}, s′ = Replace(s),
x ∈ N∗, P ∈ [0]2.

Proof IsEven(x + P ) = IsEven(x) because P ∈ [0]2, due to Lemma 1.35.
Thus, the first Collatz transformation of x + P and that of x are identical.

(1) Suppose x ∈ [1]2, so s = I. Thus, s′ = Replace(s) = I ′.
s(x + P ) = I(x + P ) = 3((x + P ) + 1)/2 = (3x + 1)/2 + 3 ∗ P/2 =

I(x) + I ′(P ) = s(x) + s′(P ).
(2) Suppose x ∈ [0]2, so s = O. Thus, s′ = Replace(s) = O.
s(x + P ) = O(x + P ) = (x + P )/2 = x/2 + P/2 = O(x) + O(P ) =

s(x) + s′(P ).
Summarizing (1) and (2), s(x + P ) = s(x) + s′(P ). ¤
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Remark 1.38. Similarly, we can prove that s(x−P ) = s(x)− s′(P ), where
s ∈ {I, O}, s′ = Replace(s), x ∈ N∗, P ∈ [0]2.

Lemma 1.39. (Separation Lemma.) Suppose x ∈ N∗, s ∈ {I, O}≥2, s′ =
Replace(s). If GetS(s′, 1, j)(P ) ∈ [0]2, j = 0, 1, 2, ..., |s| − 1, then

(1) IsEven(GetS(s, 1, j)(x + P )) = IsEven(GetS(s, 1, j)(x));
(2) GetS(s, 1, j +1)(x+P ) = GetS(s, 1, j +1)(x)+GetS(s′, 1, j +1)(P ).

Proof (1) j = 0.
(1.1) GetS(s′, 1, j)(P ) ∈ [0]2. That is, GetS(s′, 1, 0)(P ) = P ∈ [0]2. Thus,

IsEven(x + P ) = IsEven(x) due to Lemma 1.35. Thus, the intermediate
next Collatz transformation of x + P and x are identical.

(1.2) GetS(s, 1, j + 1)(x + P )
= GetS(s, 1, 1)(x + P ) ∵ j = 0
= GetS(s, 1, 1)(x) + GetS(s′, 1, 1)(P ) ∵ Lemma 1.37
= GetS(s, 1, j + 1)(x) + GetS(s′, 1, j + 1)(P ).

(2) j = 1.
(2.1) Due to (1), GetS(s, 1, 1)(x+P ) = GetS(s, 1, 1)(x)+GetS(s′, 1, 1)(P ).
Besides, GetS(s′, 1, 1)(P ) ∈ [0]2. Thus,
IsEven(GetS(s, 1, 1)(x + P )) = IsEven(GetS(s, 1, 1)(x)). Thus, the in-

termediate next Collatz transformation of x + P and x are identical.
(2.2) There exists two cases as follows:
(2.2.1) If GetS(s, 1, j + 1) = GetS(s, 1, j)‖I, then
GetS(s, 1, j + 1)(x + P )

= (GetS(s, 1, j)‖I)(x + P )
= I(GetS(s, 1, j)(x + P ))
= I(GetS(s, 1, j)(x) + GetS(s′, 1, j)(P )) ∵ (1.2)
= (3(GetS(s, 1, j)(x) + GetS(s′, 1, j)(P )) + 1)/2
= (3 ∗GetS(s, 1, j)(x) + 1)/2 + 3 ∗GetS(s′, 1, j)(P )/2
= I(GetS(s, 1, j)(x)) + I ′(GetS(s′, 1, j)(P ))
= (GetS(s, 1, j)‖I)(x) + (GetS(s′, 1, j)‖I ′)(P )
= GetS(s, 1, j + 1)(x) + GetS(s′, 1, j + 1)(P ).

(2.2.2) If GetS(s, 1, j + 1) = GetS(s, 1, j)‖O, then
GetS(s, 1, j + 1)(x + P )

= GetS(s, 1, j)‖O)(x + P )
= O(GetS(s, 1, j)(x + P ))
= O(GetS(s, 1, j)(x) + GetS(s′, 1, j)(P )), ∵ (1.2)
= (GetS(s, 1, j)(x) + GetS(s′, 1, j)(P ))/2
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= O(GetS(s, 1, j)(x)) + O(GetS(s′, 1, j)(P ))
= O(GetS(s, 1, j)(x)) + O(GetS(s′, 1, j)(P ))
= (GetS(s, 1, j)‖O)(x) + (GetS(s′, 1, j)‖O)(P )
= GetS(s, 1, j + 1)(x) + GetS(s′, 1, j + 1)(P ).

(Note that, here j + 1 = 2. Recall that “‖” is concatenation.)
(3) Similarly, j = 2.
Due to (2), GetS(s, 1, 2)(x + P ) = GetS(s, 1, 2)(x) + GetS(s′, 1, 2)(P ).
Besides, GetS(s′, 1, 2)(P ) ∈ [0]2. Thus,
IsEven(GetS(s, 1, j)(x + P )) = IsEven(GetS(s, 1, j)(x)). Thus, the in-

termediate next Collatz transformation of x + P and x are identical.
(Note that, here j = 2).
Again, we can prove the following similar to (2.2).
GetS(s, 1, j + 1)(x + P ) = GetS(s, 1, j + 1)(x) + GetS(s′, 1, j + 1)(P ).
(Note that, here j + 1 = 3.)
(4) Similarly, we can prove j = 3, ..., |s′| − 1, respectively and especially

in an order. ¤

Remark 1.40.

(1) Obviously, above conclusion can be extended to include |s| = 1 by Lemma
1.35 and Lemma 1.37.

(2) Separation Lemma states the sufficient condition for guaranteeing that
all intermediate parities of transformed integers x + P are exactly identical
with those of x.

(3) Separation Lemma is general, as s could be either original dynamics or
reduced dynamics. Besides, the length of s can be omitted by using condition
“j = 0, 1, 2, ...” instead of “j = 0, 1, 2, ..., |s| − 1”.

We next explore how to compute GetS(s′, 1, j)(x).

Definition 1.41. Function CntI(·). CntI : s → n. It takes as input s ∈
{I, O}≥1, and outputs n ∈ N that is the count of I in s.

Example 1.42. CntI(IIOO) = 2, CntI(III) = 3. Obviously, the function
name stems from “Count the number of I”.

