Some Comments on a Time Interval Only Description

H. Hollestelle
Independent researcher, Common Room/Networks Foundation, Bandung 40191, Indonesia

Abstract

The time interval description is a natural way to introduce finite intervals, like finite time intervals. This approach depends on results for radiation propagation from star sources, where properties relate to a propagation surface, which is finite for every realistic event and measurement. In contrast the usual vector approach like for Newton's laws depends on introducing an infinite coordinate system. A time interval only approach necessarily has to start from scratch. Properties for time intervals have to be defined with time intervals. Where the first parts of this paper are devoted to time interval set properties, in the discussion part these are applied to quantities and measurements within astronomy. The introduction provides a survey of results.

Key words: time interval, measurement event, Noether charge, structure constants, differentiation properties, star source radiation propagation, gravitation

1. Introduction and survey of results

A finite time interval relates by itself to measurement, even while with approximately zero interference the situation remains, by approximation, 'free' and without interaction. A realistic description for radiation starting from a 'free' situation tends to be finite, when considering star sources and finite velocities. This is independent of time intervals being infinite, termed Newtonian, meaning Hamiltonian H time independent and noninteracting, and time intervals being finite meaning H time dependent. For infinite time intervals the results for the time interval description are the same as for the usual Newtonian vector description like in [1, Arnold]. Defined is time interval Δt to be the relevant event time interval, the reference interval for any measurement events.
Within a 'dialogue' approach, the Heisenberg view of qm is described among others in [2, Beller]: particle properties like positions or paths can only be accessed from sequences of interactions or measurements. With the Heisenberg view the uncertainty relations are the basis of qm [3, Roos]. According to Beller this is an 'operational' view, which rejects causal space-time description in contrast to several of more 'realistic' views which could emphasize the adequacy of unified concepts of qm (terms by Beller). This discussion is not part of this paper however. Measurements and finite time intervals are interrelated, infinite time intervals are not excluded by the time interval description.

Time interval description and t-quantities and Δt-quantities

In this paper within the time interval description, including time interval equilibrium, applied are results from earlier research [4, Hollestelle] and [5, Hollestelle], that include time interval differentiation, commutation and equilibrium relations, where all time intervals, when H time dependent, are finite and asymmetrical. In the time interval description, a quantity can be a t-quantity, variable with one moment time coordinate t during time interval Δt, or a 'neutral' Δt-quantity, variable with Δt, however invariant during Δt, for instance a time interval average. This means linearity in t resp. linearity in Δt due to the specific definition of time interval equilibrium, that is 'mean velocity theorem' (MVT) equilibrium, different from Lagrangian equilibrium when Hamiltonian H is time dependent. Correspondence for t-quantities with Δt-quantities is discussed in paragraph 2 to 5 . This allows a time interval only description, where the one moment time coordinates our left out. Properties for the time interval set, like addition, multiplication and differentiation are discussed in the second part of this paper, paragraph 6 to 10 . The third part of this paper includes a discussion of star source radiation and gravitation within a time interval only description among other results, paragraph 11 and 12.

Time intervals and the 'infinite regress' problem

The time interval description includes differentiation to time intervals that depend on time interval boundaries that are themselves one moment time quantities. To find a time interval only description, to relate these boundaries to time interval quantities without being time intervals, this is realized in paragraph 2 to 5 . This should resolve the 'infinite regress' problem when defining the Hamiltonian being the 'time interval' version of the Legendre transform of the Lagrangian L. With time intervals instead of one moment time quantities this
would mean, due to the derivative in the 'time interval' version, time interval boundaries equal time intervals causing the regress.

Star source radiation and gravitation

The third part of this paper concerns application of the time interval description to star source radiation, paragraph 11, and discussion, paragraph 12. The originating process of star source radiation is not investigated. Assumed is radiation is in 'free motion' without interaction and radiation energy is invariant per time interval due to star source properties with a certain origin mass. Even so, the time intervals related to radiation propagation are always finite, since the wave group-velocity is considered finite. The results for overall propagation energy can be described in terms of gravitational field energy for both zero mass em radiation waves and massive particle waves [4, Hollestelle] and [5, Hollestelle]. Application of time interval only allows an integrated description of these different phenomena, without other assumptions.
Newton's second law relates kinematics and source related forces, applying vectors and space time coordinates, within a one moment time description [6, Goldstein], [7, Newton I]. In this paper equilibrium is due to a multiple of energies rather than actions. This allows to discard the question of inertial forces. The equivalence principle in general relativity (GR) implies equivalence for gravitational energy and geometry, now a result is equivalence is implied for gravitational energy and radiation energy, ie kinetic propagation surface energy due to the em radiation field. This suggests similarly equivalence can be found for radiation energy and geometry. The subject of action 'at a distance' is unresolved within physics. In GR the concept of simultaneous events is proposed, applying a finite velocity of light. In this paper simultaneous radiation energy is the energy of radiation waves 'arriving' within Δt at the finite propagation surface.

A finite propagation surface obviously should be asymmetrical due to its time development and propagation away from the source. In terms of fields this means the surface tends to increase distance from the source due to its geometry and asymmetry, and such purely geometric fields have been studied before, [8, Hollestelle]. Curie's principle seems to be equivalent to Newton's second law, due to asymmetric propagation including an invariant wave group-velocity related development in time, [9, Curie]. Clearly radiation propagation is away from the source where gravitation as a source for movement is directed towards the mass sources.

The essential property for the time interval set is multiplication $\mathrm{M}[\Delta \mathrm{t} 1, \Delta \mathrm{t} 1]=\Delta \mathrm{t} 1$ for any time interval $\Delta \mathrm{t} 1$, including relevant event time interval $\Delta \mathrm{t}$. It means the multiplication inverse for $\Delta \mathrm{t}$ is $\Delta \mathrm{t}$ itself, paragraph 3, allowing energies to be equal in value even while time interval Δt and multiplication inverse $\Delta t i$ within the result can still be recovered. In paragraph 12 , discussed is for time interval Δt, being finite and asymmetrical, the concepts 'close' or 'remote', meaning in terms of space intervals the mass sources being localizable or not, and in terms of time intervals, 'simultaneous' or 'not simultaneous', with regard to measurements.

The time interval only description for em radiation with zero mass wave particles has some simplicity as advantage and can naturally resume non zero mass wave particles. A time interval equilibrium result is, $\Delta \mathrm{t}$ quantities are linear in Δt, and the time interval set is closed for multiplication, paragraph 9 . Twice differentiation to time interval $\Delta \mathrm{t}$ implies scalar multiplication, similar to wave equations in qm, paragraph 10 .

Not all results are linear results. Differentiation is nonlinear with respect to scalar multiplication, paragraph 8. Incident radiation energy can change, due to interaction like the photo-electric effect, depending on interaction event time interval $\Delta \mathrm{t}$ and is nonlinear in the variable $\# \mathrm{n}$, the number of wave particles, paragraph 11 . Other results include derivation of Noether charges, and structure constants, for time interval equilibrium situations, in terms of commutation properties.

2. Commutation relations and differentiation to time intervals

By discussing commutation relations for one moment time t and differentiation to t, the for operators in field theory usual concept of: 'working to the right' is introduced for one moment time quantity t. A correspondence relating the one moment time set and the time interval set is defined, applying commutation relations and differentiation to time intervals including the 'working to the right' property for time intervals. Correspondence, then, prepares a way to approach the 'infinite regress' problem and to derive time interval only set properties.

For t-quantities, the usual description is one where these depend on one moment time t, and Lagrangian equilibrium. The Newtonian kinematic description is a one moment time description. With Newtonian situations however meant are in this paper H time independent situations, ie situations without external interaction.

The usual commutation is defined with [A1, A2]u $=\mathrm{A} 1(\mathrm{t}) . \mathrm{A} 2(\mathrm{t})-\mathrm{A} 2(\mathrm{t}) . \mathrm{A} 1(\mathrm{t})$, indicated with subscript u , for two t-quantities A1 and A2 at the same one moment time t . With the multiplication . and the usual + and indications, the following equations are assumed that together define commutation relations for one moment time t. It is assumed that one moment time t is not completely commutation free and multiplication with t is order dependent.

1 t. cn' $=\mathrm{cn} . \mathrm{t}$

$$
1 / \mathrm{t} . \mathrm{cn}=\mathrm{cn} \cdot 1 / \mathrm{t}
$$

2

$$
\begin{aligned}
& {[\mathrm{t}, \mathrm{cn}] \mathrm{u}=\mathrm{t} .\left(\mathrm{cn}-\mathrm{cn}{ }^{\prime}\right)} \\
& {[1 / \mathrm{t}, \mathrm{cn}] \mathrm{u}=-\left(\mathrm{cn}-\mathrm{cn}{ }^{\prime}\right) .1 / \mathrm{t}}
\end{aligned}
$$

The cn and cn ' are the only commutation quantities related to one moment time, time coordinate, t. From relations 1 it follows the cn and cn ' are neutral quantities.

The commutation equations relate the one moment time t to one moment time differentiation to t : $d / d t$, including differentiation of cn and cn ' and differentiation of multiplication A1. A2, meaning A1 'multiplication' A2, writing d/dt [A1. A2] for t-quantities A1 and A2. Square brackets indicate d/dt 'working to the right' to the bracket. Differentiation d / dt is 'working to the right' on every part of a multiplication within the usual first order differential calculus, [1, Arnold], [6, Goldstein], [10, Newton II], with the following distributive, ie symmetrical second associative, property for differentiation:
$3 \mathrm{~d} / \mathrm{dt}[\mathrm{A} 1 . \mathrm{A} 2]=\mathrm{d} / \mathrm{dt}[\mathrm{A} 1] . \mathrm{A} 2+\mathrm{A} 1 . \mathrm{d} / \mathrm{dt}[\mathrm{A} 2]=2 . \mathrm{A} 1 . \mathrm{d} / \mathrm{dt}[\mathrm{A} 2]-[\mathrm{A} 1, \mathrm{~d} / \mathrm{dt}] \mathrm{u} . \mathrm{A} 2$
Trivially however essentially in the second part of this equation differentiation d/dt is 'working to the right' on A1 or A2 only. The third part is decisive for the interpretation of equations 1 and 2 . The differentiation d / dt 'moving to the right' leaving, releasing, at each step, and equation 3 means only one step, a quantity to the left, ie at the first step quantity A 1 , including multiplication with a scalar, that is scalar 2 and a remain, the last part with the minus sign. This is similar to one moment time t or $1 / \mathrm{t}$ 'moving to the right' leaving to the left cn ' or cn respectively in equations 1 .

Within the time interval description, multiplication, addition and differentiation can be applied to t-quantities and to $\Delta \mathrm{t}$-quantities. From equations 1 and 2 similar equations can be derived for the same cn and cn ' now regarded to be Δt-quantities instead of t-quantities. Assumed is that the described situation is 'remote' from H time independent: with time interval $\Delta \mathrm{t}=[\mathrm{tb}, \mathrm{ta}]$ asymmetrical and finite such that $|\mathrm{tb}| \ll|\mathrm{ta}|$. cn and cn ' are invariant during $\Delta \mathrm{t}$ and can be regarded $\Delta \mathrm{t}$-quantities: within the time interval description including MVT equilibrium this means they can be described being linear, meaning linear with Δt, and are not described as t dependent, linear or otherwise.

When changing from t-quantity to $\Delta \mathrm{t}$-quantity perspective, $\Delta \mathrm{t}$-quantities are regarded part of the time interval set, since they are linear in Δt, and every Δt-quantity can be written equal to some $\Delta t 3=a . \Delta t$. For any Δt quantity being a time interval, a is scalar number. This is discussed in paragraph 13 part IV and paragraph 8 , comment 9 , the closure theorem for the time interval set. When the considered Δt-quantity can be different from time intervals regarding dimension and argument a can be a scalar different from a number scalar. Part by part the one moment time parameter t is applied less in the following. The indications M and A are applied for multiplication and addition for time intervals. Equations 10, paragraph 5, are commutation relations for the time interval set and without reference to one moment time t and part of a complete and closed time interval only description.

Comment 1. Differentiation of quantity A1 to one moment time t within the one moment time description: d / dt [A1], reduces to $\mathrm{D}^{*}[\mathrm{~A} 1]=[1 / \mathrm{t}, \mathrm{A} 1] \mathrm{u}=(1 / \mathrm{t} . \mathrm{A} 1(\mathrm{t})-1 . \mathrm{A} 1(\mathrm{t}) .1 / \mathrm{t})$, the usual commutation, for differentiation to one moment time t within the time interval description, disregarding a factor $1 / 2$, [5, Hollestelle]. MVT equilibrium means for any t-quantity $\mathrm{A} 1=\mathrm{A} 1(\mathrm{t})$ linearity in t and $\mathrm{D}^{*}[\mathrm{~A} 1]=+/-\mathrm{A} 1 / \mathrm{t}$, the + or - depending on $A 1$ increasing or decreasing with t and A1 positive or negative. It follows D^{*} [A1] remains invariant during Δt. This is part of the t-quantity perspective. Addition A for time intervals is evaluated in paragraph 7, multiplication M for time intervals is evaluated in paragraph 8 . The time interval description derivative $\mathrm{D}^{*} \| \Delta t$ to time interval $\Delta \mathrm{t}$ of quantity A 1 is defined with the time interval commutator, $\mathrm{D}^{*}\|\Delta[\mathrm{~A} 1]=[1 / \mathrm{t}, \mathrm{A} 1]\| \Delta \mathrm{t}=\mathrm{A}$ $[1 / \mathrm{tb} . \mathrm{A} 1(\mathrm{tb}),-1 . \mathrm{A} 1(\mathrm{ta}) .1 / \mathrm{ta}]$, for time interval $\Delta \mathrm{t}=[\mathrm{tb}, \mathrm{ta}]$, and relates directly to equations 1 and 2 .

3. Correspondence for one moment time \mathbf{t}-quantities with time interval $\Delta \mathbf{t}$-quantities

The time interval derivative to one moment time t for A1 positive and increasing, is: $\mathrm{D}^{*}[\mathrm{~A} 1]=\mathrm{A} 1.1 / \mathrm{t}$, comment 1 . Due to MVT equilibrium D^{*} [A1] remains invariant during Δt. D^{*} [A1] can be regarded a $t-$ quantity as well as a Δt-quantity and this allows for the definition of correspondence for t -quantities with $\Delta \mathrm{t}$ quantities. Applying averages for $\Delta \mathrm{t}$ of A 1 and one moment time t , leaving out subscript $\| \Delta \mathrm{t}:\langle\mathrm{A} 1.1 / \mathrm{t}\rangle=\langle\mathrm{A} 1$ $>/\langle\mathrm{t}\rangle$ it follows in terms of t -quantities only:
$4 \quad \mathrm{~A} 1.1 / \mathrm{t}=\langle\mathrm{A} 1\rangle /\langle\mathrm{t}\rangle$
This relation is valid for any t -quantity A1 and follows from MVT equilibrium and $\mathrm{D}^{*}[\mathrm{~A} 1]$. The average for time interval $\Delta \mathrm{t}$ of parameter $\mathrm{t}:\langle\mathrm{t}\rangle=\langle\mathrm{t}\rangle \| \Delta \mathrm{t}$ depends on the (a-)symmetry of time interval $\Delta \mathrm{t}$. The following properties for time interval $\Delta \mathrm{t}=[\mathrm{tb}, \mathrm{ta}]$ are applied: when H time dependent $\Delta \mathrm{t}$ has finite measure and is asymmetrical with $|\mathrm{tb}| \ll|\mathrm{ta}|$, while for H time independent $\Delta \mathrm{t}$ has infinite measure with $|\mathrm{tb}|=|\mathrm{ta}|$ each infinite. For asymmetric $\Delta \mathrm{t}$: parameter t average $\langle\mathrm{t}\rangle=1 / 2(\mathrm{ta}+\mathrm{tb})=\mathrm{t} 0$, with t 0 the "multiplication unit" for one moment time parameters during $\Delta \mathrm{t}$, meaning $\mathrm{t} 0 . \mathrm{t}=\mathrm{t} . \mathrm{t} 0=\mathrm{t}$. Left out are factors 2 . Similarly, there is time interval $\Delta \mathrm{U}$, the "multiplication unit" for the time interval set.