Lemma 1.43. Suppose s ∈ {I, O}≥1, s′ = Replace(s), x ∈ N∗, we have

GetS(s′, 1, j)(x) =
3CntI(GetS(s,1,j))

2j
∗ x, j = 1, 2, ..., |s|.
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Proof (1) |s| = 1. Thus, j = 1.
(1.1) If s = I, then s′ = Replace(s) = I ′.
GetS(s′, 1, j)(x) = GetS(I ′, 1, 1)(x) = I ′(x) = 3 ∗ x/2 = 31 ∗ x/21

= 3CntI(I) ∗ x/2|I| = 3CntI(GetS(s,1,j))/2j ∗ x.
(1.2) If s = O, then s′ = Replace(s) = O.
GetS(s′, 1, j)(x) = O(x) = x/2 = 30 ∗ x/21 = 3CntI(O) ∗ x/2|O|

= 3CntI(GetS(s,1,j))/2j ∗ x.
(2) |s| ≥ 2.
(2.1) j = 1.
(2.1.1) If GetS(s, 1, 1) = I, then
GetS(s′, 1, j)(x) = I ′(x) = 3 ∗ x/2 = 31 ∗ x/21 = 3CntI(I) ∗ x/2|I| =

3CntI(GetS(s,1,j))/2j ∗ x.
(2.1.2) If GetS(s, 1, 1) = O, then
GetS(s′, 1, j)(x) = O(x) = x/2 = 30 ∗ x/21 = 3CntI(O) ∗ x/2|O|

= 3CntI(GetS(s,1,j))/2j ∗ x.
(2.2) Iteratively, for j = 1, 2, ..., |s′| − 1 in an order (recall that |s′| = |s|).
(2.2.1) If GetS(s, 2, 1) = I, then
GetS(s′, 1, j + 1)(x) = (GetS(s′, 1, j)‖I ′)(x)

= I ′(GetS(s′, 1, j)(x)) = I ′(GetS(s′, 1, j)(x))
= 3 ∗GetS(s′, 1, j)(x)/2

= 3 ∗ 3CntI(GetS(s,1,j))

2j ∗ x/2 ∵ (2.1)for j = 1, (2.2)for j = 2, ..., |s′| − 1

= 3CntI(GetS(s,1,j))+1

2j+1 ∗ x

= 3CntI(GetS(s,1,j+1))

2j+1 ∗ x. ∵ GetS(s, 1, j + 1) = GetS(s, 1, j)‖I
(2.2.2) If GetS(s, 2, 1) = O, then
GetS(s′, 1, j + 1)(x) = (GetS(s′, 1, j)‖O)(x)

= O(GetS(s′, 1, j)(x)) = GetS(s′, 1, j)(x)/2

= 3CntI(GetS(s,1,j))

2j ∗ x/2 = 3CntI(GetS(s,1,j))

2j+1 ∗ x

= 3CntI(GetS(s,1,j+1))

2j+1 ∗ x. ∵ GetS(s, 1, j + 1) = GetS(s, 1, j)‖O ¤

Remark 1.44. Recall that s′ = GetS(s′, 1, |s|) and s = GetS(s, 1, |s|). Thus,
when j = |s|, then s′(x) = GetS(s′, 1, |s|)(x) = 3CntI(GetS(s,1,|s|))

2|s| ∗x = 3CntI(s)

2|s| ∗x.

Similar to Lemma 1.39 (Separation Lemma), a variant of Separation
Lemma can be given as follows:

Lemma 1.45. Suppose x ∈ N∗, s ∈ {I, O}≥2, s′ = Replace(s). If GetS(s′, 1, j)(P ) ∈
[0]2, j = 0, 1, 2, ..., |s| − 1, then
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(1) IsEven(GetS(s, 1, j)(x− P )) = IsEven(GetS(s, 1, j)(x));
(2) GetS(s, 1, j +1)(x−P ) = GetS(s, 1, j +1)(x)−GetS(s′, 1, j +1)(P ).

Proof The proof is similar to Lemma 1.39. ¤

2. Partition Theorem

Notation 2.1. DYNM(x, n) ∈ {I, O}n. It denotes the first n ∈ N∗ transfor-
mations (in terms of I or O) of x ∈ N∗ no matter whether RD[x] exists or
not.

For example, DYNM(19, 2) = II, DYNM(19, 3) = IIO, and DYNM(19, 4) =
IIOO.

Interestingly, we observe facts as follows:
DYNM(x ∈ [3]8, 3) = IIO. Let s = IIO.
∀x ∈ [3]8, if s(x) ∈ [0]2, then s(x+8) ∈ [1]2; If s(x) ∈ [1]2, then s(x+8) ∈

[0]2.
For example, x = 3 ∈ [3]8, s(3) = IIO(3) = IO(5) = O(8) = 4 ∈ [0]2,

s(3+8 = 11) = IIO(11) = IO(17) = O(26) = 13 ∈ [1]2. Moreover, s(11+8 =
19) = IIO(19) = IO(29) = O(44) = 22 ∈ [0]2.

Remark 2.2. For better understanding our further proofs, a graph called
reduced dynamics graph is proposed and explained in Appendix, which can
visualize the following conclusions, but not mandatory for the proof. The
details on tree-based dynamics graph is presented in another paper [5].

Next, we will prove above key observations.
Recall that by Subset Theorem (Theorem 1.27), if DYNM(x ∈ r1, n) = s,

DYNM(x ∈ r2, n + 1) = s‖I or s‖O, then r2 ⊂ r1.
Indeed, in this section we will prove that not only r2 ⊂ r1, but also r2

is either half partition of r1. More specifically, the first distinction between
transformations of x and transformations of x + 2t occurs at the (t + 1)-
th transformation (if |RD[x]| > t + 1). That is, x ≡ x + 2t ≡ i mod 2t.
[i]2t+1 ∪ [i + 2t]2t+1 = [i]2t , [i]2t+1 ∩ [i + 2t]2t+1 = ∅. If x ∈ [i]2t+1 , then x + 2t ∈
[i + 2t]2t+1 . If x ∈ [i + 2t]2t+1 , then x + 2t ∈ [i]2t+1 .