The average for $\Delta \mathrm{t}$ of A 1 is a $\Delta \mathrm{t}$-quantity and equals $\langle\mathrm{A} 1\rangle=<\mathrm{A} 1>\| \Delta \mathrm{t}=\mathrm{D}^{*}$ [A1]. t0, from equation 4 . The derivative of A 1 to one moment time $\mathrm{t}, \mathrm{D}^{*}$ [A1], is similarly a $\Delta \mathrm{t}$-quantity. The $\Delta \mathrm{t}$-quantity property of average $<\mathrm{A} 1>$, linearity with $\Delta \mathrm{t}$, and introducing scalar a and time interval multiplication M , means < $\mathrm{A} 1>=\mathrm{M}[\mathrm{a}, \Delta \mathrm{t}]$ $=\Delta t 3$. For one moment time t, itself a t-quantity however not a Δt-quantity, one defines correspondence of $\langle\mathrm{t}\rangle$ with time interval $\Delta \mathrm{U}:\langle\mathrm{t}\rangle \sim \Delta \mathrm{U}$. In this way one can define correspondence, indicated with \sim, for averages of one moment time quantities corresponding with time interval quantities. A1i indicates with subscript i the multiplication inverse for any A1. The left side of equation 5 is in terms of averages of t -quantities, the right side in terms of time intervals and Δt-quantities:
$5\langle\mathrm{~A} 1\rangle /\langle\mathrm{t}\rangle \sim \mathrm{M}[\Delta \mathrm{t} 3, \Delta \mathrm{Ui}]=\mathrm{M}[\mathrm{M}[\mathrm{a}, \Delta \mathrm{t}], \Delta \mathrm{Ui}]$

Comment 2. Correspondence

For the H time dependent asymmetrical situation, averaging for $\Delta \mathrm{t}$ one moment time t , there is $\langle\mathrm{t}\rangle=\mathrm{t} 0$, the one moment time 'multiplication unit' and different from the 'multiplication zero', with $\mathrm{t} 0 . \mathrm{t}=\mathrm{t} . \mathrm{t} 0=\mathrm{t}$, and t 0 corresponds with $\Delta \mathrm{t} 0$ in this case being equal to time interval set 'multiplication unit' $\Delta \mathrm{U}$, and different from the time interval set 'multiplication zero' $\Delta \mathrm{U} 0:<\mathrm{t}\rangle \| \Delta \mathrm{t} \sim \Delta \mathrm{U}$.
For the H time independent and symmetrical $\Delta \mathrm{t}$ situation with $|\mathrm{tb}|=|\mathrm{ta}|$ there is $\langle\mathrm{t}\rangle=\mathrm{t} 0$ equals $\mathrm{t}+-1 . \mathrm{t}=\mathrm{t} 0$, with $t 0$ in this case both the 'multiplication zero' and the 'addition zero', corresponding with $\Delta \mathrm{t} 0$ in this case being equal to $\Delta \mathrm{U} 0$ both the 'multiplication zero' and 'addition zero' for the time interval set. In this case < $\mathrm{t}>$ corresponds with $\Delta \mathrm{t} 0$, being equal to $\Delta \mathrm{U} 0$, and not equal to $\Delta \mathrm{U}$, because of the symmetry of $\Delta \mathrm{t}:\langle\mathrm{t}\rangle \| \Delta \mathrm{t} \sim \Delta \mathrm{U} 0$. The one moment time t average $<t>\| \Delta t=t 0$ corresponds with the specific time interval termed $\Delta t 0$, meaning correspondence of one moment time t0 with time interval set 'multiplication unit' or 'multiplication zero' due to H being time dependent or not.

The corresponding relations for the 'addition zero' $\Delta \mathrm{t} 0$ can be applied to describe a transition from non-zero mass to zero mass radiation. The difference in one moment time t average being $\langle t\rangle \| \Delta t \sim \Delta t 0$ equal to "multiplication one" or "multiplication zero" for quantities and properties while remaining within physics is interesting in its own.

Comment 3. The defining property for $\Delta \mathrm{U}$ is: $\mathrm{M}[\Delta \mathrm{U}, \Delta \mathrm{t} 1]=\mathrm{M}[\Delta \mathrm{t} 1, \Delta \mathrm{U}]=\Delta \mathrm{t}$, and for the multiplication inverse with subscript i of $\Delta \mathrm{t} 1, \Delta \mathrm{t} 1 \mathrm{i}: \mathrm{M}[\Delta \mathrm{t} 1, \Delta \mathrm{t} 1 \mathrm{i}]=\mathrm{M}[\Delta \mathrm{t} 1 \mathrm{i}, \Delta \mathrm{t} 1]=\Delta \mathrm{U}$, for any time interval $\Delta \mathrm{t} 1$. One can argue, not regarding uniqueness, $\Delta \mathrm{U}$ can be identified with $\Delta \mathrm{t}$, with $\Delta \mathrm{t}$ the relevant event time interval, from M $[\Delta \mathrm{U}, \Delta \mathrm{t}]=\Delta \mathrm{t}$ while also $\mathrm{M}[\Delta \mathrm{t}, \Delta \mathrm{t}]=\Delta \mathrm{t}$, a relation derived independently for all $\Delta \mathrm{t} 1$ from interpretation in paragraph 7. It also follows $\Delta t 0=\Delta t$ is a solution for $\Delta t 0$. The discussion in paragraph 7 implies some uniqueness properties for $\Delta \mathrm{t}$.
Comment 4. Where M indicates multiplication, A indicates addition and one defines $\mathrm{A}[\Delta \mathrm{t} 1, \Delta \mathrm{t} 0]=\mathrm{A}[\Delta \mathrm{t} 0, \Delta \mathrm{t} 1]$ $=\Delta \mathrm{t} 1$ and $\mathrm{A}[\Delta \mathrm{t} 1, \Delta \mathrm{t} 1 \mathrm{iv}]=\mathrm{A}[\Delta \mathrm{t} 1 \mathrm{iv}, \Delta \mathrm{t} 1]=\Delta \mathrm{t} 0$, for $\Delta \mathrm{t} 0$ 'addition zero' for the time interval set and $\Delta \mathrm{t}$ 1iv addition inverse with subscript iv for any time interval $\Delta t 1$. Multiplication with scalar -1 of any time interval $\Delta \mathrm{t} 1:-1 . \Delta \mathrm{t}$, is not necessarily equal to the addition inverse $\Delta \mathrm{t} 1 \mathrm{iv}$ for $\Delta \mathrm{t} 1$, and is not a well-defined time interval when $\Delta \mathrm{t} 1$ is a time interval and $\Delta \mathrm{t}$ asymmetric due to H being time dependent.

4. Pairs of commutation quantities and pairs of Noether charges

The commutation quantities cn and cn ' are t -quantities, invariant during $\Delta \mathrm{t}$, ie having constant values within their domain (cn-domain or cn^{\prime}-domain) within $\Delta \mathrm{t}$, and there is $\mathrm{cn}(\mathrm{t})=\mathrm{cn}$ and $\mathrm{cn}^{\prime}(\mathrm{t})=\mathrm{cn}$ ' invariant with t during $\Delta \mathrm{t}$, where dependence on $\Delta \mathrm{t}$ is described by introducing the positive average scalar density $\mathrm{D}(\mathrm{cn}, \Delta \mathrm{t})$. For the $\Delta \mathrm{t}$ average for $\mathrm{cn},\langle\mathrm{cn}(\mathrm{t})\rangle \| \Delta \mathrm{t}$, there is: $\langle\mathrm{cn}(\mathrm{t})\rangle\left\|\Delta \mathrm{t}=\int\right\| \Delta \mathrm{tdt}[\mathrm{cn}] .1 /|\Delta \mathrm{t}|=\mathrm{N} . \mathrm{D}(\mathrm{cn}, \Delta \mathrm{t})$ with $\mathrm{D}(\mathrm{cn}, \Delta \mathrm{t})=\mid \mathrm{cn}-$ domain $|/| \Delta t$-domain \mid a Δt invariant scalar quantity. Applied is the time interval integral to parameter $\mathrm{t}: \mathrm{I}^{*}[2]=$ $\int \| \Delta \mathrm{tdt}[2]=2 .|\Delta \mathrm{t}|$, the domain for scalar 2 being the $\Delta \mathrm{t}$-domain $\Delta \mathrm{t}$. The t -quantity $\mathrm{cn}=\langle\mathrm{cn}(\mathrm{t})\rangle \| \Delta \mathrm{t}$ is equal to N only when the cn -domain during $\Delta \mathrm{t}$ has domain measure equal to the $\Delta \mathrm{t}$-domain measure itself: in this situation there is $\mathrm{D}(\mathrm{cn}, \Delta \mathrm{t})=|\Delta \mathrm{t} /|\Delta \mathrm{t}|=1$. It is assumed that this is not always the case due to an equilibrium requirement for cn and cn '.

Similar to $\mathrm{D}(\mathrm{cn}, \Delta \mathrm{t})$ defined is $\mathrm{D}\left(\mathrm{cn}^{\prime}, \Delta \mathrm{t}\right)$ for cn ' and both densities depend on $\Delta \mathrm{t}$ and on the quantities cn and cn ' resp. The equilibrium requirement implies $\mathrm{D}(\mathrm{cn}, \Delta \mathrm{t})+\mathrm{D}(\mathrm{cn}, \Delta \mathrm{t})=1$, both for the same $\Delta \mathrm{t}$. For two specific time intervals Δt and Δt^{\prime}, when the respective domains equal upper limit 1 , there is $D\left(\mathrm{cn}^{\prime}, \Delta \mathrm{t}^{\prime}\right)=\mathrm{D}(\mathrm{cn}, \Delta \mathrm{t})=1$. With cn and cn ' the same sign, and the addition distributive property valid for quantity N , in terms of neutral t quantities only one finds:

$$
\mathrm{cn}+\mathrm{cn}^{\prime}=\mathrm{N} . \mathrm{D}(\mathrm{cn}, \Delta \mathrm{t})+\mathrm{N} . \mathrm{D}\left(\mathrm{cn}^{\prime}, \Delta \mathrm{t}\right)=\mathrm{N}
$$

Rewritten with multiplication M and addition A for time intervals one finds the corresponding $\Delta \mathrm{t}$-quantity perspective. Equation 6 describes a requirement for $\mathrm{cn}=\mathrm{cn}(\mathrm{t})$ and $\mathrm{cn}{ }^{\prime}=\mathrm{cn}^{\prime}(\mathrm{t})$ where time interval $\Delta \mathrm{t}$ is the variable. Arguments for this requirement are discussed in comment 6 , and paragraph 12, part VI. It exists due to cn and cn ', being not ordinary constants, rather physical quantities defined within the time interval equilibrium description. In support for the requirement, equation 6 and 7, an argument below includes a theorem for time and space averages.
cn and cn ' are 'reciprocal' quantities, a change of perspective to $\Delta \mathrm{t}$ - quantities $\mathrm{cn}(\Delta \mathrm{t})$ and cn ' $(\Delta \mathrm{t})$ and time intervals means the requirement implies $\mathrm{A}\left[\left(\mathrm{cn}(\Delta \mathrm{t}), \mathrm{cn}^{\prime}(\Delta \mathrm{t})\right]=\Delta \mathrm{N}\right.$, with correspondence $\langle\mathrm{N}\rangle=\mathrm{N} \sim \Delta \mathrm{N}$, invariant with one moment time t and invariant with $\Delta \mathrm{t}$. From $\langle\mathrm{t}\rangle \sim \Delta \mathrm{t} 0$ one finds: when $<\mathrm{D}(\mathrm{cn}, \Delta \mathrm{t})\rangle \| \Delta \mathrm{t} \sim$ $\Delta \mathrm{U}$ and $\mathrm{cn}(\Delta \mathrm{t})=\mathrm{M}[\Delta \mathrm{N}, \Delta \mathrm{U}]=\Delta \mathrm{N}$, this implies $\left\langle\mathrm{D}\left(\mathrm{cn}^{\prime}, \Delta \mathrm{t}\right)>\| \Delta \mathrm{t} \sim \Delta \mathrm{U} 0\right.$ and $\mathrm{cn}^{\prime}(\Delta \mathrm{t})=\mathrm{M}[\Delta \mathrm{N}, \Delta \mathrm{U} 0]=\Delta \mathrm{U} 0$, and the other way around while invariant $|\Delta N|$ remains the upper limit value for $|\mathrm{cn}(\Delta \mathrm{t})|$ or $\mid \mathrm{cn}$ ' $(\Delta \mathrm{t}) \mid$. For invariants related to one moment time development referred is to [11, Noether], [12, De Wit, Smith]. The equilibrium requirement in Δt-quantity perspective while Δt remains the variable is:
$\left.7 \quad \mathrm{~A}\left[\mathrm{cn}(\Delta \mathrm{t}), \mathrm{cn}^{\prime}(\Delta \mathrm{t})\right]=\mathrm{A}[\mathrm{M}[\Delta \mathrm{N}, \Delta \mathrm{U}], \mathrm{M}[\Delta \mathrm{N}, \Delta \mathrm{U} 0)]\right]=\mathrm{A}[\Delta \mathrm{N}, \Delta \mathrm{U} 0]=\Delta \mathrm{N}$
Addition A [A1, A2], where A1 and A2 are $\Delta \mathrm{t}$-quantities and correspond with t-quantity averages, in this paragraph preliminary applied for addition with $\Delta \mathrm{U}$ and $\Delta \mathrm{U} 0$, is defined in paragraph 6 and 7 . Zero domain is not considered for $\mathrm{cn}(\Delta \mathrm{t})$ or $\mathrm{cn}^{\prime}(\Delta \mathrm{t})$ since this means they are not time interval related rather one moment time t related. It can be argued $\Delta \mathrm{N}$ in equation 7 is an approximation for the complete time interval set average $<$ $\mathrm{cn}(\Delta \mathrm{t})>\| \operatorname{set}$, equal to the $\mathrm{cn}(\Delta \mathrm{t})$ space average [1, Arnold], considering $\mathrm{cn}{ }^{\prime}(\Delta \mathrm{t})=\mathrm{cn}\left(\Delta \mathrm{t}^{\prime}\right)$ where $\Delta \mathrm{t}^{\prime}$ is the specific time interval different from $\Delta \mathrm{t}$ while $|\mathrm{cn}(\Delta \mathrm{t})|$ and $\left|\mathrm{cn}^{\prime}\left(\Delta \mathrm{t}^{\prime}\right)\right|$ equal their upper limit value.

The requirement is supported by the second associative property, equation 3, due to the property for the Noether charge $\mathrm{NC}, \mathrm{D}^{*} \| \Delta \mathrm{t}[\Delta \mathrm{N}]=\mathrm{NC}$. Where from equation $7, \Delta \mathrm{~N}$ relates to addition, $\Delta \mathrm{N}$ relates to multiplication similarly. This is discussed in paragraph 12, part I and VI. The neutral t-quantities cn and cn ' can be regarded t Noether charges invariant for parameter t during $\Delta \mathrm{t}$ where the corresponding neutral $\Delta \mathrm{t}$-quantities $\mathrm{cn}(\Delta \mathrm{t})$ and $\mathrm{cn}^{\prime}(\Delta \mathrm{t})$ similarly can be regarded $\Delta \mathrm{t}$-Noether charges. The usual Noether charges, NC , should relate to the relevant event time interval that is decisive for measurements.

Comment 5. The usual Noether charges NC are the same as the t-Noether charges when limited to the, finite, time interval Δt, the relevant event time interval for measurement and also relevant for deciding on what are constants, ie through measurement. This implies the one moment time description for NC. Otherwise for time interval quantities, the NC are equal to the Δt-Noether charges, similarly limited to finite time interval Δt. The addition of a pair of reciprocal Δt-Noether charges, related through commutation relations for time intervals that correspond with the commutation relations for one moment time t, is invariant with variable Δt, meaning A $\left[c n(\Delta t), c n^{\prime}(\Delta t)\right]=\Delta N$ is an invariant for the overall time interval set, where in fact cn (Δt) and $c n^{\prime}(\Delta t)$ both have the same limit value, and a difference exists only because domain difference depending on the variable, ie $\Delta t . \Delta N$ can be termed $a \Delta N$-Noether charge. ΔN-Noether charges correspond with the usual Noether charges

$N C$ when unlimited infinite time intervals are considered, for instance non interacting situations with H time independent.

Comment 6. For any relevant event time interval $\Delta \mathrm{t}, \mathrm{cn}(\Delta \mathrm{t})$ and cn ' $(\Delta \mathrm{t})$, being averages and time interval $\Delta \mathrm{t}$ quantities, resemble for instance $<\mathrm{T}>\| \Delta \mathrm{t}$ and $<\mathrm{V}>\| \Delta \mathrm{t}$, ie the kinetic energy and potential energy quantities being invariant during Δt because of averaging however variable with Δt. For kinetic energy T and potential energy V , both t -quantities and not necessarily invariant during $\Delta \mathrm{t}$ and within the usual one moment time description, Lagrangian equilibrium requires total energy $\mathrm{T}+\mathrm{V}$ remains invariant during $\Delta \mathrm{t}$ just like $<\mathrm{T}>\| \Delta \mathrm{t}+$ $\langle\mathrm{V}\rangle \| \Delta \mathrm{t}$. These quantities are in principle independent, however, like for T and V , equilibrium means some relation applies.

5. Solution of the 'infinite regress' problem due to the definition of time interval boundaries

The usual qm description of em radiation, including propagation surface, waves and wave 'group' velocity and de Broglie complementarity for waves and wave particles, applies the one moment time description, and assumes parallel plane waves and a stationary state energy variance, ie parallel 'ray' propagation [13, Sakurai]. In contrast, star source radiation assumes sphere-like propagation.

Re-introduced are results for star source radiation from [4, Hollestelle] and [5, Hollestelle]. The reference space coordinate q , within both the one moment time and time interval description, indicates a coordinate place at the radiation propagation sphere surface such that coordinate origin qc is 'close' to q . It is meant $\mathrm{q}(\mathrm{ta})=\mathrm{q}$ and $\mathrm{q}(\mathrm{tb})$ $=\mathrm{qb}$, where qb indicates the star source coordinate place, for $\Delta \mathrm{t}=[\mathrm{tb}, \mathrm{ta}]$. The reference space coordinate q implies a possible measurement place. The line of sight from the star source at place qb to place q at the propagation surface relates to space interval $\Delta \mathrm{q}$. In this description place q and the 'origin' space coordinate place qc both are regarded to 'move along' with the radiation propagation surface while the star source remains at the invariant place $q b$ in space, with distance $|\Delta q|=|q-q b|$ increasing with propagation development.