Lemma 2.3. If DYNM(x, t) = s ∈ {I, O}t, x, t ∈ N∗, j = 1, 2, ..., t− 1, then
(1) t = 1. IsEven(s(x)) 6= IsEven(s(x + 2t)); Or,
(2) t ≥ 2. IsEven(GetS(s, 1, j)(x)) = IsEven(GetS(s, 1, j)(x + 2t)), and
IsEven(s(x)) 6= IsEven(s(x + 2t)).
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Proof (1) t = 1. 2t = 2 ∈ [0]2. s = I or O.
I(x + 2) = (3(x + 2) + 1)/2 = (3x + 1)/2 + 3 = I(x) + 3.
Thus, IsEven(I(x + 2)) 6= IsEven(I(x)).
O(x+2) = (x+2)/2 = O(x)+1. Thus, IsEven(O(x+2)) 6= IsEven(O(x)).
Hence, IsEven(s(x)) 6= IsEven(s(x + 2t)).

(2) t ≥ 2. Let s′ = Replace(s).
By Lemma 1.43, GetS(s′, 1, j)(x) = 3CntI(GetS(s,1,j))

2j ∗ x, j = 1, 2, ..., |s|.
GetS(s′, 1, j)(2t) = 3CntI(GetS(s,1,j))

2j ∗ 2t = 3CntI(GetS(s,1,j)) ∗ 2t−j ∈ [0]2, due
to j ≤ t− 1 (t− j ≥ 1).

Due to Separation Lemma (i.e., Lemma 1.39), we have
(1) GetS(s′, 1, j)(x + 2t) = GetS(s, 1, j)(x) + GetS(s′, 1, j)(2t), and
(2) IsEven(GetS(s, 1, j)(x + 2t)) = IsEven(GetS(s, 1, j)(x)), and
(3) s(x + 2t) = s(x) + s′(2t).

Due to Remark 1.44, s′(2t) = 3CntI(s)

2|s| ∗ 2t = 3CntI(s)

2t ∗ 2t = 3CntI(s′) ∈ [1]2.
Thus, IsEven(s(x + 2t)) 6= IsEven(s(x)). ¤

Remark 2.4. By assuming GetS(·, ·, 0)(x) = x, above lemma can be restated
as IsEven(GetS(s, 1, j)(x)) = IsEven(GetS(s, 1, j)(x + 2t)) and
IsEven(s(x)) 6= IsEven(s(x + 2t)) where j = 0, 1, ..., t− 1, t ≥ 1.

Above lemma states that the first t transformations of x and x + 2t are
identical. It can be extended to include x − 2t upon x − 2t > 0. In other
words, the first t transformations of x and x± 2t (i.e., x ∈ [x mod 2t]2t) are
identical. Or, the first t transformations of x is determined by x mod 2t.
Or, all x ∈ [i]2t (i = x mod 2t) have the same first t transformations.

Lemma 2.5. If DYNM(x, t) = s ∈ {I, O}t, x, t ∈ N∗, then
DYNM(x ∈ [i]2t , t) = s, where i = x mod 2t.

Proof Let j = 0, 1, 2, ..., t− 1.
(1) By Lemma 2.3 and Remark 2.4,
IsEven(GetS(s, 1, j)(x)) = IsEven(GetS(s, 1, j)(x + 2t)).
Thus, DYNM(x + 2t, t) = DYNM(x, t) = s.
Similarly,
IsEven(GetS(s, 1, j)(x+2t)) = IsEven(GetS(s, 1, j)(x+2t +2t)). Thus,
DYNM(x + 2t + 2t, t) = DYNM(x + 2t, t) = s.
Iteratively and hence,
DYNM(x + m ∗ 2t, t) = DYNM(x, t) = s, m ∈ N∗.
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(2) Due to the variant of Separation Lemma (i.e., Lemma 1.45),
IsEven(GetS(s, 1, j)(x)) = IsEven(GetS(s, 1, j)(x− 2t)).
When x− 2t > 0, we have
DYNM(x− 2t, t) = DYNM(x, t) = s.
Iteratively, when x−m ∗ 2t > 0,m ∈ N∗, we have
DYNM(x−m ∗ 2t, t) = DYNM(x, t) = s.
Therefore, due to (1) and (2),
DYNM(x ∈ [i]2t , t) = s, where i = x mod 2t. ¤

Remark 2.6.

(1) Above lemma includes the special case i = 0 or x ∈ [0]2. However,
DYNM(x ∈ [0]2, 1) = RD[x ∈ [0]2] = O is trivial, DYNM(x ∈ [1]2, n ∈ N∗) is
thus of more interest. That is, we mainly concentrate on
DYNM(x ∈ [i]2t , n ∈ N∗), i, t ∈ N∗, 1 ≤ i ≤ 2t − 1, i ∈ [1]2.

(2) In above lemmas (Lemma 2.3 and Lemma 2.5), s is general. That is,
both reduced dynamics and original dynamics satisfy above lemmas.

(3) Recall that, Lemma 2.5 states that the first t transformations for x ∈ [x
mod 2t]2t are identical. Lemma 2.3 states that the (t + 1)-th transformation
for x and x + 2t is distinct (so-called “forking”). Note that, it can be ob-
served that either x or x+2t falls in either partition of [x mod 2t]2t (i.e., [x
mod 2t]2t+1 , [(x mod 2t) + 2t]2t+1), respectively. Moreover, all natural num-
bers in x ∈ [x mod 2t]2t are further partitioned into two halves, and either
partition results in either transformation (i.e., “I” or “O”) due to “forking”,
iteratively.

Similar to Lemma 2.3 and Lemma 2.5 but more specifically for whether
“forking” transformation is “I” or “O” and why, we have following theorem.
Roughly speaking, partition residue class [i]2t determines the first t trans-
formations. If current integer is less than the starting integer, then reduced
dynamics is obtained. Otherwise, further transformation occurs, and whether
it is “I” or “O” is determined by and only by either further half partition of
the current residue class of x.

Theorem 2.7. (Partition Theorem.)
(1) DYNM(x ∈ [0]2, 1) = RD[x ∈ [0]2] = O.
(2) Suppose DYNM(i, t) = s ∈ {I, O}t, t, i ∈ N∗, 1 ≤ i ≤ 2t − 1. We have
(2.1) DYNM(x ∈ [i]2t , t) = s.
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(2.2) If s(x) < x, then RD[x ∈ [i]2t ] = s.
(2.3) If s(x) 6< x and s(i) ∈ [0]2, then
DYNM(x ∈ [i]2t+1 , t + 1) = s‖O and DYNM(x ∈ [i + 2t]2t+1 , t + 1) = s‖I;
If s(x) 6< x and s(i) ∈ [1]2, then
DYNM(x ∈ [i]2t+1 , t + 1) = s‖I and DYNM(x ∈ [i + 2t]2t+1 , t + 1) = s‖O.