The uncertainty relations continue to be part of qm if only because they relate qm subjects, like elementary particles, photons and electrons, to 'Newtonian' experimental subjects, like for measurements [13, Sakurai]. Assuming de Broglie complementarity derived are uncertainty relations within the time interval description, different from the usual uncertainty relations when the Hamiltonian is time dependent [5, Hollestelle].

Any usual Lorentz transformation TU should leave metric distances unchanged. In [5, Hollestelle] it is argued to introduce new Lorentz transformations TL that leave metric propagation surface measure unchanged since star source radiation energy remains unchanged during propagation while being proportional to the metric measure of the propagation surface.

For time interval $\Delta \mathrm{t}=[\mathrm{tb}, \mathrm{ta}]$ boundary tb relates by definition, not regarding causality, to boundary ta , with $\mathrm{tb}=$ tb[ta]:

$$
8 \quad 1 / \mathrm{tb}=-1 / \mathrm{ta}\left(1-(\mathrm{c} . \mathrm{q}(\mathrm{ta}))^{\wedge} 2\right)
$$

The constant c has dimension similar to the multiplication inverse of q , with (c. q) dimensionless. Defined in [4, Hollestelle] are the transformations A and $\mathrm{B}: \mathrm{A}(\mathrm{t})$ with $\mathrm{A}(\mathrm{ta})=\mathrm{tb}$, and $\mathrm{B}(\mathrm{t})$ with $\mathrm{B}(\mathrm{ta})=-1$. tb and its reverse $\mathrm{B}(-$ 1) for which the Hamiltonian remains invariant. Transformation A defines any time interval Δt with $[t b, t a]=$ [A(ta), ta]. A series of possibly many transformations $B(-1)$ transforms Δt to another Δt^{\prime}, and includes a rescaling of one moment time t, which takes care $(c . q(t a))^{\wedge} 2 \ll 1$ for equation 8 and transformation A to remain valid for defining $\Delta \mathrm{t}$ with tb and ta resp. negative and positive sign.

Two different solutions exist: $\mathrm{q}(\mathrm{t})=+/-\mathrm{q} 0.1 / \mathrm{t} 0 \mathrm{t}$ and $\mathrm{q}(\mathrm{t})=+/-\mathrm{q} 0 . \mathrm{t} 0.1 / \mathrm{t}$. The factor $(\mathrm{c} . \mathrm{q} 0)$ for $\mathrm{q}(\mathrm{t})=\mathrm{q} 0$ at $\mathrm{t}=$ t 0 is an invariant, and equal to multiplication $\mathrm{M}[\mathrm{c}, \mathrm{q} 0]$ within the time interval set, where both c and q 0 remain invariant during $\Delta \mathrm{t}$.

Comment 7. Space- and time coordinates q and t transform to $q+q L$ and $t+t L$ resp. when applying a specific Lorentz transformation TL, with qL and tL constant space- and time coordinate values. Transformation B(-1) can be interpreted as a Lorentz transformation TL where t to t^{\prime} corresponds with Δt to Δt ' with boundaries tb' and ta', where $q^{\prime}=q(t a ')$ remains well-defined and 'close' to $q c$ ' $=q\left(t c^{\prime}\right)$ like $q=q(t a)$ 'close' to $q c=q(t c)$. When $\left|\mathrm{t}^{\prime} / \mathrm{t}\right|=|(\mathrm{t}+\mathrm{tL}) / \mathrm{t}|>1$ and with equation 8 in terms of transformation A , this means that for, the related to A, specific TL: $t^{\prime}=T L(t)$ is quadratic in t, [5, Hollestelle]. By applying this TL one derives for the commutation pair $\mathrm{cn}(\Delta \mathrm{t})$ and $\mathrm{cn}^{\prime}(\Delta \mathrm{t})$ there is $\mathrm{cn}^{\prime}(\Delta \mathrm{t})=\mathrm{cn}\left(\Delta \mathrm{t}^{\prime}\right)$, starting from cn and cn^{\prime}, equation 1 .

Since time interval $\Delta t=[t b, t a]$ includes one moment time boundaries $t b$ and ta, due to correspondence of $t-$ quantities and Δt-quantities, from equation 8 and comment 7 , it follows equations 9 .

$$
\begin{equation*}
|\mathrm{ta}| /|\mathrm{tb}|=|\mathrm{cn} \prime(\Delta \mathrm{t})| /|\mathrm{cn}(\Delta \mathrm{t})| \tag{9a}
\end{equation*}
$$

With correspondence indication ~ the one moment time parameter t-quantities on the left side correspond with time interval Δt-quantities on the right side:
$9 b \quad$ ta. tbi $\sim M\left[n^{\prime}(\Delta t), \operatorname{cni}(\Delta t)\right]$
Comment 8. from MVT equilibrium follows the relation $D^{*}[q(t)]=+/-q(t) / t$, still applying one moment time parameter t even within the time interval description like discussed in relation to equation 8 and comment 1 , with two solutions, $q(t)$ linear in t and $q(t)$ linear in $1 / t$. Due to MVT equilibrium, $D^{*}[q]$ being neutral, independent of t during $\Delta t, q(t)$ necessarily is linear in t and the linear in $1 / t$ solution can exist only when it is the same solution, ie also linear in t .

To evaluate the meaning of the multiplication inverse ti of t-quantity one moment time t itself, started is from the one moment time 'multiplication unit' to, paragraph 3. For the multiplication inverse for t : $\mathrm{ti}=1 / \mathrm{t}$, where ti however not necessarily belongs to the one moment time set, one finds the relation: $\mathrm{ti} . \mathrm{t}=\mathrm{t} . \mathrm{ti}=\mathrm{t} 0$, which leaves possibly many solutions ti. To give meaning to $t i=1 / \mathrm{t}$, defined is: solution ti is to belong to the one moment time set. In this definition for one moment time t 1 and t 2 , the multiplication t 1 . $\mathrm{t} 2=\mathrm{t} 3$ belongs to the one moment time set in agreement with [4, Hollestelle].

For $\Delta \mathrm{t}$ boundaries ta and tb the relation with t 0 is: $\mathrm{ta}+\mathrm{tb}=2 \mathrm{t} 0$ and ta . $\mathrm{tb}=1 / 2\left(\mathrm{ta}^{\wedge} 2+\mathrm{tb}^{\wedge} 2\right)$ approaching to ta. $\mathrm{tb}=1 / 2 \mathrm{ta} \wedge 2$ for $|\mathrm{ta}| \gg|\mathrm{tb}|$, valid for situations with H time dependent, with $\Delta \mathrm{t}$ highly asymmetric. These one moment time tb and ta properties correspond with the relevant event time interval $\Delta \mathrm{t}$ property $\mathrm{M}[\Delta \mathrm{ti}, \Delta \mathrm{t}]=\mathrm{M}$ $[\Delta \mathrm{t}, \Delta \mathrm{t}]=\Delta \mathrm{t}=\Delta \mathrm{U}$, comment 3 . This correspondence is applied to derive equation 9 .

The overall time interval set needs a new overall description for its Δt-quantity properties. The multiplication inverse $\Delta t i$ for Δt, considered linear in Δt, exists due to the relation $M[\Delta t, \Delta t]=\Delta U$, at least a solution is $\Delta t i=$ Δt itself, comment 3. I* and D^{*} within the time interval description refer to integration and differentiation to one moment time t and correspond with $I^{*} \| \Delta t$ and $D^{*} \| \Delta t$ for integration and differentiation to time interval $\Delta \mathrm{t}$. All $\Delta \mathrm{t}$-quantities are regarded linear in $\Delta \mathrm{t}$ and can be reduced to time intervals, this is discussed in paragraph 12, part IV. One derives for the $\Delta \mathrm{t}$-quantity $\mathrm{cn}(\Delta \mathrm{t})$ in the time interval description:

$$
\begin{align*}
& \mathrm{I}^{*} \| \Delta \mathrm{t}[\mathrm{cn}(\Delta \mathrm{t})]=\mathrm{M}\left[\Delta \mathrm{t}, \mathrm{~A}\left[\mathrm{cn}(\Delta \mathrm{t}),-1 . \mathrm{cn}^{\prime}(\Delta \mathrm{t})\right]\right]=\mathrm{A}\left[\mathrm{cn}(\Delta \mathrm{t}),-1 . \mathrm{cn}^{\prime}(\Delta \mathrm{t})\right] \tag{10}\\
& \mathrm{D}^{*} \| \Delta \mathrm{t}[\mathrm{cn}(\Delta \mathrm{t})]=\mathrm{M}[\mathrm{~A}[\mathrm{cn}(\Delta \mathrm{t}),-1 \cdot \operatorname{cn}(\Delta \mathrm{t})], \Delta \mathrm{ti}]=\mathrm{A}\left[\mathrm{cn}^{\prime}(\Delta \mathrm{t}),-1 \cdot \mathrm{cn}(\Delta \mathrm{t})\right]
\end{align*}
$$

These equations are time interval only relations, and do not require one moment parameter t. They include multiplication with Δt resp. $\Delta t i$ and are the time interval equivalent of equations 1 , ie they define commutation relations for time intervals and time intervals 'working to the right'. They include $\Delta \mathrm{t}$ and $\Delta \mathrm{ti}$ and in this way MVT equilibrium for energies related to I ${ }^{*} \| \Delta t$ and $\mathrm{D}^{*} \| \Delta \mathrm{t}$ is assured since the results for both in terms of time intervals is the same. In terms of one moment time quantities the results seem opposite since results are similar to those of the one moment time description when H time independent. However, for H time independent, ie a noninteracting situation, both cn and cn ' are the same and $\mathrm{cn}+-1$. cn ' equals the 'addition zero' for the one moment time set corresponding with $\Delta \mathrm{U} 0$. With equations 9 and 10 the 'infinite regress' problem for the definition of time intervals is resolved.

The meaning of $I^{*} \| \Delta t$ and $D^{*} \| \Delta t$, integration and differentiation to Δt, starts from MVT equilibrium and the linear in Δt property just like I^{*} and D^{*} with MVT equilibrium and the linear in t property. Derivation of equation 10 includes the commutation versions, comment 1 , for $I^{*} \| \Delta t$ and $D^{*} \| \Delta t$, including one moment time dependence, application of equation 9 and correspondence of t 0 with $\Delta \mathrm{t} 0=\Delta \mathrm{U}=\Delta \mathrm{t}$ for $\mathrm{I}^{*} \| \Delta \mathrm{t}$ and linearity in $\Delta \mathrm{ti}$ for $\mathrm{D}^{*} \| \Delta \mathrm{t}$, explaining the occurrence of $\Delta \mathrm{t}$ and $\Delta \mathrm{ti}$ within equation 10 .

It is assumed the situation is "remote" from H time independent, ie $|\mathrm{ta}| \gg|\mathrm{tb}|$, and thus $\mid \mathrm{cn}$ ' $(\Delta \mathrm{t})|\gg| \mathrm{cn}(\Delta \mathrm{t}) \mid$ due to equation 9. For $\mathrm{cn}{ }^{\prime}(\Delta \mathrm{t})$ similar equations can be derived. The indication $*$ is for operators, however applied for the above integration and differentiation by exception. From equation 10 one finds similarity for $I^{*} \| \Delta t$ and $D^{*} \| \Delta t$ in agreement with $\Delta t i=\Delta t$ and comment 8 , except for the order of $\mathrm{cn}(\Delta t)$ and $n^{\prime}(\Delta t)$. The order difference can be disregarded in this case since from the correspondence $t 0$ with $\Delta U=\Delta U i$ it follows $I^{*} \| \Delta t$ $[\mathrm{cn}(\Delta \mathrm{t})]=\mathrm{D}^{*} \| \Delta \mathrm{t}[\mathrm{cn}(\Delta \mathrm{t})]$, ie the result in terms of time intervals is in fact the same for both integration and
differentiation, at least for Δt-quantities $\mathrm{cn}(\Delta t)$ and $\mathrm{cn}^{\prime}(\Delta \mathrm{t})$. Since $\mathrm{cn}(\Delta \mathrm{t})$ is linear in $\Delta \mathrm{t}$, and any $\Delta \mathrm{t}$-quantity can be represented linear in $\mathrm{cn}(\Delta \mathrm{t})$, this supports the inference for $\mathrm{I}^{*} \| \Delta \mathrm{t}$ and $\mathrm{D}^{*} \| \Delta \mathrm{t}$ that results are exactly similar to equation 10 for all time intervals and $\Delta \mathrm{t}$-quantities. This is discussed in paragraph 10.

6. Time interval only set properties

Commutation properties are usually defined within a one moment time description and depend on the vector like space time coordinates and quantities that can form combinations like addition or multiplication. In this way differences and change can be included in the one moment time description with differentiation to parameter t . In this paper the time interval description includes both t-quantities and Δt-quantities. However, for a description with time intervals only, specific properties for the time interval set like addition and multiplication are necessary, combinations for time intervals that before did not have meaning yet.

In [4, Hollestelle] two elementary parameters, termed elements, define time interval $\Delta t=[\mathrm{tb}, \mathrm{ta}]$ and its boundaries tb an ta within a one-dimensional time concept. It is argued these two elements are such that they agree with the way time can be measured or counted and they are independent of, preliminary to, one moment time t. Any time interval is based on these elements where measurement is possibly counting towards ta in the future to count forward to from tb in the past. The definitions for time interval properties and for elements from [4, Hollestelle] remain valid in this paper. Any time interval includes a part of the past tb belongs to and a part of the future ta belongs to. With tb and ta the one moment time t and vector concept remain within the time interval description. In this paper a time interval only description is proposed, starting with the results from paragraph 5.

7. Addition and some fundamental properties

Within the time interval description defined is addition from the introduction of 'addition zero' time interval $\Delta \mathrm{t} 0$ such that addition of $\Delta t 0$ with any other time interval $\Delta t 1$ leaves $\Delta t 1$ invariant. There is $A[\Delta t 1, \Delta t 0]=\Delta t 1$. It is plausible, and discussed for $\Delta t 0$ in comment 4 , for any $\Delta t 1$ there should be $\Delta t 1$ 'addition' $\Delta t 1$ equals $\Delta t 1$. When the time interval description regards events and properties within reality and regards these within any time interval, say $\Delta t 1$, the 'addition zero' $\Delta t 0$ for the time interval set at least can be relevant event time interval Δt itself. There is $\mathrm{A}[\Delta \mathrm{t} 1, \Delta \mathrm{t}]=\Delta \mathrm{t}$. This depends on the premise that there is only 'one' 'time' for the cosmological universe together and all is in the same 'time' and nothing is late or early. Time intervals do not exist outside themselves, they remain by themselves and don't give extra time from outside themselves to themselves:
$11 \Delta t 1$ 'addition' $\Delta t 1$, to the same time interval, leaves $\Delta t 1$ invariant: A $[\Delta t 1, \Delta t 1]=\Delta t 1$
$\Delta \mathrm{t} 1$ is any time interval within the time interval set. This confirms the interpretation of time interval set addition with domain addition where addition of two identical domains results in the same domain. The time interval description differs in results from the one moment time description when the Hamiltonian H is time dependent [4, Hollestelle], and the relevant event time interval Δt is asymmetric and finite. Time interval Δt includes one moment time boundaries tb and ta : tb differs from -1 . ta, while both tb and ta are finite with opposite sign and $|\mathrm{tb}|<|\mathrm{ta}|$.

The 'addition inverse' Δ tiv for a finite relevant event time interval $\Delta \mathrm{t}$ equals $\Delta \mathrm{t}$, i.e. A [$\Delta \mathrm{tiv}, \Delta \mathrm{t}]$ equals A [$\Delta \mathrm{t}$, $\Delta t]=\Delta t$. One finds Δt 'addition' $-1 . \Delta t$ does not equal Δt, where $-1 . \Delta t$ means with opposite signs for the boundaries. The $-1 . \Delta \mathrm{t}$ is not the 'addition inverse' for $\Delta \mathrm{t}$ and is not well defined for finite time intervals: it does not belong to the time interval set. One might argue Δt 'addition' $-1 . \Delta t$ equals $-1 . \Delta t$ from the above definition where $\Delta t 0$ equals $\Delta \mathrm{t}$. Notice that $\Delta \mathrm{t} 0$ is not a zero-measure time interval in the sense of domain measure equal to zero. The order within addition seems to matter. Addition for any two time intervals $\Delta \mathrm{t} 1$ and $\Delta \mathrm{t} 2$ is indicated with A $[\Delta \mathrm{t} 1, \Delta \mathrm{t} 2]$.

8. Multiplication and the multiplication closure theorem

Similar to addition A one can define multiplication M, with indication $M[\Delta t 1, \Delta t 2]$ for any two time intervals $\Delta \mathrm{t} 1$ and $\Delta \mathrm{t} 2$, from the introduction of "multiplication unit" $\Delta \mathrm{U}$, while the relevant event time interval remains $\Delta \mathrm{t}$. Like with addition it is not clear immediately what multiplication could mean for the time interval set. Several properties for M are now summarized.

Multiplication properties

The result of multiplication is assumed to belong to the time interval set: $M[\Delta t 1, \Delta t 2]=\Delta t 3$ and this implies closure of the time interval set for multiplication M . The resulting $\Delta \mathrm{t} 3$ is a time interval, confirmed by the time interval set "multiplication unit" $\Delta \mathrm{U}$ relation $\mathrm{M}[\Delta \mathrm{U}, \Delta \mathrm{t} 1]=\Delta \mathrm{t}$. This is supported by several of the following properties. The multiplication inverse Δ tli for any time interval $\Delta t 1$ is a time interval itself, including the multiplication property: $\mathrm{M}[\Delta \mathrm{U}, \Delta \mathrm{t} 1 \mathrm{i}]=\Delta \mathrm{t} 1 \mathrm{i}$. Due to comment 3 the multiplication inverse $\Delta \mathrm{ti}$ for $\Delta \mathrm{t}$ equals $\Delta \mathrm{t}$ itself, $\Delta \mathrm{t}$ being the relevant event time interval. $\mathrm{M}[\Delta \mathrm{t} 1, \Delta \mathrm{t} 1 \mathrm{i}]=\Delta \mathrm{U}$ for any $\Delta \mathrm{t}$, including those $\Delta \mathrm{t} 1$ not equal to $\Delta \mathrm{t}$, assuming there exists at least one multiplication inverse time interval $\Delta \mathrm{t} 1 \mathrm{i}$ for each $\Delta \mathrm{t} 1$. With similar argument for validity of equation 11 for addition, multiplication $\mathrm{M}[\Delta \mathrm{t} 1, \Delta \mathrm{t} 1]=\Delta \mathrm{t} 1$ is valid for $\Delta \mathrm{t} 1$ any time interval.

Comment 9. Associative properties. The symmetrical first associative, 'series', property for M: M [M [g1, g2], $\mathrm{g} 3]=\mathrm{M}[\mathrm{g} 1, \mathrm{M}[\mathrm{g} 2, \mathrm{~g} 3]]$ is assumed valid, the symmetrical second associative, 'parallel', property for $\mathrm{M}: \mathrm{M}$ $[g 1, M[g 2, g 3]]=M[M[g 1, g 2], M[g 1, g 3]]$ is not necessarily valid, for gi any three time intervals. The first and second associative property to be similar in validity can be contradictory. The usual derivative of a multiplication applies the second associative property, equation 3 . The derivative to one quantity applies commutations in terms of one moment time or time intervals, comment 1 . The associative properties are defined for the time interval set, associative properties are known for ordinary sets, for instance for some specific algebras, [14, Jacobson].

For multiplication M the following definition is feasible, relation 12. The integral $\mathrm{I}^{*} \| \Delta \mathrm{t} 2$ to time interval $\Delta \mathrm{t} 2$ is introduced, just like the usual integral I^{*} to one moment time t, with the integral domain equal to the $\Delta \mathrm{t} 2-$ domain:

Comment 10. Multiplication

12

$$
\mathrm{M}[\Delta \mathrm{t} 1, \Delta \mathrm{t} 2]=\mathrm{M}[\mathrm{M}[<\Delta \mathrm{t} 1>\| \Delta \mathrm{t} 2, \Delta \mathrm{t} 2], \Delta \mathrm{t} 2]=\mathrm{M}[<\Delta \mathrm{t} 1>\| \Delta \mathrm{t}, \Delta \mathrm{t} 2]=\mathrm{I} * \| \Delta \mathrm{t} 2[\Delta \mathrm{t} 1]
$$

This definition depends on the order of $\Delta \mathrm{t} 1$ and $\Delta \mathrm{t} 2$. Other relations that possibly are symmetrical in $\Delta \mathrm{t} 1$ and $\Delta \mathrm{t} 2$ are possible however not discussed in this paper. With time interval $\Delta \mathrm{t} 1$ invariant during $\Delta \mathrm{t}$ and $\Delta \mathrm{t} 1=<\Delta \mathrm{t} 1$ $>\| \Delta \mathrm{t}$ and $\Delta \mathrm{t}=\Delta \mathrm{t} 0$, there is $<\Delta \mathrm{t} 1>\| \Delta \mathrm{t}=\mathrm{M}[<\Delta \mathrm{t} 1>\| \Delta \mathrm{t}, \Delta \mathrm{t}]=\mathrm{M}[<\Delta \mathrm{t} 1>\| \Delta \mathrm{t} 2, \Delta \mathrm{t} 2]$ and $<\Delta \mathrm{t} 1>\| \Delta \mathrm{t} 2=\mathrm{M}[\mathrm{M}[<$ $\Delta \mathrm{t} 1>\| \Delta \mathrm{t} 2, \Delta \mathrm{t} 2], \Delta \mathrm{t} 2 \mathrm{i}]=\mathrm{M}[\mathrm{M}[<\Delta \mathrm{t} 1>\| \Delta \mathrm{t}, \Delta \mathrm{t}], \mathrm{M}[\Delta \mathrm{t} 2 \mathrm{i}, \Delta \mathrm{t}]]=\mathrm{M}[\Delta \mathrm{t} 1, \Delta \mathrm{t} 2 \mathrm{i}]$. This is the meaning of the second and third part of equation 12 , including the average $<\Delta \mathrm{t} 1>\| \Delta \mathrm{t} 2$, and the integral to $\Delta \mathrm{t} 2$ by definition $\mathrm{I}^{*} \| \Delta \mathrm{t} 2$ $[\Delta \mathrm{t} 1]=\mathrm{M}[<\Delta \mathrm{t} 1>\| \Delta \mathrm{t}, \mathrm{M}[\Delta \mathrm{t}, \Delta \mathrm{t} 2 \mathrm{i}]]=<\Delta \mathrm{t} 1>\| \Delta \mathrm{t} 2$. Applied is comment 3 and the symmetrical first associative property for M , comment 9 .

With unchanged multiplication order for $\Delta t 1$ and $\Delta t 2$, and with $\Delta t 2=\Delta t$, no changes occur for equation 12 in principle and it immediately follows:

$$
\begin{equation*}
\mathrm{M}[\Delta \mathrm{t} 1, \Delta \mathrm{t}]=<\Delta \mathrm{t} 1>\left\|\Delta \mathrm{t}=\mathrm{I}^{*}\right\| \Delta \mathrm{t} \mathrm{dt}[\Delta \mathrm{t} 1]=\Delta \mathrm{t} 1 \tag{13}
\end{equation*}
$$

The meaning and difference for averaging and integration to time interval $\Delta \mathrm{t} 2$ and to $\Delta \mathrm{t}$, are clearly indicated from the above equations. When time interval $\Delta \mathrm{t} 1$ and $\Delta \mathrm{t} 2$ do not extend to outside $\Delta \mathrm{t}$, ie the common domain for $\Delta \mathrm{t} 1$ or $\Delta \mathrm{t} 2$ with $\Delta \mathrm{t}$ equals $\Delta \mathrm{t} 1$ or $\Delta \mathrm{t} 2$, and with one moment time t being continuous within $\Delta \mathrm{t}$ these averages are evident. For $\Delta \mathrm{t} 1=\Delta \mathrm{U}$, the 'multiplication unit' for the time interval set, one finds:

$$
\begin{equation*}
\mathrm{M}[\Delta \mathrm{U}, \Delta \mathrm{t}]=\mathrm{I}^{*} \| \Delta \mathrm{t}[\Delta \mathrm{U}]=\Delta \mathrm{t} \tag{14}
\end{equation*}
$$

$15 \mathrm{M}[\Delta \mathrm{U}, \Delta \mathrm{ti}]=\mathrm{I} * \| \Delta \mathrm{ti}[\Delta \mathrm{U}]=\Delta \mathrm{ti}$
The $\Delta \mathrm{U}$ relations, $\mathrm{M}[\Delta \mathrm{U}, \Delta \mathrm{t}]=\mathrm{M}[\Delta \mathrm{t}, \Delta \mathrm{U}]=\Delta \mathrm{t}$, comment 3, and $\mathrm{M}[\Delta \mathrm{U}, \Delta \mathrm{t}]=\Delta \mathrm{U}$, equation 13, confirm $\Delta \mathrm{U}=$ Δt and $\Delta t i=\Delta t$. From 'multiplication inverse' time interval $\Delta t i=\Delta t$ one finds independent support for equation 12 assuming the definition for time interval multiplication.

Closed multiplication. Closed multiplication implies $\mathrm{M}[\Delta \mathrm{t} 1, \Delta \mathrm{t} 2]=\Delta \mathrm{t} 3$ is a time interval, and validity of $\Delta \mathrm{t} 3=$ a. $\Delta \mathrm{ta}$, scalar a itself dependent on time interval $\Delta \mathrm{ta}$, implies the solution time interval $\Delta \mathrm{ta}$. Not for all scalars a one finds solutions $\Delta \mathrm{ta}$, at least for $\mathrm{a}=1 \mathrm{a}$ solution exists and is $\Delta \mathrm{ta}=\Delta \mathrm{t} 3$.

Comment 11. Not all scalar arguments a can be allowed when $\mathrm{M}[\Delta \mathrm{t} 1, \Delta \mathrm{t} 2]=\mathrm{a} . \Delta \mathrm{ta}$ belongs to the time interval set, where the future domain part measure exceeds the past domain part measure. When Δt is a time interval, 1. $\Delta \mathrm{ta}$ is not when H time dependent and $\Delta \mathrm{t}$ asymmetric. For any time interval, equation 8 is the defining and
necessary relation for one moment time boundaries tb and ta. The existence of Δt depends on Δt-quantities being linear with Δt due to MVT equilibrium, paragraph 12, part IV.

The multiplication result $\Delta \mathrm{t} 3$ can be rewritten with a time interval multiplication $\Delta \mathrm{t} 3=\mathrm{a} . \Delta \mathrm{ta}=\mathrm{M}[\mathrm{ca}, \Delta \mathrm{ta}]$. Due to the symmetrical first associative property: $\mathrm{ca}=\mathrm{M}[\mathrm{ca}, \Delta \mathrm{t}]=\mathrm{M}[\mathrm{ca}, \mathrm{M}[\Delta \mathrm{tai}, \Delta \mathrm{ta}]]=\mathrm{M}[\mathrm{M}[\mathrm{ca}, \Delta \mathrm{tai}], \Delta \mathrm{ta}]$, ie a time interval average multiplication $\mathrm{ca}=\mathrm{M}[<\mathrm{ca}>\| \Delta \mathrm{ta}, \Delta \mathrm{ta}]$ for any time interval ca. Time interval averages for time intervals, like in equation 12, are time intervals themselves. When applying the first associative property with several steps, one finds: $\mathrm{M}[\mathrm{ca}, \Delta \mathrm{ta}]=\mathrm{M}[\mathrm{M}[<\mathrm{ca}>\| \Delta \mathrm{ta}$, ai. $\mathrm{M}[\mathrm{ca}, \Delta \mathrm{ta}]], \Delta \mathrm{ta}]$ is equal to $\mathrm{M}[<\mathrm{ca}>\| \Delta \mathrm{ta}$, ai. $\mathrm{M}[\mathrm{ca}, \mathrm{M}[\Delta \mathrm{ta}, \Delta \mathrm{ta}]]]=\mathrm{M}[<\mathrm{ca}>\| \Delta \mathrm{ta}$, ai. $\mathrm{M}[\mathrm{ca}, \Delta \mathrm{ta}]]=\mathrm{M}[<\mathrm{ca}\rangle \| \Delta \mathrm{ta}, \Delta \mathrm{ta}]=\mathrm{ca}$, and there is $\mathrm{ca}=\Delta \mathrm{t} 3=\mathrm{a}$. $\Delta \mathrm{ta}$ and $\Delta \mathrm{ta}=\Delta \mathrm{t}$ for any allowed scalar a, comment 11 . This means a solution is $\mathrm{ca}=\mathrm{a} . \Delta \mathrm{t}$ and $\Delta \mathrm{t} 3=\mathrm{a} . \Delta \mathrm{t}$ and both are linear in Δt.

These solutions follow directly from a. $\Delta t a=M[c a, \Delta t a]$ and property $M[\Delta t a, \Delta t a]=\Delta t$. Solutions for any $\Delta t a$ should exist since the time interval set is linear in $\Delta \mathrm{t}$, ie 1 -dimensional. Due to MVT equilibrium these solutions are found by starting from $\mathrm{ca}=\mathrm{e} 1 . \Delta \mathrm{t}$ and $\Delta \mathrm{ta}=\mathrm{e} 2 . \Delta \mathrm{t}$, with result $\Delta \mathrm{t} 3=\mathrm{e} 1 . \mathrm{e} 2 . \Delta \mathrm{t}$ linear in $\Delta \mathrm{t}$ and a $=\mathrm{e} 1$.
Solution $\Delta \mathrm{ta}=\mathrm{e} 2 . \Delta \mathrm{t}$ is linear in $\Delta \mathrm{t}$ and includes any scalar e2, meaning in this way any time interval $\Delta \mathrm{ta}$ can be a solution. The consideration that any time interval is neutral in $\Delta \mathrm{t}$ and linear in $\Delta \mathrm{t}$, is discussed in paragraph 12, part IV. For scalar a $=1$ solution Δ ta equals $\Delta \mathrm{t} 3$, and this means a time interval only multiplication exists equal to scalar multiplication at least for $\mathrm{a}=1: \mathrm{M}[\mathrm{a}, \Delta \mathrm{ta}]=\mathrm{M}[\mathrm{ca}, \Delta \mathrm{ta}]$ with solution $\mathrm{ca}=\Delta \mathrm{U}=\Delta \mathrm{t}$. The scalar a is the resultant for any ca and Δ ta, however with reference to comment 11 .

Comment 12. Closure theorem. The relation $\Delta \mathrm{t} 3=\mathrm{a} . \Delta \mathrm{ta}=\mathrm{M}$ [ca, $\Delta \mathrm{ta}]$ depends on the argument scalar a having 'positive' sign. For argument a with a 'negative' sign the scalar multiplication does not follow the requirements of comment 11 . From the first associative property for M with g 1 equal to any scalar a one finds linearity with scalar a for multiplication $\mathrm{M}[\Delta \mathrm{t}, \Delta \mathrm{ta}]$, with $\Delta \mathrm{t} 3=\mathrm{a} . \Delta \mathrm{ta}=\mathrm{a} . \mathrm{M}[\Delta \mathrm{t}, \Delta \mathrm{ta}]=\mathrm{M}[\mathrm{a} . \Delta \mathrm{t}, \Delta \mathrm{ta}]$, equal to $\Delta \mathrm{t} 3=\mathrm{M}[\mathrm{ca}$, $\Delta \mathrm{ta}$] with solution $\mathrm{ca}=\mathrm{a} . \Delta \mathrm{t}$ linear in $\Delta \mathrm{t}$. From $\Delta \mathrm{t} 3=\mathrm{ca}=\mathrm{a} . \Delta \mathrm{t}$ linear in time interval $\Delta \mathrm{t}$, ie itself a time interval, it follows the closure theorem for any resultant scalar a, with reference to comment 11: multiplication M is closed within the time interval set.

Comment 13. The first associative property for differentiation seems valid if only due to the preserved order of the gi in series in comment 9 . More precisely, this property is related to the following commutation properties for t-quantities $N C(t)$ that are linear in parameter t due to MVT equilibrium. $N C(t)$ is defined from the neutral t quantities cn and cn ' with $\mathrm{D}^{*}[\mathrm{NC}(\mathrm{t})]=\mathrm{cn}$ and it follows, equation 1 ,

$$
\begin{equation*}
\mathrm{t}|1 . \mathrm{NC}(\mathrm{t})| 2 . \mathrm{cn}{ }^{\prime}=\mathrm{NC}(\mathrm{t})|1 . \mathrm{t}| 2 \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
1 / t|1 . \mathrm{NC}(\mathrm{t})| 2=\mathrm{NC}(\mathrm{t})|1.1 / \mathrm{t}| 2 . \mathrm{cn} \tag{17}
\end{equation*}
$$

The bar with indication $\mid 1$ or $\mid 2$ means the t-quantity at this place depends on parameter t with $t=t 1$ or $t=t 2$. Equations 16 and 17 are not definitions, rather they are derived from the defining relation $\mathrm{D}^{*}[\mathrm{NC}(\mathrm{t})]=\mathrm{cn}$ and equation 1 for cn and cn ' from MVT equilibrium within the time interval description. One finds the order of $\mid 1$ and $\mid 2$ is preserved when reversing the order of parameter t and quantity $\mathrm{NC}(\mathrm{t})$ within the equations due to commutation. For the overall time interval set and within time interval $\Delta \mathrm{t}$ perspective, cn and cn ' correspond with the neutral Δt-quantities $\mathrm{cn}(\Delta t)$ and $\mathrm{cn}^{\prime}(\Delta \mathrm{t})$, linear dependent on $\Delta \mathrm{t}$, and confirmed is the differentiation first associative property at least for $\mathrm{cn}(\Delta \mathrm{t})$ and $\mathrm{cn}^{\prime}(\Delta \mathrm{t})$.