Proof (1) Straightforward.
(2.1) The proof is similar to Lemma 2.3 (2) (except that here t = 1 is

possible), or by Lemma 2.5 (1).
(2.2) If s(x) < x, then reduced dynamics ends and RD[x ∈ [i]2t ] =

DYNM(x ∈ [i]2t , t) = s.
(2.3) We inspect the value of IsEven(s′(m ∗ 2t)) where s′ = Replace(s)

to decide whether IsEven(s(i + m ∗ 2t)) = IsEven(s(i)) or not,
since s(i + m ∗ 2t) = s(i) + s′(m ∗ 2t), by Separation Lemma (i.e., Lemma
1.39).

By Remark 1.44 (recall that t ∈ N∗),
s′(m ∗ 2t) = 3CntI(s)

2|s| ∗m ∗ 2t = 3CntI(s)

2t ∗m ∗ 2t = 3CntI(s) ∗m.

m ∈ [1]2 ⇒ 3CntI(s) ∗m ∈ [1]2 ⇒ IsEven(s(i + m ∗ 2t)) 6= IsEven(s(i)).
Otherwise, m ∈ [0]2 ⇒ IsEven(s(i + m ∗ 2t)) = IsEven(s(i)).
(1) m ∈ [1]2 ⇔ x = i+(m− 1) ∗ 2t +2t = i+ m−1

2
∗ 2t+1 +2t ∈ [i+2t]2t+1 .

Thus, x ∈ [i + 2t]2t+1 ⇒ IsEven(s(x)) 6= IsEven(s(i)).
(2) m ∈ [0]2 ⇔ x = i + m ∗ 2t = i + m

2
∗ 2t+1 ∈ [i]2t+1 \ {i}.

(Recall that [0]2 = {a|a ∈ N∗, a ≡ 0 mod 2}, thus m ≥ 2.)
Thus, x ∈ [i]2t+1 \ {i} ⇒ IsEven(s(x)) = IsEven(s(i)).
Obviously, x = i can be included too, because

x = i ⇒ IsEven(s(x)) = IsEven(s(i)). Therefore,
x ∈ [i]2t+1 ⇒ IsEven(s(x)) = IsEven(s(i)).

(3) Finally, if s(i) ∈ [0]2, then DYNM(x ∈ [i]2t+1 , t + 1) = s‖O due to (2),
and DYNM(x ∈ [i + 2t]2t+1 , t + 1) = s‖I due to (1);

If s(i) ∈ [1]2, then DYNM(x ∈ [i]2t+1 , t + 1) = s‖I due to (2), and
DYNM(x ∈ [i + 2t]2t+1 , t + 1) = s‖O due to (1).

Note that, [i + 2t]2t+1 ∩ [i]2t+1 = ∅, and [i + 2t]2t+1 ∪ [i]2t+1 = [i]2t . ¤

Remark 2.8.

(1) We call the theorem as “Partition Theorem” because [i]2t is partitioned
into two halves for deciding the (t+1)-th transformation. Recall that, [i]2t =
[i]2t+1 ∪ [i + 2t]2t+1 , [i]2t+1 ∩ [i + 2t]2t+1 = ∅.
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(2) The level of partitions (in terms of residue modules) is the power of 2.
In other words, the partitions always have the form like x ∈ [0]2 ∪ [i]2t , t ∈
N∗, 1 ≤ i ≤ 2t − 1, i ∈ [1]2, i = x mod 2t.
For x ∈ [0]2, the further partition is not of interest because RD[x ∈ [0]2] = O
is obtained.
For x ∈ [i]2t , the further partitions are x ∈ [i]2t+1 and x ∈ [i + 2t]2t+1, as
either partition results in either transformation in the next (recall Lemma
2.3). More specifically, to determine whether s(x) ∈ [1]2 or not, x ∈ [i]2t is
partitioned into two halves - x ∈ [i]2t+1 and x ∈ [i+2t]2t+1. [i]2t+1∩[i+2t]2t+1 =
∅, [i]2t+1 ∪ [i + 2t]2t+1 = [i]2t. Therefore, they always have the form like [i]2t ,
t ∈ N∗, 1 ≤ i ≤ 2t − 1, and especially, i ∈ [1]2.

(3) This theorem also reveals the link between RD[x] and DYNM(x, t) as fol-
lows: Suppose DYNM(x, t) = s ∈ {I, O}t. Once s(x) < x, then DYNM(x, t) =
RD[x] = s (which means current transformed number has already been less
than starting number for the first time); Otherwise, DYNM(x, t + 1) = s‖I
or DYNM(x, t + 1) = s‖O.

Next corollary states that i ∈ [0, 2t−1] determines the first t transforma-
tions of all x ∈ [i]2t .

Corollary 2.9. Suppose t, i1, i2 ∈ N∗, 0 ≤ i1, i2 ≤ 2t − 1.
i1 = i2, if and only if DYNM(x ∈ [i1]2t , t) = DYNM(x ∈ [i2]2t , t).

Proof (1) Necessity.
(1.1) t ≥ 2, thus 1 ≤ i1, i2 ≤ 2t − 1 due to Theorem 2.7 (2) and Remark

2.8 (2).
i1 = i2 ⇒ DYNM(i1, t) = DYNM(i2, t)

⇒ DYNM(x ∈ [i1]2t , t) = DYNM(x ∈ [i2]2t , t)
∵ DYNM(i1, t) = DYNM(x ∈ [i1]2t , t), DYNM(i2, t) = DYNM(x ∈ [i1]2t , t)

(1.2) t = 1, thus 0 ≤ i1, i2 ≤ 2t − 1 = 1.
i1 = i2 = (0 ∨ 1)

⇒ DYNM(x ∈ [i1]2t , t) = DYNM(x ∈ [i1]2, 1)
= DYNM(x ∈ [i2]2, 1) = DYNM(x ∈ [i2]2t , t).