9. Differentiation and the time interval differentiation 'set rule'

Similar like for multiplication M, paragraph 8, one moment time t can be left out for addition A within the time interval set. Proposed is a definition for $\mathrm{A}[\Delta \mathrm{t} 1, \Delta \mathrm{t} 2]$ including multiplication $\mathrm{M}[\Delta \mathrm{t} 1, \Delta \mathrm{t} 2]$ and differentiation to time interval $\Delta \mathrm{t} 2, \mathrm{D}^{*} \| \Delta \mathrm{t} 2$. In paragraph 9 a and 9 b this is applied to $\Delta \mathrm{t} 2=\Delta \mathrm{t}$, equation 21 and 22 , where the asymmetrical second associative property is assumed for differentiation to $\Delta t, D^{*} \| \Delta t$, evidently similar with one moment time differentiation d / dt, equation 3 .

Comment 14. Addition

$$
\begin{equation*}
\mathrm{A}[\Delta \mathrm{t} 1, \Delta \mathrm{t} 2]=\mathrm{D}^{*} \| \Delta \mathrm{t} 2[\mathrm{M}[\Delta \mathrm{t} 1, \Delta \mathrm{t} 2]] \tag{19}
\end{equation*}
$$

$\mathrm{A}[\Delta \mathrm{t} 1, \Delta \mathrm{t}]=\mathrm{D}^{*} \| \Delta \mathrm{t}[\mathrm{M}[\Delta \mathrm{t} 1, \Delta \mathrm{t}]]=\Delta \mathrm{t} 1$
$\mathrm{A}[\Delta \mathrm{t} 0, \Delta \mathrm{t}]=\mathrm{D}^{*} \| \Delta \mathrm{t}[\mathrm{M}[\Delta \mathrm{t} 0, \Delta \mathrm{t}]]=\Delta \mathrm{t} 0$

For Δt equal to $\Delta t 0$, the $\Delta t 0$ 'addition zero' definition, comment 4 , agrees with equation 19 since Δt leaves $\Delta t 1$ including $\Delta \mathrm{t} 1=\Delta \mathrm{t} 0$ invariant by addition. Equations 19 and 20 result from the identification $\Delta \mathrm{t} 2$ equals $\Delta \mathrm{t}$ like for multiplication, due to the argument from comment 15 . Equation 18 can be derived to be valid for $\Delta t 1$ and $\Delta t 2$ identified with Δt-quantities $\mathrm{cn}(\Delta t)$ and $\mathrm{cn}^{\prime}(\Delta \mathrm{t})$. $\mathrm{cn}(\Delta \mathrm{t})$ is linear in $\Delta \mathrm{t}$ due to MVT equilibrium and this supports generalization of equation 18 to the time interval set, discussed in paragraph 12, part IV. The first associative property is applied and cancelling terms are left out. Cancelling terms can be left out due to $\mathrm{A}[\Delta \mathrm{t} 1$, $\Delta t]=\Delta t 1$.

Comment 15. The definitions for M and A depend on the existence of a real event where the relevant event time interval is Δt. Only with this Δt the properties for $\Delta t 0$ and ΔU can be considered sensible. Multiplication does not make sense with $\Delta \mathrm{t} 2$ not equal to $\Delta \mathrm{t}$ because it includes a time interval average during $\Delta \mathrm{t} 2$, where however the measurement event time interval, the time interval that is also the reference for averaging, is equal to Δt. Multiplication is included in A due to definition equation 18 and therefore also A depends on relevant event time interval $\Delta \mathrm{t}$.

9a. The asymmetric second associative property and the one moment time differentiation 'set-rule'

For differentiation of a multiplication $\mathrm{g} 1 . \mathrm{g} 2$, with g 1 and g 2 arbitrary scalar t -quantities, usually applies: d / dt [g1.g2] = c1. d/dt [g1].g2 + c2.g1.d/dt [g2], in the one moment time description for the derivative to one moment time t , similar to equation 3 when scalars $\mathrm{c} 1=\mathrm{c} 2=1$. When, equation 3 , both two parts are valued equal, the symmetric second associative, ie distributive, property is valid for the gt -quantities set.

Assume $\mathrm{g} 1 . \mathrm{g} 2=\mathrm{a}$. g 3 with $\mathrm{g} 1=\mathrm{a}$, an invariant scalar, and g 2 any t -quantity. The differentiation 'set-rule' defines the result, to release scalar $\mathrm{a}: \mathrm{d} / \mathrm{dt}[\mathrm{a} . \mathrm{g} 3]=\mathrm{c} 1 . \mathrm{d} / \mathrm{dt}[\mathrm{a}] . \mathrm{g} 3+\mathrm{c} 2 . \mathrm{a} . \mathrm{d} / \mathrm{dt}[\mathrm{g} 3]=\mathrm{a} . \mathrm{d} / \mathrm{dt}[\mathrm{g} 3]$, in the symmetric one moment time description, equation 3 .

9b. The time interval set and the time interval differentiation 'set-rule'

Now the perspective is changed to Δt-quantities and the time interval set. The usual properties for addition and multiplication for one moment time sets are based on the vector interpretation for space time coordinates within the one moment time description. They are however not at all evident for A and M within the time interval set and are not to be applied just like this. The usual properties include: A [a1.g1, a2. g1] equals (a1 + a2). g1, for instance with $\mathrm{A}[1 . \mathrm{g} 1,1 . \mathrm{g} 1]=\mathrm{A}[\mathrm{g} 1, \mathrm{~g} 1]=2 . \mathrm{g} 1$, where a1 and a2 are scalar numbers and g 1 belongs to the set. These properties decide on the time parameter 'set rule'. These properties do not exist within the time interval set where $\mathrm{A}[\Delta \mathrm{t} 1, \Delta \mathrm{t} 1]=\Delta \mathrm{t} 1$ is essentially different and depending on domain addition instead of vector addition, like for equations 19 and 20 for $\mathrm{g} 1=\Delta \mathrm{t}$.

Comment 16. The asymmetric second associative property for differentiation to time interval $\Delta \mathrm{t}, \mathrm{D}^{*} \| \Delta \mathrm{t}[\mathrm{M}[\mathrm{g} 1$, g2]], with g1 and g2 any two time intervals, is:
$21 \mathrm{D}^{*} \| \Delta \mathrm{t}[\mathrm{M}[\mathrm{g} 1, \mathrm{~g} 2]]=\mathrm{A}\left[\mathrm{c} 1 . \mathrm{M}\left[\mathrm{D}^{*} \| \Delta \mathrm{t}[\mathrm{g} 1], \mathrm{g} 2\right], \mathrm{c} 2 . \mathrm{M}\left[\mathrm{g} 1, \mathrm{D}^{*} \| \Delta \mathrm{t}[\mathrm{g} 2]\right]\right]$
with possibly un-equal scalars c 1 and c 2 for asymmetric differentiation and equal scalars for symmetric differentiation of $\mathrm{M}[\mathrm{g} 1, \mathrm{~g} 2]$. In the particular case g 1 equals a. $\Delta \mathrm{t} 1$ including any scalar a and time interval $\Delta \mathrm{t} 1$, and $g 2$ identified with Δt, from equation 18 and 21 , one finds:

$$
\begin{equation*}
\mathrm{A}[\mathrm{a} . \Delta \mathrm{t} 1, \Delta \mathrm{t}]=\mathrm{D}^{*} \| \Delta \mathrm{t}[\mathrm{a} . \Delta \mathrm{t} 1]=\mathrm{A}\left[\mathrm{c} 1 . \mathrm{M}\left[\mathrm{D}^{*} \| \Delta \mathrm{t}[\mathrm{a}], \Delta \mathrm{t} 1\right], \mathrm{c} 2 . \mathrm{M}\left[\mathrm{a}, \mathrm{D}^{*} \| \Delta \mathrm{t}[\Delta \mathrm{t} 1]\right]\right] \tag{22}
\end{equation*}
$$

This is not equal to the differentiation to one moment time 'set rule': $d / d t[a . g 1]=a . d / d t[g 1]$. The time interval differentiation 'set rule', equation 23 , is derived from equation 18 . Applied is, 'addition zero' $\Delta t 0$ equals Δt and 'multiplication unit' $\Delta \mathrm{U}$ similarly equals $\Delta \mathrm{t}$, paragraph 7 and 8 . Multiplication with scalar a does not need brackets, $\mathrm{M}[\mathrm{a} . \Delta \mathrm{t} 1, \Delta \mathrm{t}]=\mathrm{a} . \Delta \mathrm{t} 1$. The time interval differentiation 'set-rule' is such, that scalar a is placed left and outside of the derivative $\mathrm{D}^{*} \| \Delta \mathrm{t}$ brackets in equation 22 and not to the right and inside brackets. The 'set rule' is non-trivial since $\mathrm{D}^{*} \| \Delta \mathrm{t}[\mathrm{a}]$, for invariant scalar a, is not necessarily equal to $\Delta \mathrm{U} 0$ and does not correspond with $\mathrm{d} / \mathrm{dt}[\mathrm{a}]$ equal to the one moment time set 'addition zero' and its 'multiplication zero'. Differentiation provides correspondence for t-quantities with Δt-quantities only when the time interval differentiation 'set rule' is introduced.

Comment 17. The existence of scalar multiplication $\mathrm{M}[\mathrm{a}, \Delta \mathrm{t} 2]=\mathrm{a} . \Delta \mathrm{t} 2$, for any $\Delta \mathrm{t} 2$ is assured, in the sense of being equal to certain time interval $\Delta \mathrm{t} 3$, with invariant scalar a, not a time interval. For scalars the usual one moment time indications and definitions for M and A like . and + apply. Due to the closure theorem, comment

12 , for any scalar a with positive sign, the result for $\mathrm{M}[\mathrm{a} . \Delta \mathrm{t}, \Delta \mathrm{t} 2]=\mathrm{a} . \Delta \mathrm{t} 2=\Delta \mathrm{t} 3$, is a time interval. With solution $\Delta \mathrm{t}=\Delta \mathrm{t} 2$ and $\Delta \mathrm{t} 3$ belonging to the time interval set, this allows the application of M and A and $\mathrm{I} * \| \Delta \mathrm{t} 2$ and $\mathrm{D}^{*} \| \Delta \mathrm{t} 2$ to these $\Delta \mathrm{t} 3$, a linearity or subset property, paragraph 12 , part IV. Time interval derivative $\mathrm{D}^{*} \| \Delta \mathrm{t} 2$ [a] exists independent of this for any scalar a.

It follows from direct evaluation of A and M , applying derivatives $\mathrm{D}^{*}\|\Delta \mathrm{t}[\Delta \mathrm{t} 1]=[1 / \mathrm{t}, \Delta \mathrm{t} 1]\| \Delta \mathrm{t}$, and $\mathrm{D}^{*}[\mathrm{~A} 1]=$ [1/t, A1]u, for time interval $\Delta \mathrm{t} 1$ including one moment time boundaries tb and ta and one moment time quantity A1, comment $1, D^{*} \| \Delta t[a . \Delta t 1]$ does not have to be linear in scalar a and a remain $\operatorname{Rest}(\mathrm{a})$ is added, equation 23. This is derived without applying the second associative property constants c 1 or c 2 for equation 22 .

Comment 18. The time interval differentiation 'set rule'

23

$$
\begin{aligned}
& \mathrm{D}^{*}[\mathrm{a} . \Delta \mathrm{t} 1]=\mathrm{A}\left[\mathrm{a} . \mathrm{D}^{*}[\Delta \mathrm{t} 1], \operatorname{Rest}(\mathrm{a}) \mathrm{t}\right] \\
& \mathrm{D}^{*} \| \Delta \mathrm{t}[\mathrm{a} \cdot \Delta \mathrm{t} 1]=\mathrm{A}\left[\mathrm{a} . \mathrm{D}^{*}\|\Delta \mathrm{t}[\Delta \mathrm{t} 1], \operatorname{Rest}(\mathrm{a})\| \Delta \mathrm{t}\right] \\
& \operatorname{Rest}(\mathrm{a}) \mathrm{t}=[1 / \mathrm{tb}, \mathrm{a}] \mathrm{u} . \Delta \mathrm{t}=\mathrm{M}\left[\mathrm{D}^{*}[\mathrm{a}], \Delta \mathrm{t}\right] \\
& \operatorname{Rest}(\mathrm{a}) \| \Delta \mathrm{t}=\mathrm{M}\left[\mathrm{D}^{*} \| \Delta \mathrm{t}[\mathrm{a}], \Delta \mathrm{t}\right]
\end{aligned}
$$

It should be for any 'set rule', scalar a is released from a. $\Delta \mathrm{t} 1$ within the derivative, say $\mathrm{D}^{*} \| \Delta \mathrm{t}[\mathrm{a} . \Delta \mathrm{t} 1]$, and returns to the left of the derivative of $\Delta t 1$ without a, say $D^{*} \| \Delta t[\Delta t 1]$, while remain $\operatorname{Rest}(\mathrm{a})$ is added to the right. This is in agreement with the interpretation of $\mathrm{D}^{*} \| \Delta \mathrm{t}$ 'moving to the right', like one moment time t or time interval Δt, equation 1 and 10 , leaving a commutation quantity to the left. The remain Rest(a) is invariant during Δt, and therefore can be considered a t-quantity or a Δt-quantity. Rest(a) is derived by applying equations 4 and 5 and correspondence relations, paragraph 3.

The properties for t 0 , including $\mathrm{t} . \mathrm{t} 0=\mathrm{t} 0 . \mathrm{t}=\mathrm{t}$ for any t , are defined in [4, Hollestelle]. The usual commutation [$1 / \mathrm{tb}, \mathrm{a}] \mathrm{u}$ has to be evaluated carefully. For $\mathrm{a}=1$ there is [$1 / \mathrm{tb}, 1] \mathrm{u}$ equals: tbi. $1-1$. tbi, with $\mathrm{tbi}=1 / \mathrm{tb}$, indeed part of the one moment time set, comment 3 . However, this is not necessarily equal to $(1-1)$. tbi, the 'multiplication zero' equal to the 'addition zero' for the one moment parameter set, due to nonzero commutation involved, and since the specific scalar 1 is 'multiplication unit' for the scalar set one finds tbi. $1-1$. tbi $=\mathrm{tbi}+$ (tbi)iv only, ie equal to the one moment time 'addition zero' only, when for all t, one moment time addition inverse tiv $=-1$. t . The usual commutation can be resolved by rewriting it like a time interval commutation that corresponds, equation 4, with time interval differentiation, and regains due to MVT equilibrium zero commutation, comment 1 . Applied is time interval operator t^{*} leaves scalar a invariant and the derivation includes a transformation of scalar a by multiplication with parameter t . Operator $\mathrm{t}^{*}[\mathrm{~A} 1]=\mathrm{M}\left[\mathrm{D}^{*} \| \Delta \mathrm{t}[\mathrm{M}[\mathrm{t}\right.$, A1]]. Δt] for entity A1, [5, Hollestelle]. In this way it follows [1/tb, a]u equals D^{*} [a].

From equation 4 and comment 4, with one moment time average $\langle t\rangle=t 0$, D^{*} [a] equals $\langle a\rangle /\langle t\rangle=a$. 0 i, for scalar a positive and invariant with t . Assuming H time dependent one moment time 'multiplication unit' t0 corresponds with time interval 'multiplication unit' $\Delta \mathrm{U}$. Recall $\Delta \mathrm{Ui}=\Delta \mathrm{U}=\Delta \mathrm{t} 0$, from comment 3 , and $\Delta \mathrm{ti}$ equals Δt, from comment 21 . It follows $D^{*} \| \Delta t[a]$ and $\operatorname{Rest}(a) \| \Delta t$ both equal a. $\Delta \mathrm{U}$. $\operatorname{Rest}(\mathrm{a}) \| \Delta \mathrm{t}$ is a time interval related Δt-quantity, implying equation 23 is meaningful as a time interval only relation.

For any scalar a, $\operatorname{Rest}(\mathrm{a}) \mathrm{t}=\mathrm{M}[\mathrm{a} . \mathrm{t} 0 \mathrm{i}, \Delta \mathrm{t}]$ corresponds with $\mathrm{a} . \mathrm{M}[\Delta \mathrm{U}, \Delta \mathrm{t}]=\mathrm{a} . \Delta \mathrm{U}$. This equals $\operatorname{Rest}(\mathrm{a}) \| \Delta \mathrm{t}=\mathrm{M}$ $[\mathrm{a} . \Delta \mathrm{U}, \Delta \mathrm{t}]=\mathrm{a} . \Delta \mathrm{U}$, equal to $\Delta \mathrm{U}$ for $\mathrm{a}=1$. In this case, for $\mathrm{a}=1$, one finds $\mathrm{D}^{*}[\mathrm{a} . \Delta \mathrm{t} 1]=\mathrm{a} . \mathrm{D}^{*}[\Delta \mathrm{t} 1]$ and $\mathrm{D}^{*} \| \Delta \mathrm{t}$ $[\mathrm{a} . \Delta \mathrm{t} 1]=\mathrm{a} . \mathrm{D}^{*} \| \Delta \mathrm{t}[\Delta \mathrm{t} 1]$ as it should be.

Comment 19. Rest(a) \mid t, the equation 23 third, right side, part with derivative D^{*} [a], can be derived independently from the second part with the usual commutation [a, 1/tb]u. This means, the second part due to the derivation above, is confirmed by the third part. This is discussed in paragraph 12, part III.

Comment 20. $\mathrm{M}[\Delta \mathrm{U} 0, \Delta \mathrm{t} 1]=\Delta \mathrm{U} 0$, with $\Delta \mathrm{U} 0$ the time interval set 'multiplication zero', corresponding with the scalar set 'multiplication zero'. The domain measure for $\Delta \mathrm{U} 0$ is zero and $\Delta \mathrm{U} 0=0 . \Delta \mathrm{t} 1$, for any finite $\Delta \mathrm{t} 1$ including $\Delta \mathrm{U} 0=0 . \Delta \mathrm{U}$. Being of zero domain measure, $\Delta \mathrm{U} 0$ is not a proper time interval, and resembles a one moment time parameter and does not belong to the time interval set. Time intervals with zero domain measure are not included in the time interval description in this paper.

Comment 21. The multiplication inverse $\Delta \mathrm{ti}$ for $\Delta \mathrm{t}$, is not well defined yet to belong to the time interval set. When $\mathrm{M}[\Delta \mathrm{U}, \Delta \mathrm{t}]=\Delta \mathrm{t}$ and $\mathrm{M}[\Delta \mathrm{ti}, \Delta \mathrm{t}]=\Delta \mathrm{U}=\Delta \mathrm{t}$ one finds $\Delta \mathrm{t}$ is a solution for $\Delta \mathrm{ti}: \mathrm{M}[\Delta \mathrm{t}, \Delta \mathrm{t}]=\Delta \mathrm{U}$. The solution $\Delta \mathrm{ti}=\Delta \mathrm{t}$ is well defined and belongs to the time interval set.

9c. The differentiation asymmetric second associative property and arguments c1 and c2

With c 1 and c 2 scalars defining the asymmetrical second associative property for differentiation $D^{*} \| \Delta t[M[\Delta t 1$, $\Delta t 2]]$ with equation 21 , one finds, from $D^{*} \| \Delta t 2[\Delta t 1]=\Delta t 1$ for $\Delta t 2$ equal to Δt, equation 19 , and a $=1$,

24

$$
\mathrm{D}^{*} \| \Delta \mathrm{t}[\mathrm{M}[\Delta \mathrm{t} 1, \Delta \mathrm{t}]]=\mathrm{A}[\mathrm{c} 1 . \mathrm{M}[\Delta \mathrm{t} 1, \Delta \mathrm{t}], \mathrm{c} 2 . \mathrm{M}[\Delta \mathrm{t} 1, \Delta \mathrm{t}]]
$$

Within the last part, $\mathrm{M}[\Delta \mathrm{t} 1, \Delta \mathrm{t}]=\Delta \mathrm{t} 1$, due to $\Delta \mathrm{t}=\Delta \mathrm{U}$ and $\Delta \mathrm{t}=\Delta \mathrm{t} 0$ for the time interval set.

$$
\begin{equation*}
\mathrm{A}[\Delta \mathrm{t} 1, \Delta \mathrm{t}]=\mathrm{D}^{*} \| \Delta \mathrm{t}[\mathrm{M}[\Delta \mathrm{t} 1, \Delta \mathrm{t}]]=\mathrm{A}[\mathrm{c} 1 . \Delta \mathrm{t} 1, \mathrm{c} 2 . \Delta \mathrm{t} 1]=\Delta \mathrm{t} 1 \tag{25}
\end{equation*}
$$

This is the time interval set relation equivalent to the one moment time set relation where traditionally $\mathrm{c} 1=\mathrm{c} 2=$ 1. When both c 1 and c 2 equal 1 it follows: $\mathrm{A}[\Delta \mathrm{t} 1, \Delta \mathrm{t} 1]=\Delta \mathrm{t}$. This is the same result derived from interpretation, paragraph 7. Recall that c 1 and c 2 are not any scalars, they have the meaning of second associative property arguments for $D^{*} \| \Delta t[M[\Delta t 1, \Delta t 2]$, equation 21 , and are possibly asymmetric with c 1 different from c2. Independent of equation 22, that depends on the second associative property for multiplication M, comment 9, instead equation 23 introduces Rest(a), without associative property arguments. When both c1 and $c 2$ equal 1 and with $\Delta t 1=\Delta t$, the time interval relation seems similar to the traditional one moment time relation: $\mathrm{d} / \mathrm{dt}[\mathrm{t} . \mathrm{t}]=\mathrm{c} 1 .(1 . \mathrm{t})+\mathrm{c} 2 .(\mathrm{t} .1)=2 . \mathrm{t}$, however it is not. The time interval set properties differ from the usual one moment time set properties also in this way.

10. Time interval set equilibrium and a theorem for time intervals including wave equations

With the introduction of averages and time interval set commutation to define time interval differentiation and integration to time intervals, one moment time boundaries remain included within the time interval description, comment 1 . Time interval set commutation and one moment time t can be left out by defining integration and differentiation to time intervals in terms of M and A only, equation 12. For $\mathrm{cn}(\Delta t)$ and $\mathrm{cn}{ }^{\prime}(\Delta t)$ equations 26 and 27 are valid due to the results of paragraph 5 , and inferred is validity for any two time intervals $\Delta \mathrm{t} 1$ and $\Delta \mathrm{t} 2$.

26

$$
\begin{aligned}
& \mathrm{I} * \| \Delta \mathrm{t} 2[\Delta \mathrm{t} 1]=\mathrm{M}[\Delta \mathrm{t} 1, \Delta \mathrm{t} 2] \\
& \mathrm{D} * \| \Delta \mathrm{t} 2[\Delta \mathrm{t} 1]=\mathrm{A}[\Delta \mathrm{t} 1, \Delta \mathrm{t} 2]
\end{aligned}
$$

Comment 22. In the time interval description operators are indicated with *, depending on a 'operator quantity' for their interpretation. Operator quantities are indicated with |operator*|, for example the time operator t^{*} relates to quantity $\left|t^{*}\right|=\mathrm{t}$. Such operator quantities are not defined for I^{*} and D^{*} and $\mathrm{I}^{*} \| \Delta \mathrm{t} 2$ and $\mathrm{D}^{*} \| \Delta \mathrm{t} 2$, and, even while 'working to the right' like operators, these are not proper operators.

It follows from $I^{*} \| \Delta t 2$ and $D^{*} \| \Delta t 2$ having equal results for $\Delta t 2=\Delta t$, equation 10 and discussion, that similarly M and A have equal results in this case, at least for $\mathrm{cn}(\Delta t)$ and $\mathrm{cn}^{\prime}(\Delta t)$. This does not depend on the perspective: integration or differentiation to one moment time t or to time interval Δt, since M and A are time interval multiplication and addition for both perspectives and, paragraph 9 b , with $\Delta \mathrm{t} 2=\Delta \mathrm{t}$ the relevant event time interval, $I^{*} \| \Delta t$ and $D^{*} \| \Delta t$ correspond exactly with I^{*} and D^{*}.

M and A depend on time interval properties resembling common domain and combined domain respectively. The difference for M and A, from $I^{*} \| \Delta t[\mathrm{cn}(\Delta \mathrm{t})]$ and $\mathrm{D}^{*} \| \Delta \mathrm{t}[\mathrm{cn}(\Delta \mathrm{t})]$, equation 10 , depends on the order for $\mathrm{cn}(\Delta \mathrm{t})$ and $\mathrm{cn}^{\prime}(\Delta \mathrm{t})$ and does not return in the result itself in terms of time intervals. To clarify how $\mathrm{I}^{*} \| \Delta \mathrm{t}$ and $D^{*} \| \Delta t$, and M and A can have the same results: this follows from $D^{*}[M]=A$ and $D^{*}[M]=M$ with $A=A[\Delta t 1$, $\Delta \mathrm{t}]=\Delta \mathrm{t} 1$ and $\mathrm{M}=\mathrm{M}[\Delta \mathrm{t} 1, \Delta \mathrm{t}]=\Delta \mathrm{t} 1$ which is valid for any $\Delta \mathrm{t} 1$ due to the time interval set property $\Delta \mathrm{t}=\Delta \mathrm{t} 0$ and $\Delta t=\Delta U$. From equations 26 and 27 for $\mathrm{cn}(\Delta t)$ and $\mathrm{cn}^{\prime}(\Delta t)$ one finds equations 28 to 33 .

Comment 23. theorem. Equations $I^{*}| | \Delta t 2[\Delta t 1]=M[\Delta t 1, \Delta t 2]$ and $D^{*}| | \Delta t 2[\Delta t 1]=A[\Delta t 1, \Delta t 2]$ can be applied to any two Δt-quantities or any two time intervals $\Delta t 1$ and $\Delta t 2$ from the time interval set.

The following does not apply the definitions for multiplication or addition. The inference follows directly from the definitions for M and A however these definitions have validity only from assumption. Applied are MVT equilibrium and the time interval derivative. The proof for the closure theorem, comment 12 , is slightly different.

Due to a specific Lorentz transformation TL there is $\mathrm{cn}^{\prime}(\Delta \mathrm{t})=\mathrm{cn}\left(\Delta \mathrm{t}^{\prime}\right)$ defining $\Delta \mathrm{t}^{\prime}$ from $\Delta \mathrm{t}$. The specific TL and change of Δt to Δt^{\prime} such that the Hamiltonian H remains unchanged is derived in [4, Hollestelle]. For other changes of Δt to say Δt, it follows H can be variable. For transformation TL with Δt to Δt ', the theorem is valid due to the results of paragraph 5 . For all other transformations Δt to $\Delta t 1$ the linearity of any $\Delta t 1$ with Δt is assured, even when the linearity constants do not agree with the specific transformation TL and $\mathrm{cn}(\Delta t)$ and $c^{\prime}(\Delta t)$ do not agree with Δt and Δt. From linearity of $\Delta t 1$ with Δt it follows the argument for Δt ' from Δt is valid for any $\Delta \mathrm{tl}$ from $\Delta \mathrm{t}$ within the time interval set.
From equation 1 defined are $\mathrm{cn}\left(\Delta \mathrm{t}^{\prime}\right)=\mathrm{cn} n^{\prime}(\Delta \mathrm{t})$. Meanwhile $\mathrm{cn}(\Delta \mathrm{t})$ and $\mathrm{cn}\left(\Delta \mathrm{t}^{\prime}\right)$ are linear in the relevant event time interval, ie Δt and Δt^{\prime} respectively, implying a translation Δt to Δt^{\prime}. This relation can be reversed unless for instance $D^{*} \| \Delta t$ for $\mathrm{cn}(\Delta t)$ or cn ' (Δt) equals the time interval set 'addition zero' $\Delta \mathrm{U} 0$. In the reverse case $\Delta \mathrm{t}$ ' is linear in $\mathrm{cn}(\Delta t)$ and thus Δt^{\prime} is linear in $\Delta \mathrm{t}$. In fact, for any time interval, the implied translation from $\Delta \mathrm{t}$ then results in a linear multiplication of Δt.
For any $\Delta \mathrm{t} 2$ the transformation $\Delta \mathrm{t} 2$ from $\Delta \mathrm{t} 1$ is the same as a time interval addition applying a nonspecific Lorentz transformation, ie a transformation without the property H remains unchanged. A translation exists due to this addition, and the theorem does apply for these $\Delta \mathrm{t} 2$ since a translation means a linear multiplication result, due to MVT equilibrium. Similarly, when $\Delta \mathrm{t} 2$ linear in $\Delta \mathrm{t} 1$ a translation does exist, this is discussed in paragraph 12, part IV. Thus, not only for $\mathrm{cn}(\Delta t)$ and $\mathrm{cn}{ }^{\prime}(\Delta t)$, for any time interval $\Delta \mathrm{t} 1$ and $\Delta \mathrm{t} 2$, and for any $\Delta \mathrm{t}-$ quantities being linear in Δt, the theorem is valid.

An interpretation of change for Δt is necessary. For the changed situation the validity of the following is to be ensured: $\mathrm{M}^{\prime}\left[\Delta \mathrm{t} 1, \Delta \mathrm{t}^{\prime}\right]=\mathrm{M}^{\prime}{ }^{\prime}\left[\Delta \mathrm{t} 1, \Delta \mathrm{t}^{\prime}{ }^{\prime}\right]=\Delta \mathrm{t}$, ie with the situation change the relevant event time interval $\Delta \mathrm{t}^{\prime}$ changes to Δt '" while specific properties for M and A do not change and are defined with the relevant event time interval indication Δt, one of these properties $\Delta t=\Delta U$. It depends on the situation present: before change $\Delta t^{\prime}=$ Δt, after change $\Delta t^{\prime \prime}=\Delta t$, where situations for Δt^{\prime} or $\Delta t^{\prime \prime}$ share properties, however not all properties, to assure change.

The no-reverse case.
In this case a change for Δt does not change cn or cn ' (recall cn ' is defined from equation 1 , with invariant $\Delta \mathrm{t}$): $\mathrm{cn}\left(\Delta \mathrm{t}^{\prime}\right)=\mathrm{cn}\left(\Delta \mathrm{t}^{\prime}{ }^{\prime}\right)$ and cannot be reversed at all. For a change $\Delta \mathrm{t}^{\prime}$ to $\Delta \mathrm{t}^{\prime}{ }^{\prime}$ with $\Delta \mathrm{t}^{\prime} \neq \Delta \mathrm{t}^{\prime}$, and where for now $\Delta \mathrm{t}^{\prime}=$ $\Delta t^{\prime}{ }^{\prime}$ is not considered, with $\Delta t^{\prime}=\Delta t$ for the situation before change, and the factor $+/-1$ not yet specified while +1 for positive increasing $\mathrm{cn}\left(\Delta \mathrm{t}^{\prime}\right)$ etc, the complete equation for invariant $\mathrm{cn}\left(\Delta \mathrm{t}^{\prime}\right)$ is $\mathrm{A}\left[\mathrm{cn}\left(\Delta \mathrm{t}^{\prime}\right), \mathrm{cn}\left(\Delta \mathrm{t}^{\prime}\right) \mathrm{iv}\right]=\mathrm{M}$ $\left[+/-1 . D^{*} \| \Delta t\left[\mathrm{cn}\left(\Delta \mathrm{t}^{\prime}\right)\right], \mathrm{A}\left[\Delta \mathrm{t}^{\prime}, \Delta \mathrm{t}^{\prime} \mathrm{iv}\right]\right]=\Delta \mathrm{U} 0$. For $\mathrm{D}^{*} \| \Delta \mathrm{t}\left[\mathrm{cn}\left(\Delta \mathrm{t}^{\prime}\right)\right]=\Delta \mathrm{U} 0$ valid, one finds $\mathrm{cn}\left(\Delta \mathrm{t}^{\prime}\right)=\operatorname{cn}\left(\Delta \mathrm{t}^{\prime}\right)=$ $\Delta \mathrm{U} 0$. The time interval $\Delta \mathrm{U} 0$ is both 'multiplication zero' and 'addition zero' for the time interval set and has time interval domain measure zero and is not a proper time interval, and $\mathrm{cn}(\Delta \mathrm{t})$ and $\mathrm{cn}^{\prime}(\Delta \mathrm{t})$ are not well defined.

For $\mathrm{D}^{*} \| \Delta \mathrm{t}\left[\mathrm{cn}\left(\Delta \mathrm{t}^{\prime}\right)\right]=\Delta \mathrm{U} 0$ not valid one finds:
I. Above, starting from $\Delta \mathrm{t}^{\prime}=\Delta \mathrm{t}$ a change to $\Delta \mathrm{t}^{\prime}{ }^{\prime}=\Delta \mathrm{t}$ means: A $\left[\mathrm{cn}\left(\Delta \mathrm{t}^{\prime}{ }^{\prime}\right), \mathrm{cn}\left(\Delta \mathrm{t}^{\prime}\right) \mathrm{iv}\right]=\mathrm{M}\left[+/-1 . \mathrm{D}^{*} \| \Delta \mathrm{t}\left[\mathrm{cn}\left(\Delta \mathrm{t}^{\prime}\right)\right]\right.$, $\left.\mathrm{A}\left[\Delta \mathrm{t}^{\prime}, \Delta \mathrm{t}^{\prime}{ }^{\prime} \mathrm{v}\right]\right]=\Delta \mathrm{U} 0=\Delta \mathrm{t} 0$ equal to the time interval "addition zero" since $\mathrm{cn}\left(\Delta \mathrm{t}^{\prime}\right)=\mathrm{cn}\left(\Delta \mathrm{t}^{\prime}\right)$.
II. From I: $\mathrm{cn}\left(\Delta \mathrm{t}^{\prime}{ }^{\prime}\right)=\mathrm{A}\left[\mathrm{M}\left[+/-1 . \mathrm{D}^{*} \| \Delta \mathrm{t}\left[\mathrm{cn}\left(\Delta \mathrm{t}^{\prime}\right)\right], \Delta \mathrm{t}^{\prime}{ }^{\prime}\right], \mathrm{cn}\left(\Delta \mathrm{t}^{\prime}\right)\right]=\mathrm{A}\left[\mathrm{M}\left[\mathrm{cn}\left(\Delta \mathrm{t}^{\prime}{ }^{\prime}\right), \Delta \mathrm{t}^{\prime}{ }^{\prime}\right], \mathrm{cn}\left(\Delta \mathrm{t}^{\prime}\right)\right]=\mathrm{cn}\left(\Delta \mathrm{t}^{\prime}\right)$. These equations follow from $\Delta t^{\prime}=\Delta t$ and $\Delta t^{\prime} i v=\Delta t^{\prime}$ for the situation before change. Applied is $+/-1$. $D^{*} \| \Delta t$ $\left[\mathrm{cn}\left(\Delta \mathrm{t}^{\prime}\right)\right]=\mathrm{M}\left[\mathrm{cn}\left(\Delta \mathrm{t}^{\prime}\right), \Delta \mathrm{t}^{\prime}\right]=\mathrm{cn}\left(\Delta \mathrm{t}^{\prime}\right)$ for all $\Delta \mathrm{t}^{\prime}$ including $\Delta \mathrm{t}^{\prime}$, ie the validity of equations 26 and 27 for cn and cn ' including similarity of results for M and A , depending on equation 10 .
III. From II: A $\left[\mathrm{cn}\left(\Delta \mathrm{t}^{\prime \prime}\right), \mathrm{cn}\left(\Delta \mathrm{t}^{\prime}\right) \mathrm{iv}\right]=\mathrm{M}\left[\mathrm{cn}\left(\Delta \mathrm{t}^{\prime}\right), \mathrm{A}\left[\Delta \mathrm{t}^{\prime},, \Delta \mathrm{t}^{\prime} \mathrm{iv}\right]\right]=\Delta \mathrm{U} 0$. A solution is $\mathrm{cn}\left(\Delta \mathrm{t}^{\prime}\right)=\Delta \mathrm{t}^{\prime}$ for all $\Delta \mathrm{t}^{\prime}$ including $\Delta t^{\prime \prime}$ where $\Delta t^{\prime}=\Delta t$. When $\mathrm{cn}\left(\Delta t^{\prime}\right)=M\left[\operatorname{cn}\left(\Delta t^{\prime}\right), \Delta t^{\prime}\right]$ one similarly finds the solution $\mathrm{cn}\left(\Delta t^{\prime}\right)=\Delta t^{\prime}$ from $\mathrm{M}\left[\Delta \mathrm{t}^{\prime}, \Delta \mathrm{t}^{\prime}\right]=\Delta \mathrm{t}^{\prime}$ for all $\Delta \mathrm{t}^{\prime}$. This applies the first associative property.