(2) Sufficiency. It is proved by proving converse negative proposition.
(2.1) t ≥ 2. Thus 1 ≤ i1, i2 ≤ 2t − 1.
i1 6= i2, 1 ≤ i1, i2 ≤ 2t − 1 ⇒ DYNM(i1, t) 6= DYNM(i2, t)

⇒ DYNM(x ∈ [i1]2t , t) 6= DYNM(x ∈ [i2]2t , t).
∵ DYNM(x ∈ [i1]2t , t) = DYNM(i1, t), DYNM(x ∈ [i2]2t , t) = DYNM(i2, t).
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(2.2) t = 1.
i1 6= i2 ⇒ (i1 = 0, i2 = 1) ∨ (i1 = 1, i2 = 0)

⇒ DYNM(x ∈ [i1]2t , t) = DYNM(x ∈ [i1]2, 1)
6= DYNM(x ∈ [i2]2, 1) = DYNM(x ∈ [i2]2t , t). ¤

In above corollary, t is categorized for tackling the case i = 0 to avoid
DYNM(i = 0, t).

Corollary 2.10. Suppose x1, x2, t ∈ N∗, x1 6= x2.
DYNM(x1, t) = DYNM(x2, t), if and only if x1 ≡ x2 mod 2t.

Proof Straightforward due to Corollary 2.9. ¤

Next corollary states that if the first different transformation of x1, x2

occurs at the (t + 1)-th transformation, t ∈ N∗, then x1 ≡ x2 mod 2t and
x1 ≡ x2 + 2t mod 2t+1. As DYNM(x ∈ [0]2, 1) = RD[x ∈ [0]2] = O, only
x ∈ [1]2 is of interests.

Corollary 2.11. (Forking Corollary.) Suppose x1, x2 ∈ [1]2, x1 6= x2, t ∈
N∗.
DYNM(x1, t) = DYNM(x2, t) and DYNM(x1, t+1) 6= DYNM(x2, t+1), if and
only if x1 ≡ x2 mod 2t and x1 ≡ x2 + 2t mod 2t+1.

Proof It is straightforward due to Corollary 2.10. ¤

Corollary 2.12. (Extended Forking Corollary.) Suppose
DYNM(x ∈ [ip]2t , t) = sp ∈ {I, O}t, p = 1, ..., m.
DYNM(x ∈ [jq]2t+1 , t + 1) = sq ∈ {I, O}t+1, q = 1, 2, ..., n.
t ≥ 3, t ∈ N∗. ∀p ∈ [1,m], ∃q ∈ [1, n] such that
(sq = sp‖I, sq+1 = sp‖O) ∨ (sq = sp‖O, sq+1 = sp‖I).
We have following conclusions:

(1)
⋃n

q=1[jq]2t+1 =
⋃m

p=1[ip]2t . ip ∈ [1]2. jq ∈ [1]2. n = 2 ∗m.
sp = GetS(sq, 1, t) = GetS(sq+1, 1, t), where q = 2 ∗ p− 1.
(2) j2∗p−1 = ip, j2∗p = ip + 2t.
(3) IsEven(sp(x ∈ [ip]2t+1)) 6= IsEven(sp(x ∈ [ip + 2t]2t+1)).
(4) DYNM(x ∈ [ip]2t+1 , t+1) = sp‖I ⇔ DYNM(x ∈ [ip+2t]2t+1 , t+1) = sp‖O.
(5) DYNM(x ∈ [ip]2t+1 , t+1) = sp‖O ⇔ DYNM(x ∈ [ip+2t]2t+1 , t+1) = sp‖I.
(6) sp(x ∈ [ip]2t) ∈ [1]2 ⇔ DYNM(x ∈ [ip]2t+1 , t + 1) = sp‖I.
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sp(x ∈ [ip]2t) ∈ [0]2 ⇔ DYNM(x ∈ [ip]2t+1 , t + 1) = sp‖O.
(7) ‖{q|GetS(sq, 1, t)(x ∈ [jq]2t+1) ∈ [1]2}‖ = n/2 = m;
‖{q|GetS(sq, 1, t)(x ∈ [jq]2t+1) ∈ [0]2}‖ = n/2 = m.
GetS(sq, 1, t)(x ∈ [jq]2t+1) ∈ [1]2 ⇔ GetS(sq, 1, t)(x ∈ [jq+1]2t+1) ∈ [0]2.
GetS(sq, 1, t)(x ∈ [jq]2t+1) ∈ [0]2 ⇔ GetS(sq, 1, t)(x ∈ [jq+1]2t+1) ∈ [1]2.

Proof By Theorem 2.7 (Partition Theorem),
if sp(x ∈ [ip]2t) ∈ [1]2, p ∈ [1,m], then ∃q = 2 ∗ p − 1 ∈ [1, n], such

that DYNM(x ∈ [jq]2t+1 , t + 1) = sp‖I = sq. Besides, jq = ip due to
IsMatched(GetS(sq, 1, t)(ip) ∈ [1]2, GetS(sq, t + 1, 1) = I) = True.

If sp(x ∈ [ip]2t) ∈ [0]2, p ∈ [1,m], then ∃q = 2 ∗ p − 1 ∈ [1, n], such
that DYNM(x ∈ [jq]2t+1 , t + 1) = sp‖O = sq. Besides, jq = ip due to
IsMatched(GetS(sq, 1, t)(ip) ∈ [0]2, GetS(sq, t + 1, 1) = O) = True.

If sp(x ∈ [ip]2t) ∈ [0]2, p ∈ [1,m], then ∃q = 2 ∗ p ∈ [1, n], such
that DYNM(x ∈ [jq]2t+1 , t + 1) = sp‖I = sq. Besides, jq = ip + 2t due to
IsMatched(GetS(sq, 1, t)(jq = ip + 2t) ∈ [1]2, GetS(sq, t + 1, 1) = I) = True.

If sp(x ∈ [ip]2t) ∈ [1]2, p ∈ [1,m], then ∃q = 2 ∗ p ∈ [1, n], such that
DYNM(x ∈ [jq]2t+1 , t + 1) = sp‖O = sq. Besides, jq = ip + 2t due to
IsMatched(GetS(sq, 1, t)(jq = ip +2t) ∈ [0]2, GetS(sq, t+1, 1) = O) = True.

Obviously, sp = GetS(sq, 1, t), as sp‖{I, O} = sq where q = 2 ∗ p − 1 or
2 ∗ p for p = 1, 2, ..., m.

t ≥ 3, thus ip ∈ [1]2, p = 1, 2, ..., m. jq = ip ∈ [1]2 where q = 2 ∗ p− 1, and
jq = ip + 2t ∈ [1]2 where q = 2 ∗ p.

p = 1, 2, ..., m, thus q = 1, 2, ..., n and n = 2 ∗m.
Besides, ∀p ∈ [1,m], [ip]2t = [ip]2t+1 ∪ [ip + 2t]2t+1 , [ip]2t+1 = [jq]2t+1 where

q = 2 ∗ p− 1, [ip + 2t]2t+1 = [jq]2t+1 where q = 2 ∗ p. Therefore,
⋃n

q=1[jq]2t+1 =⋃m
p=1[ip]2t .
In summary, (1) is proved.
Besides, j2∗p−1 = ip, j2∗p = ip + 2t where p = 1, 2, ..., m.

2 ∗ p− 1 = q, thus jq = ip = i(q+1)/2 where q = 1, 3, ..., 2 ∗m− 1.
jq+1 = j2∗p = ip + 2t = jq + 2t where q = 1, 3, ..., 2 ∗m− 1.

Thus, (2) is proved.
(3),(4),(5) are due to Lemma 2.3.
(6) is due to Partition Theorem, and the definition of DYNM(·, ·).
(7) is due to (2). ¤

Roughly speaking, above corollary states the general (iteratively and ac-
cumulatively) effect of Forking Corollary (Corollary 2.11).
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Lemma 2.13. Given ∀n ∈ N∗, ∃x ∈ N∗ such that DYNM(x, n) = In.

Proof Straightforward. Given n ∈ N∗, ∃x = 2n − 1 ∈ N∗, such that
DYNM(x, n) = In. Indeed, given ∀n ∈ N∗, ∃x ∈ [2n − 1]2n such that
DYNM(x, n) = In. ¤

Lemma 2.14. ∀n ∈ N∗, ∃x = 2n − 1 ∈ N∗ such that DYNM(x, n)(x) > x.

Proof Straightforward.
DYNM(x, n)(x) = DYNM(2n − 1, n)(x) = In(x)

= (3(...(3(3x + 1)/2) + 1)/2...) + 1)/2
= 3

2
(3

2
(...3

2
(3

2
x + 1

2
) + 1

2
) + ... + 1

2
) + 1

2

= (3
2
)nx + 1

2
((3

2
)n−1 + (3

2
)n−2 + ... + 1)

= (3
2
)nx + 1

2
(

( 3
2
)n−1
3
2
−1

) = (3
2
)nx + (3

2
)n − 1 = (3

2
)n(x + 1)− 1

= (3
2
)n ∗ x + (3

2
)n − 1 > (3

2
)n ∗ x > x. ¤

Lemma 2.15. ∀n ∈ N∗, ∃x = 2n−1 ∈ N∗, if RD[x] exists, then |RD[x]| > n.

Proof Straightforward. DYNM(x, n)(x) = DYNM(2n−1, n)(x) = In(x) > x.
If RD[x] exists, then |RD[x]| ≥ n + 1 > n. ¤

By above lemmas, we can draw a conclusion that maximal length of
reduced dynamics is nonexistent. Hence, it is impossible to enumerate all
reduced dynamics. Indeed, original dynamics is also held for above two
conclusions.

Theorem 2.16. If Collatz conjecture is true, then the maximal count of
Collatz transformations for all positive integers to return to 1 is nonexistent.

Proof Collatz conjecture is true, hence ∀x ∈ N∗, there exists original dy-
namics of x. Let S = {n|∀x ∈ N∗, DYNM(x, n)(x) = 1}. That is, S is a set of
all x ∈ N∗ that can return to 1 after finite times of Collatz transformations
(i.e., n, in terms of (3 ∗ x + 1)/2 denoted as I and x/2 denoted as O). In
other words, ∀x ∈ S, ∃n ∈ N∗ such that DYNM(x, n)(x) = 1.

Next, we will prove that max(S) cannot exist.
Suppose max(S) exists. We next construct a contradiction as follows: Let

Nmax = max(S). We can create y = 2Nmax−1 ∈ N∗. As Collatz conjecture is
true, y can return to 1 after finite times of Collatz transformations. Thus, y ∈
S. However, y needs at least Nmax + 1 times of transformations to return to
1 due to DYNM(y, Nmax)(y) = INmax(y) > y (i.e., DYNM(y, Nmax) = INmax),
which contradicts with Nmax = max(S). ¤
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Corollary 2.17. If Collatz conjecture is true, the set of all x ∈ N∗ that can
return to 1 after finite times of Collatz transformations cannot be enumerated.

Proof Straightforward due to Theorem 2.16.
Suppose S is a set of x ∈ N∗ that can return to 1 after finite times

of Collatz transformations in terms of (3 ∗ x + 1)/2 (denoted as I) and
x/2 (denoted as O). Initially, S is empty. If ∀x ∈ S, ∃n ∈ N∗ such that
DYNM(x, n)(x) = 1, then let x be included into S.

Let Nmax = max({n|∀x ∈ S, DYNM(x, n)(x) = 1}). We can create y =
2Nmax − 1. As Collatz conjecture is true, y can return to 1 after finite times
of Collatz transformations. y 6∈ S, because y needs at least Nmax + 1 times
of transformations to return to 1 due to DYNM(y, Nmax)(y) = INmax(y) > y
(i.e., DYNM(y, Nmax) = INmax). That is, the set S cannot be enumerated in
finite times, there always exists a positive integer that is not in current S. ¤

Next, we will provide an approach to prove Reduced Collatz Conjecture.

Definition 2.18. Function CntO(·). CntO : s → n takes as input s ∈
{I, O}≥1, and outputs n ∈ N∗ that is the count of “O” in s.

Example 2.19. CntO(IIOO) = 2. Obviously, the function name comes
from “counting the number of O”.

We can create an one-to-one mapping between residue class and reduced
dynamics. (Indeed, in our another paper [9], the formula to compute residue
class for a given reduced dynamics is derived. Sufficient and necessary con-
dition for reduced dynamics is proved. The period due to residue class is
extensively explored and proved in our another paper [8]. Those major prop-
erties for reduced dynamics such as partition, period, and ratio can be showed
visually in our proposed graph [5], which is provided in Appendix).