The no-reverse case, with $D^{*} \| \Delta t\left[\operatorname{cn}\left(\Delta t^{\prime}\right)\right]=\Delta U 0$ not valid for any Δt^{\prime}, means $\mathrm{cn}\left(\Delta \mathrm{t}^{\prime}\right)$ is linear in $\Delta \mathrm{t}^{\prime}$, and this does not agree with $\mathrm{cn}\left(\Delta \mathrm{t}^{\prime}\right)$ invariant. This completes the proof for theorem comment 23.
$\mathrm{I} * \| \Delta \mathrm{t}[\mathrm{cn}(\Delta \mathrm{t})]=\mathrm{A}[\mathrm{cn}(\Delta \mathrm{t}), \mathrm{A}[\Delta \mathrm{U}, \mathrm{cn}(\Delta \mathrm{t})]]=\mathrm{A}[\mathrm{cn}(\Delta \mathrm{t}), \mathrm{cn}(\Delta \mathrm{t})]$
$\mathrm{I}^{*} \| \Delta \mathrm{t}\left[\mathrm{cn}^{\prime}(\Delta \mathrm{t})\right]=\mathrm{M}\left[\mathrm{cn}^{\prime}(\Delta \mathrm{t}), \Delta \mathrm{t}\right]=\mathrm{A}\left[\mathrm{cn}^{\prime}(\Delta \mathrm{t}), \mathrm{A}\left[\Delta \mathrm{U}, \mathrm{cn}^{\prime}(\Delta \mathrm{t})\right]\right]=\mathrm{A}\left[\mathrm{cn}^{\prime}(\Delta \mathrm{t}), \mathrm{cn}^{\prime}(\Delta \mathrm{t})\right]$
30

$$
\begin{equation*}
\mathrm{A}[\mathrm{a} . \Delta \mathrm{t} 1, \Delta \mathrm{t}]=\mathrm{D}^{*}\left\|\Delta \mathrm{t}[\mathrm{M}[\mathrm{a} . \Delta \mathrm{t} 1, \Delta \mathrm{t}]]=\mathrm{D}^{*}\right\| \Delta \mathrm{t}\left[\mathrm{a} . \mathrm{I}^{*} \| \Delta \mathrm{t}[\Delta \mathrm{t} 1]\right]=\mathrm{A}\left[\mathrm{a} . \mathrm{D}^{*}\left\|\Delta \mathrm{t}\left[\mathrm{I}^{*} \| \Delta \mathrm{t}[\Delta \mathrm{t} 1]\right], \operatorname{Rest}(\mathrm{a})\right\| \Delta \mathrm{t}\right] \tag{29}
\end{equation*}
$$

Equation 30 is valid also with $\mathrm{cn}(\Delta \mathrm{t})$ or $\mathrm{cn}{ }^{\prime}(\Delta \mathrm{t})$ instead of $\Delta \mathrm{t} 1$. Not necessarily $\mathrm{cn}(\Delta \mathrm{t})$ follows the requirement of time interval asymmetry like $\Delta \mathrm{t}$ itself for situations when H time dependent, and $-1 . \mathrm{cn}(\Delta \mathrm{t})$ is valid however -1 . Δt is not. From equation 10 for $I^{*} \| \Delta t$ it follows:

31

$$
\begin{aligned}
& \text { a. } \operatorname{cn}(\Delta \mathrm{t})=\mathrm{D}^{*} \| \Delta \mathrm{t}\left[\mathrm{a} \cdot \mathrm{I}^{*} \| \Delta \mathrm{t}[\mathrm{cn}(\Delta \mathrm{t})]\right]=\mathrm{A}\left[\mathrm{a} . \mathrm{D}^{*}\left\|\Delta \mathrm{t}\left[\mathrm{I}^{*} \| \Delta \mathrm{t}[\mathrm{cn}(\Delta \mathrm{t})]\right], \operatorname{Rest}(\mathrm{a})\right\| \Delta \mathrm{t}\right]=\mathrm{A}\left[\mathrm{a} \cdot \mathrm{D}^{*} \| \Delta \mathrm{t}[\mathrm{~A}\right. \\
& \left.\left.\left[\mathrm{cn}(\Delta \mathrm{t}),-1 \cdot \mathrm{cn}^{\prime}(\Delta \mathrm{t})\right]\right], \operatorname{Rest}(\mathrm{a}) \| \Delta \mathrm{t}\right] \\
& \text { a. } \mathrm{cn}^{\prime}(\Delta \mathrm{t})=\mathrm{D}^{*} \| \Delta \mathrm{t}\left[\mathrm{a} \cdot \mathrm{I}^{*} \| \Delta \mathrm{t}[\mathrm{cn}(\Delta \mathrm{t})]\right]=\mathrm{A}\left[\mathrm{a} \cdot \mathrm{D}^{*}\left\|\Delta \mathrm{t}\left[\mathrm{I}^{*} \| \Delta \mathrm{t}\left[\mathrm{cn}^{\prime}(\Delta \mathrm{t})\right]\right], \operatorname{Rest}(\mathrm{a})\right\| \Delta \mathrm{t}\right]=\mathrm{A}\left[\mathrm{a} \cdot \mathrm{D}^{*} \| \Delta \mathrm{t}[\mathrm{~A}\right. \\
& \left.\left.\left[\mathrm{cn}(\Delta \mathrm{t}),-1 . \mathrm{cn}^{\prime}(\Delta \mathrm{t})\right]\right], \operatorname{Rest}(\mathrm{a}) \| \Delta \mathrm{t}\right]
\end{aligned}
$$

For scalar a $=1, \Delta \mathrm{t} 1=\operatorname{cn}(\Delta \mathrm{t})$ and $\Delta \mathrm{t} 2=\Delta \mathrm{t}$ the remain $\operatorname{Rest}(\mathrm{a}) \| \Delta \mathrm{t}$ is nonzero and equal to $\mathrm{cn}(\Delta \mathrm{t})$. Scalar a can be released from $I^{*} \| \Delta t$ without any nonzero remain, however only released from $D^{*} \| \Delta t$ with 'set rule' equation 23 including remain $\operatorname{Rest}(\mathrm{a}) \| \Delta \mathrm{t}$. Due to property $\mathrm{A}[\Delta \mathrm{t} 1, \Delta \mathrm{t} 1]=\Delta \mathrm{t} 1$ for any time interval $\Delta \mathrm{t} 1$ including $\Delta \mathrm{t} 1=$ $\operatorname{cn}(\Delta t)$, the remain can be left out and one finds $D^{*} \| \Delta t$ and $I^{*} \| \Delta t$ to be exactly the same.

32

$$
\begin{aligned}
& \text { a. } \operatorname{cn}(\Delta \mathrm{t})=\mathrm{D}^{*} \| \Delta \mathrm{t}\left[\mathrm{a} . \mathrm{I}^{*} \| \Delta[\mathrm{cn}(\Delta \mathrm{t})]\right]=\mathrm{A}\left[\mathrm{a} . \mathrm{D}^{*} \| \Delta \mathrm{t}\left[\mathrm{I}^{*} \| \Delta \mathrm{t}[\mathrm{cn}(\Delta \mathrm{t})]\right], \operatorname{Rest}(\mathrm{a}) \mid \Delta \mathrm{t}\right] \\
& \text { a. } \mathrm{cn}^{\prime}(\Delta \mathrm{t})=\mathrm{D}^{*} \| \Delta \mathrm{t}\left[\mathrm{a} \cdot \mathrm{I}^{*} \| \Delta \mathrm{t}[\mathrm{cn}(\Delta \mathrm{t})]\right]=\mathrm{A}\left[\mathrm{a} . \mathrm{D}^{*} \| \Delta \mathrm{t}\left[\mathrm{I}^{*} \| \Delta \mathrm{t}\left[\mathrm{cn}{ }^{\prime}(\Delta \mathrm{t})\right]\right], \operatorname{Rest}(\mathrm{a}) \mid \Delta \mathrm{t}\right]
\end{aligned}
$$

For $\mathrm{a}=1$ and with $\Delta \mathrm{t}$-quantity $\mathrm{cn}(\Delta \mathrm{t})$ linear with $\Delta \mathrm{t}$, one finds:
33

$$
\begin{aligned}
& \mathrm{cn}(\Delta \mathrm{t})=\mathrm{D}^{*} \| \Delta \mathrm{t}\left[\mathrm{I}^{*} \| \Delta \mathrm{t}[\mathrm{cn}(\Delta \mathrm{t})]\right]=\mathrm{A}\left[\mathrm{D}^{*} \| \Delta \mathrm{t}\left[\mathrm{I}^{*} \| \Delta \mathrm{t}[\mathrm{cn}(\Delta \mathrm{t})]\right], \mathrm{cn}(\Delta \mathrm{t})\right] \\
& \mathrm{cn}(\Delta \mathrm{t})=\mathrm{D}^{*} \| \Delta \mathrm{t}\left[\mathrm{I}^{*} \| \Delta \mathrm{t}[\mathrm{cn}(\Delta \mathrm{t})]\right]=\mathrm{A}\left[\mathrm{D}^{*} \| \Delta \mathrm{t}\left[\mathrm{I}^{*} \| \Delta \mathrm{t}\left[\mathrm{cn}^{\prime}(\Delta \mathrm{t})\right]\right], \mathrm{cn}^{\prime}(\Delta \mathrm{t})\right]
\end{aligned}
$$

Wave equations and structure constants

These equations being second order resemble quite closely wave equations. From the discussion below equation 7 it follows $\Delta \mathrm{N}$ equals both addition or multiplication of the reciprocal pair of commutation quantities. The derivative $\mathrm{D}^{*} \| \Delta \mathrm{t}[\Delta \mathrm{N}]=\mathrm{A}\left[\mathrm{cn}(\Delta \mathrm{t}), \mathrm{cn}{ }^{\prime}(\Delta \mathrm{t})\right]=\Delta \mathrm{N}$ and similarly the second derivative $\mathrm{D}^{*} \| \Delta \mathrm{t}\left[\mathrm{D}^{*} \| \Delta \mathrm{t}[\Delta \mathrm{N}]\right]=\Delta \mathrm{N}$ and equations 33 apply to $\Delta \mathrm{N}$. These equations are due to the derivatives being time interval MVT equilibrium derivatives. Recall $\Delta \mathrm{N}$ is an invariant for the overall time interval set. $\Delta \mathrm{N}$, like any $\Delta \mathrm{t}$-quantity, is part of the linearity 'subset' for $\mathrm{cn}(\Delta t)$ or $\mathrm{cn}^{\prime}(\Delta t)$. This is discussed in paragraph 12, part IV.

From combinations of commutations, being multiplications within the generator set, one finds the set structure constants from the second derivatives, [12, De Wit, Smith], [15, Veltman]. Structure constants for the time interval set depend on $\mathrm{D}^{*} \| \Delta \mathrm{t}\left[\mathrm{D}^{*} \| \Delta \mathrm{t}[\mathrm{M}]\right]$, where due to property equation 11 for A and the similar property for M , paragraph 8 , multiplication within the generator set equals multiplication within the time interval set, and one finds $\mathrm{M}=\Delta \mathrm{N}$. The second derivative invariants are Lorentz transformation TL invariants, due to TL being a surface measure preserving transformation, unlike the usual TU. Due to this the overall TL invariant $\Delta \mathrm{N}$ can be interpreted directly to be a structure constant.

From equations 1 and 10 one finds the pair-like commutation properties of the one moment time set and the time interval set respectively. The commutation constants form a multiple and the existence of an equilibrium overall invariant, in this case $\Delta N=M\left[\mathrm{cn}(\Delta t), \mathrm{cn}^{\prime}(\Delta \mathrm{t})\right]$, means for structure constants:

Comment 24. The dimension of the set decides on the number of structure constants to form a set multiple.
Comment 25. For the time interval set the multiple is a pair, due to time and the time interval set, with all time intervals linear in Δt due to closure, being one dimensional.

Paragraph 11. Star source wave propagation

Radiation from a star source described with propagation sphere surfaces is different from radiation with stationary parallel propagation. The metric surface measure, not meaning the usual line element dependent metric, for propagation surfaces is invariant with change of relevant event time interval Δt that indicates time development within the time interval description for qm fields [4, Hollestelle]. This description still assumes de Broglie complementary and depends on the interpretation of radiation existing of waves or wave particles of zero or non-zero mass with a group velocity $c(\Delta t)$, c_light for the usual c for photons. An effort to describe the resulting folded, wrinkled, radiation propagation surface for changing $\Delta \mathrm{t}$ is the following.

Propagation surface A related to radiation time interval $\Delta \mathrm{t}$, can be described with a regular sphere $\mathrm{Q}(\Delta \mathrm{t})$ that however does not fulfill the above measure invariance. The realistic propagation surface A, can be approximated with surface P , applying a construction from reference [16, Hocking, Young].

For a set of dense disjoint open surface parts, constructed from an indecomposable continuum surface, the overall sum of metric surface part measures can be different from the metric continuum surface measure. The set of parts $\mathrm{Pi}, \mathrm{i}=1$ to n, n the number of parts, can be termed a distribution for the continuum surface Q , and their union termed P . There is $\mathrm{mP}=\sum \mathrm{mPi}$, leaving out n , with m indicating metric surface measure. The construction allows mP to be different from mQ . When $\mathrm{mA}=\mathrm{mP}$ for P an approximation for A, mA can be invariant with $\Delta \mathrm{t}$, needed to describe propagation surfaces.

Comment 26. The construction of P to describe the propagation wave surface A does not mean it is implied the propagation surface is divided into photon paths Pi. The discussion of propagation starting from the concept of photon paths in qm is not the subject of this paper.

It is possible a distribution exists for indecomposable metric continua with a finite number of metric continua parts. For the propagation distribution the number of parts n is variable with Δt, while for the reference distribution n remains constant and the parts are developed with a variable t^{\sim}, where the reference parts Qi represent the construction result for the limit of infinite t^{2}. This allows for any width factor $\mathrm{v}, \mathrm{v} . \mathrm{mQi}=\mathrm{mQ}$. The propagation surface distribution is described within the time interval perspective. The surface parts Pi depend on, develop with, the relevant time interval Δt, are interpreted to be Δt-quantities, and P includes iteration of additions $u P i+1=\mathrm{A}[\mathrm{Pi}+1, \mathrm{uPi}]$, and $\mathrm{P}=u \mathrm{Pi}$, for $\mathrm{i}=\mathrm{n}$, where n itself is variable with $\Delta \mathrm{t}$. For any number n the parts Pi are assumed dense, disjoint and open in Q and $\mathrm{mPi}=\mathrm{mQ}$. For all i and all n , the part Pi equals Qi and the metric area $\mathrm{mPi}(\mathrm{v})=\mathrm{v} . \mathrm{mPi}$, by construction proportional with, ie multiplied with an average part width v, itself possibly depending on n and Δt. It follows for any $n, m P(v)=n . v . m Q i=n . m Q$.