A general algorithm can be proposed by Theorem 2.7, which outputs
residue class of x, and takes as input first t transformations in (partial)
reduced dynamics of x (i.e., s = DYNM(x, t), |RD[x]| ≥ t).

Given specific s ∈ {I, O}t, residue class [i]2t can be determined by Algo-
rithm 1 (called D2R Algorithm) such that DYNM(x ∈ [i]2t , t) = s as follows:

Remark 2.20.

(1) If IsMatched(GetS(s, 1, j)(i), GetS(s, j+1, 1)) = False, then i ⇐ 2j +i.
It is due to Theorem 2.7.
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Data: s
Result: i
i ⇐ 1;
for j = 1; j ≤ t− 1; j + + do

if IsMatched(GetS(s, 1, j)(i), GetS(s, j + 1, 1)) == False then
i ⇐ 2j + i;

end
end
return [i]2t ;

Algorithm 1: D2R Algorithm. Input s ∈ {I, O}t, t ∈ N∗, t ≥
2, CntO(GetS(s, 1, j)) < dlog2 1.5 ∗ CntI(GetS(s, 1, j))e where j =
1, 2, ..., t−1, CntO(s) ≤ dlog2 1.5∗CntI(s)e. Output [i]2t , 1 ≤ i ≤ 2t−1,
i ∈ [1]2, such that DYNM(x ∈ [i]2t , t) = s.

(2) Indeed, i in outputs [i]2t is the major computation result, as t is available
in the input s due to t = |s|.
(3) Obviously, above algorithm can be terminated and the time cost is O(t).

(4) Besides, t = 1 is trivial and can be easily included in the algorithm as
follows: If input is I, then let the output of D2R algorithm be [1]21. If input is
O, then let the output be [0]21. Consequently, Corollary 2.21 can be extended
to include t = 1 easily.

Corollary 2.21. (1) Given s ∈ {I, O}t, t ∈ N∗, t ≥ 2,
CntO(GetS(s, 1, j)) < dlog2 1.5 ∗ CntI(GetS(s, 1, j))e, j = 1, 2, ..., t− 1,
CntO(s) ≤ dlog2 1.5 ∗ CntI(s)e,
there exists one and only one i ∈ [1, 2t − 1], i ∈ [1]2 such that
DYNM(x ∈ [i]2t , t) = s.

(2) Inversely, given x ∈ [i]2t , t ∈ N∗, t ≥ 2, i ∈ [1, 2t − 1], i ∈ [1]2,
there exists one and only one s ∈ {I, O}t such that
DYNM(x, t) = s,
CntO(GetS(s, 1, j)) < dlog2 1.5 ∗ CntI(GetS(s, 1, j))e, j = 1, 2, ..., t− 1,
CntO(s) ≤ dlog2 1.5 ∗ CntI(s)e.

(3) If N1 = ‖{s|s ∈ {I, O}t, t ∈ N∗, t ≥ 2, i ∈ [1, 2t − 1], i ∈ [1]2,
CntO(GetS(s, 1, j)) < dlog2 1.5 ∗ CntI(GetS(s, 1, j))e, j = 1, 2, ..., t − 1,
CntO(s) ≤ dlog2 1.5 ∗ CntI(s)e, DYNM(x ∈ [i]2t , t) = s}‖, and

N2 = ‖{i|s ∈ {I, O}t, t ∈ N∗, t ≥ 2, i ∈ [1, 2t − 1], i ∈ [1]2,
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CntO(GetS(s, 1, j)) < dlog2 1.5 ∗ CntI(GetS(s, 1, j))e, j = 1, 2, ..., t− 1,
CntO(s) ≤ dlog2 1.5 ∗ CntI(s)e, DYNM(x ∈ [i]2t , t) = s}‖,

then N1 = N2.

Proof (1) [i]2t ⇒ s. It is due to the computation for the first t transfor-
mations of i, which is deterministic, and all x ∈ [i]2t have the same first t
transformations due to Lemma 2.5.

(2) s ⇒ [i]2t . As all transformations of [j]2t , j = 1, ..., 2t − 1, j ∈ [1]2 can
be enumerated, one and only one of them equals s due to Lemma 2.5. That j
is i. Alternatively, non-trivial algorithm outputting i for given s is proposed
in Algorithm 1.

(3) Due to (1), we have N1 = N2. (Recall Corollary 2.9 and Corollary
2.10.) ¤

Remark 2.22.

(1) Simply speaking, above corollary states that s and [i]2t can be mutually
determined such that DYNM(x ∈ [i]2t , t) = s, and thus the number of types
are identical.

(2) For better understanding above corollary, we can explain or observe above
N1 and N2 in our proposed reduced dynamics graph in Appendix. That is,
N1 is the count of paths consisting of either “I” or “O” with length t from
starting integer; N2 is the count of distinct residue classes whose first t trans-
formations equal these paths.

Proposition 2.23. (An approach to prove Reduced Collatz Conjecture.) Given
n ∈ N∗, the number of integers x (x ∈ N∗) such that |RD[x]| ≤ n is in-
finite due to periodical property of x. We denote this set as S(x, n) =
{x(n)|n, x ∈ N∗, |RD[x]| ≤ n}. The ratio of the number of this set over
the number of all positive integers is R(x, n) = ‖S(x,n)‖

‖N∗‖ . It is finite and
obviously R(x, n) ∈ (0, 1]. E.g., S(x, 1) = [0]2; S(x, 2) = {x(2)||RD[x]| ≤
2} = {x(2)||RD[x]| = 1, |RD[x]| = 2} = [0]2 ∪ [1]4; R(x, 1) = ‖[0]2‖

‖N∗‖ = 1/2;

R(x, 2) = ‖[0]2∪[1]4‖
‖N∗‖ = 1/2 + 1/4 = 3/4.

We hereby state that, if R(x, i) goes to 1 with the growth of n to infinite,
then Reduced Collatz Conjecture is true (and thus Collatz Conjecture is true).
That is, if

lim
n→+∞

R(x, n) = 1,
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where R(x, n) = ‖S(x,n)‖
‖N∗‖ , then Reduced Collatz Conjecture is true and thus

Collatz Conjecture is true.

Proof Straightforward. If limn→+∞ R(x, n) = 1, then ‖S(x, n)‖ = ‖N∗‖,
when n → +∞. Thus, ∀x ∈ N∗, ∃RD[x]. ¤

3. Conclusion

This paper discovered and proved that, all positive integers, especially
odd numbers, are partitioned regularly. If the first different f ∈ {I, O}
transformation of x1, x2 occurs at the (t+1)-th transformation, t ∈ N∗, then
x1 ≡ x2 mod 2t and x1 ≡ x2 + 2t mod 2t+1. The first t transformations
for all x ∈ [x mod 2t]2t are identical. The (t + 1)-th transformation for x
and x + 2t is distinct. ∀x ∈ [1]2, if s(x) 6< x, s = DYNM(x, t), t ≥ 2, then
[i]2t , i ∈ [1]2 is partitioned into two halves and either half presents I or O in
the (t + 1)-th transformation. Otherwise, reduced dynamics is obtained, i.e.,
DYNM(x, t) = RD[x].
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Appendix: Dynamics Graph with Partition Labels

Reduced dynamics graph [5] with partition labels can be obtained by
adding each branch of paths a partition of x ∈ N∗ (see Fig.1), which pro-
vides a visualization and smooth understanding for our proofs of Partition
Theorem.
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[27,31,103,111]128

[47,71,91,167,207,

223,251]256

CntO(s) = log21.5*CntI(s) , or s=O

RD[x [0]2] = O

DYNM(x [1]2, 1) = I

RD[x [1]4] = IO

DYNM(x [3]4, 2) = II

DYNM(x [3]8, 3) = IIO

DYNM(x [7]8, 3) = III

RD[x [3]16] = IIOO

DYNM(x [11]16, 4) = IIOI

DYNM(x [7]16, 4) = IIIO

DYNM(x [15]16, 4) = IIII

RD[x [11]32] = IIOIO

DYNM(x [27]32, 5) = IIOII

RD[x [23]32] = IIIOO

DYNM(x [7]32, 5) = IIIOI

DYNM(x [15]32, 5) = IIIIO

DYNM(x [31]32, 5) = IIIII

DYNM(x [63]64, 6) = IIIIII

DYNM(x [31]64, 6) = IIIIIO

(p, q) (p = CntI(s), q = CntO(s))

Starting integer

ratio = CntO(s)/CntI(s) = log21.5 = 0.58496250

O

I

Figure 1: Reduced dynamics graph with partition labels. “¤” represents starting integer.
“4” represents transformed integer that is less than starting integer. Any “4” is below
ratio line, whose slope is λ = log2 1.5. A reduced dynamics is a path consisting of edges
in terms of “I” or “O” from “¤” to “4”. If and only if |s| = 1, s = O or CntO(s) =
dλ ∗CntI(s)e and CntO(s′) < dλ ∗CntI(s′)e, s′ = GetS(s, 1, j), j = 1, 2, ..., |s|− 1, |s| ≥ 2,
then s is a reduced dynamics, i.e., s(x) < x, GetS(s, 1, j)(x) 6< x, j = 1, 2, ..., |s| − 1.
All reduced dynamics intersects the ratio line in the last edge, which means transformed
integer is the first one that is less than corresponding starting integer.

Remark 3.1.

(1) Either partition of current x presents the same previous dynamics, but
will present either edge (I or O) in the next transformation, iteratively.
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More specifically, either half of x ∈ [i]2t (namely, x ∈ [i]2t+1 or x ∈
[i + 2t]2t+1) has either DYNM(x, t + 1) = DYNM(x, t)‖I or DYNM(x, t + 1) =
DYNM(x, t)‖O. Besides, ∀x ∈ [i]2t , DYNM(x, t) are identical.

For example, DYNM(x ∈ [3]8, 3) = IIO. Whether the next transformation
is I or O depends on either half partition of x ∈ [3]8. That is, if x ∈ [3]16,
then IIO(x) ∈ [0]2 and the next one is O; If x ∈ [11]16, then IIO(x) ∈ [1]2
and the next one is I. Obviously, [3]8 = [3]16 ∪ [11]16 and [3]16 ∩ [11]16 = ∅.
(2) Let DYNM(x, L) = s ∈ {I, O}L, L ∈ N∗. If CntO(s) = dλ ∗ CntI(s)e (or
s = O), then final transformed integers that are denoted as “4” is avaiable
(i.e., DYNM(x, L) = RD[x]. In other words, s(x) < x, GetS(s, 1, j)(x) 6<
x, j = 1, 2, ..., L− 1).
(3) Each edge (namely, I or O) is labeled with one residue class or a union
of multiple residue classes, whose last transformation is this edge (I or O),
and x in this residue class presents the dynamics represented by the path from
“¤” (representing starting integer) to this edge.

For example, [11, 23]32 is labeled due to DYNM(x ∈ [11, 23]32, 5) = s11, s23 ∈
{I, O}5 where GetS(s11, 5, 1) = O,GetS(s23, 5, 1) = O. More specifically,
DYNM(x ∈ [11]32, 5) = s11 = IIOIO, DYNM(x ∈ [23]32, 5) = s23 = IIIOO.

More specifically, if [i]2t(or[i1, i2, ..., ip]2t , p ∈ N∗) is (are) residue class
(classes) as a label located at the last edge of path si ∈ {I, O}t (or paths
si1 , si2 , ..., sip), then DYNM(x ∈ [i]2t , t) = si (or DYNM(x ∈ [ij]2t , t) =
sij , j = 1, 2, ..., p).

For reduced dynamics, the ratio - the count of x/2 (or “O”) over the
count of (3∗x+1)/2 (or “I”) - is larger than log2 1.5 (denoted as λ). That is,
when and only when the count of “O” is larger than the count of “I” times
λ, current transformed integer will be less than the starting integer (i.e., the
reduced dynamics will be available). Indeed, we prove following sufficient
and necessary condition in which any s ∈ {I, O}≥1 is a reduced dynamics
formally in another paper [9].

Corollary 3.2. (Form Corollary.) s ∈ {I, O}≥1 is a reduced dynamics, if
and only if

(1) |s| = 1, s = O; Or,
(2) |s| ≥ 2,
{

CntO(s) = dλ ∗ CntI(s)e,
CntO(s′) < dλ ∗ CntI(s′)e, s′ = GetS(s, 1, i), i = 1, 2, ..., |s| − 1.

(1)
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