During propagation development when the relevant event time interval Δt changes to Δt ', the regular sphere Q similarly changes to Q' with its surface area measure proportional to radius squared. The invariant regular metric cancels from the following.

$$
34 \quad \mathrm{mQ} \mathrm{Q}^{\prime} / \mathrm{mQ} \sim\left(\left|\mathrm{c}^{\prime}\left(\Delta \mathrm{t}^{\prime}\right)\right| \cdot\left|\Delta \mathrm{t}^{\prime}\right|\right)^{\wedge} 2 /(|\mathrm{c}(\Delta \mathrm{t})| \cdot|\Delta \mathrm{t}|)^{\wedge} 2
$$

Surface measure mA can be approximated by mP including a metric m for P . The requirement of invariant mA , due to invariant radiation propagation surface energy E, means: $\mathrm{mA}\left(\Delta \mathrm{t}^{\prime}\right) / \mathrm{mA}(\Delta \mathrm{t})=\mathrm{mP}\left(\Delta \mathrm{t}^{\prime}\right) / \mathrm{mP}(\Delta \mathrm{t})$ remains invariant and equal to one. With v dependent on n and Δt and with for all $\operatorname{Pi}(v)$ the same metric area measure proportional with v, change Δt to Δt^{\prime} means a change A to A^{\prime}, with n to n ' and v to v^{\prime} accordingly, implying equation 35 . From $\mathrm{mA}^{\prime} / \mathrm{mA}^{\text {invariance it follows the metric requirement for maintaining } E \text { invariance: }}$

$$
\begin{equation*}
1=\mathrm{mA}^{\prime} / \mathrm{mA}=\mathrm{n}^{\prime} . \mathrm{mQ}^{\prime} / \mathrm{n} \cdot \mathrm{mQ} \tag{35}
\end{equation*}
$$

One can change description from Δt to Δt^{\prime} while n^{\prime} / n changes proportionally with $\left|\Delta t^{\prime}\right|||\Delta t|$. For $n ' / n>1$, this means more 'close' to the star source, or in time interval perspective, more shortly, 'earlier' after emission when $\left|\Delta t^{\prime}\right|<|\Delta t|$ from the perspective of a specific Δt, and for $n^{\prime}=1$ a one-part union P. For $n^{\prime} / n<1$, this means more 'remote' from the star source, more 'to the future', 'later' from the specific Δ t perspective. In [5, Hollestelle] it is argued the propagation 'surface' metric requirement for A does not apply the linear metric, line element, measures, even when the metric surface measure of a regular sphere traditionally relates to the metric radius measure squared. The parts $\operatorname{Pi}(\mathrm{v})$ being 'linear'-like, due to decreasing v , does not imply the ordinary line element. With 'folded, wrinkled' surface is meant a change of $\mathrm{n}, \mathrm{v}, \mathrm{P}$ and A from a situation with $\mathrm{n}=1$ and mA $=m \mathrm{Q}$, due to $\Delta \mathrm{t}$ to $\Delta \mathrm{t}^{\prime}$, to $\mathrm{n}^{\prime}>1$ and $\mathrm{mA}^{\prime}>\mathrm{mQ}^{\prime}$.

The other way around when Δt remains invariant, n remains invariant however un-decided. When n is independent it supports a degree of freedom. For any n, each of the n parts Pi is dense in Q and the measure for the complete union P remains $\mathrm{mP}=\mathrm{n} . \mathrm{mQ}=\mathrm{mA}$.
One interpretation is, energy does not change with n, and a change of n implies a symmetry transformation. Any $\mathrm{n} \geq 1$ is realistic for propagation surface A , approximated with P the union of the parts Pi , to remain a covering for the regular sphere Q . A second interpretation is, implied is a situation with zero temperature. A description for star source cloud radiation exists, including temperature for the source cloud and for the star sources themselves [5, Hollestelle]. One finds $\mathrm{NC}=(\mathrm{mA})^{\wedge} 2=\mathrm{E}^{\wedge} 2$. A zero temperature means the average space
interval $\Delta q b i$ for star source i relative to their average $<\Delta q b i>$ is near zero which has implications for the symmetry for the star source collective in space.

A is assumed to be an indecomposable continuum. This means no partition includes parts with an interior, even when n equals 1, due to a result from topology [16, Hocking, Young]. This agrees with the concept of propagation surface A being the limit surface for radiation waves during Δt and part of the time interval only description without one moment time however with some structure from the Pi. Simultaneity defined from the complete propagation surface A needs an interpretation, it depends on 'timely' time intervals for radiation measurements, which is assured by Δt, the relevant event time interval, being 'timely'. The term 'timely' is introduced for time intervals, say $\Delta t 1$, in [4, Hollestelle] meaning: a time interval $\Delta t 1$ is measurable with one measurement with result $|\Delta \mathrm{t} 1|$. Simultaneous measurements, in the time interval description, are possible within Δt, which agrees with Δt being the relevant event time interval. The concept of change, ie for star source radiation propagation, is linked to finite time intervals $\Delta \mathrm{t}$ and to measurements and H being time dependent. The propagation surface energy is integrated for the inner part of the surface, from the star source to the propagation surface, that is for all energy with simultaneous propagation, all energy 'arriving' at A during $\Delta \mathrm{t}$, [5, Hollestelle].

Comment 27. Distribution theorem. A 1-dim. space-like radius does not allow a distribution from radius parts. A distribution for the radius or Δq implies a distribution for time interval Δt. The metric requirement is applicable for the 2 -dim overall propagation surface A and a distribution for A is possible only because it does not imply a distribution for relevant event time interval Δt.

Star source wave propagation with zero or non-zero mass

When one defines vacuum with total energy H 0 value zero, and with kinetic radiation energy $\mathrm{E}=\# \mathrm{n} . \mathrm{h} . \mathrm{v}$, for photon number \#n and photon energy $h . v$, one can re-write $H=H 0+\Delta H$, to agree with the specific energy quantity $\Delta \mathrm{H}$ introduced in [4, Hollestelle]. Within the time interval description, a time dependent $\mathrm{H}=\mathrm{H} 0+\Delta \mathrm{H}$ $=\mathrm{E}+\mathrm{V}+\Delta \mathrm{H}$ is the 'time interval' version of the Legendre transform of Lagrangian $\mathrm{L}=\mathrm{E}-\mathrm{V}$, with E kinetic energy and V potential energy and $\Delta \mathrm{H}$ depending on the t -quantity $\# \mathrm{n}$, possibly variable due to interaction. The discussion in this paragraph depends on earlier results, applying de Broglie complementarity and the time interval description for star source radiation propagation with relevant event time interval $\Delta t=[t b, t a]$, and there is for radiation energy E :

$$
36 \quad \mathrm{E}(\mathrm{tb})=\# \mathrm{n} . \mathrm{h} . v=\# \mathrm{n} . \mathrm{M}[\mathrm{~h}+, \Delta \mathrm{ti}]
$$

The function $\mathrm{h}+$ is defined with: $\mathrm{h}+=1 / 2\left(\Delta^{*} \mathrm{p} . \Delta^{*} \mathrm{q}+\Delta^{*} \mathrm{q} . \Delta^{*} \mathrm{p}\right)$, applying the usual one moment time description indication. and + for one moment time t-quantities and the indication Δ^{*} for variances, different from indication Δ for intervals. Even so, one moment time tb and ta occur. Energy E, without interaction and wave function collapse during $\Delta \mathrm{t}$, is an invariant and neutral $\Delta \mathrm{t}$-quantity.

The following properties are valid within the time interval description. $\Delta \mathrm{t}$-quantities can be written linear with Δt due to MVT equilibrium. Δt-quantities are parameter t independent quantities, however can change with a change of $\Delta \mathrm{t}$. The time interval description, including MVT equilibrium, for t -quantities depends on linearity in t. A t-quantity due to multiplication quadratic in t reduces to a neutral quantity, ie a $t^{\wedge}(2)$ quantity equals a $t^{\wedge}(0)$ Δt-quantity, comment 4 . In contrast, a t-quantity, ie linear in t, remains t-quantity due to addition, with linearity implying addition, and remains possibly variable during Δt. A $t^{\wedge}(-1)$ quantity equals a $t^{\wedge}(+1) t-q u a n t i t y$, comment 4.

Assume a non-zero mass m 1 for material wave particles complementary to radiation waves that emerge from a star source and introduce a certain mass m 2 . Then it follows E includes multiplication $\mathrm{M}[\mathrm{m} 1, \mathrm{~m} 2]$ and is inverse linear with $|\Delta \mathrm{q}|=|\mathrm{c}(\Delta \mathrm{t})| .|\Delta \mathrm{t}|$ with $\mathrm{c}(\Delta \mathrm{t})=\mathrm{M}[\Delta \mathrm{q}, \Delta \mathrm{ti}]$, the wave group-velocity, [5, Hollestelle]. This can be interpreted due to its similarity with Newtonian gravitational energy for situations without external interaction. In this energy view propagation wave energy, ie kinetic energy E, equals gravitational energy E due to the above dependences. The meaning of dispersion free propagation energy is unrestrained wave kinetic 'movement', the meaning of gravitation energy is field energy for the propagation surface depending on the star source assuming masses ml and m 2 . From the definition for $\mathrm{c}(\Delta \mathrm{t})$, paragraph 11 , one finds with $\Delta \mathrm{qi}=\mathrm{M}[\Delta \mathrm{ti}$, $\mathrm{c}(\Delta \mathrm{t}) \mathrm{i}]=\mathrm{c}(\Delta \mathrm{t}) \mathrm{i}$,

$$
\mathrm{E}=\# \mathrm{n} . \mathrm{M}[1 /|\Delta \mathrm{q}|, \mathrm{M}[\mathrm{~m} 1, \mathrm{~m} 2]]=\# \mathrm{n} . \mathrm{D}^{*}\left\|\Delta \mathrm{q}[\mathrm{M}[\mathrm{~m} 1, \mathrm{~m} 2]]=\# \mathrm{n} . \mathrm{D}^{*}\right\| \Delta \mathrm{t}[\mathrm{M}[1 /|\mathrm{c}(\Delta \mathrm{t})|, \mathrm{M}[\mathrm{~m} 1, \mathrm{~m} 2]]]
$$

With equation 38 and 39 one finds a definition for non-zero mass m2, that can be identified with the source mass. D* or $\mathrm{D}^{*} \| \Delta \mathrm{t}$ of an invariant does not have to be zero. With $1 /|\mathrm{c}(\Delta \mathrm{t})|=\mathrm{D} * \| \Delta \mathrm{q}[\mathrm{m} 1]=\mathrm{M}[\mathrm{m} 1, \Delta \mathrm{q}]$, there is $c(\Delta t)$ equals the multiplication inverse for the propagation wave particle mass density. There is for photons $\mathrm{E}=$ \#n. A [$\Delta \mathrm{qi}, \mathrm{m} 2$], equation 38 , for m 1 the 'multiplication unit' mass quantity, and E can be interpreted to be the source mass apparent density. This suggests wave particle energy $h . v$ is dependent only on multiplication M $[m 1, m 2]=m 2$, the source mass.

For $c(\Delta t)=M[\Delta q, \Delta t i]$ invariant, where Δq is not part of the time interval set and $c(\Delta t)$ is not part of the time interval set, $\mathrm{c}(\Delta \mathrm{t})$ is a $\Delta \mathrm{t}$-quantity linear in $\Delta \mathrm{t}$ including a non-scalar multiplication, ie $\Delta \mathrm{q}$. The complete 'volume like' propagation surface A from star source to propagation surface, paragraph 11, depends on Δt and $c(\Delta t)$. A variable non zero mass m 1 or an 'addition zero' mass m 1 can both be applied due to m 1 and m 2 not being scalars rather Δt-quantities where an 'multiplication unit' mass m 1 corresponds with $\Delta \mathrm{t} 0=\Delta \mathrm{U}$, with both A $[\mathrm{m} 1, \mathrm{~m} 2]=\mathrm{m} 2$ and $\mathrm{M}[\mathrm{m} 1, \mathrm{~m} 2]=\mathrm{m} 2$ while E does not reduce to zero. Then, zero mass wave particles, ie photons, relate to mass ml being for mass quantities both 'addition zero' and the 'multiplication unit', different from a 'multiplication zero' mass in the sense of corresponding to scalar 'multiplication zero' or to $\Delta \mathrm{U} 0$, and for any mass m 2 there is:

40

$$
\begin{aligned}
& \mathrm{A}[\mathrm{~m} 1, \mathrm{~m} 2]=\mathrm{A}[\mathrm{~m} 2, \mathrm{~m} 1]=\mathrm{m} 2 \\
& \mathrm{M}[\mathrm{~m} 1, \mathrm{~m} 2]=\mathrm{M}[\mathrm{~m} 2, \mathrm{~m} 1]=\mathrm{m} 2
\end{aligned}
$$

Including $\# \mathrm{n}$ the number of photons, non-interacting radiation propagation surface energy $\mathrm{E}=\mathrm{E}(\mathrm{tb})=\# \mathrm{n} . \mathrm{h} . v$ is proportional with \#n, however with $\mathrm{m}=\sum \mathrm{i} \mathrm{mi}=\mathrm{m} 1, \mathrm{i}=1$ to $\# \mathrm{n}$, the overall photon mass m remains invariant and equal to "addition zero" m 1 for any $\# \mathrm{n}$.

A change of radiation energy E during $\Delta \mathrm{t}$ for invariant v due to external interaction and measurements including wave packet reduction like the photo-electric effect, depends non-linear on the variable \#n where \#n(tb) = \#nb from before interaction: \#n. h. $v=+3 / 2(2 \# n b-3)^{\wedge}(-1)(\Delta H(t a)-\Delta H(t b))=+3 / 2(2 \# n b-3)^{\wedge}(-1) M\left[D^{*}[\Delta H]\right.$, $\Delta t],[4$, Hollestelle]. This is different from the situation where v is variable, due to internal interaction with a variable frequency v and variable wave particle mass and number, however without external interaction and where $\mathrm{E}=\# \mathrm{n} . \mathrm{h} . v$ remains invariant, [5, Hollestelle].
Since wave energy $h . v$ remains positive it follows a change of sign for the difference $\Delta H(t a)-\Delta H(t b)$ is possible from a variable $\# \mathrm{n}$, $\# \mathrm{n}$ itself remaining a positive t -quantity, and when $\# \mathrm{nb}$ is 1 or 2 there is $\Delta \mathrm{H}(\mathrm{ta})$ $\Delta \mathrm{H}(\mathrm{tb})$ is negative or positive. For a situation within the infinite limit of increasing \#n, considering $\Delta H(t)=H(t)$ $-E(t b)$ and with $\Delta H(t b)$ equal to zero, $H(t)$, a t-quantity, equals $\Delta H(t)$ apart from the constant $E(t b)$, and the difference $\Delta \mathrm{H}(\mathrm{ta})-\Delta \mathrm{H}(\mathrm{tb})=\mathrm{H}(\mathrm{ta})$, a t-quantity, is proportional with \#n. E .

Paragraph 12. Discussion

The time interval only description provides an alternative to the one moment time description and to vector calculus to describe differences and change. A time interval only description and solution for the 'infinite regress' problem, is presented in paragraph 2 to 5 . Some results that depend on time intervals only were already obtained in [4, Hollestelle] and [5, Hollestelle]: one result is gravitational energy and radiation propagation energy for both zero and nonzero mass wave particles can be described integrated in one approach.
The description in this paper depends on time interval commutation quantities. Due to the considered set dimension, these quantities form multiples, for the time interval set, multiples are pairs of quantities. Where the number of degrees of freedom increases due to these multiples, equilibrium induces constraints and reduction of degrees of freedom. The time interval equilibrium requirement means invariance, for the multiplication of all quantities within a multiple, in this way introducing Noether charges, and in the same way, structure constants, for the relevant set. In this paper the relevant set is the time interval set, a one-dimensional set. Radiation propagation in the usual qm field theory setting applies fields that extend to all infinite spacetime. This is due to radiation interpreted being parallel and stationary. Infinite spacetime is not very suitable for the definition of measurement events. When a star source is assumed, radiation propagation includes sphere surface limits unlike the parallel situation. Measurement and interaction, with H time dependent, allows for the introduction of a finite relevant event time interval. In the following discussed are some of the results.

I. The equivalence principle and simultaneous descriptions

Assuming a situation without interaction, radiation energy E, interpreted in paragraph 11 and 12 with kinetic radiation energy, is an invariant. Radiation propagation implies dispersion free noninteracting radiation complementary with free moving wave particles, ie de Broglie complementarity. According to general relativity and the equivalence principle, this kinematic energy is 'equal' to gravitational energy when considering a kinetic energy space time coordinate system accelerated in the gravitational energy space time coordinate system and it is not possible to decide from measurement [6, Goldstein], [18, Einstein]. Like reciprocal quantities, paragraph 3, defined is a simultaneous pair of energies, Es, kinetic, and Ee, gravitational. To follow the arguments for reciprocal quantities the energy pair is related to each other by a reference transformation. The energies Es and Ee have the same invariant value each from their own reference, not meaning the respective space time coordinate system, rather like complementarity of wave and wave particle within qm. A relation for Es and Ee references differs from the usual Newtonian one equating kinematics and dynamics, since radiation and gravitation are considered from energy, not action. Due to MVT equilibrium, $I^{*} \| \Delta t$ and $D^{*} \| \Delta t$ being 'equal' is assured, since the results for both in terms of time intervals are the same, equation 10 .

From equation 38 and $39, E s=\# n . A[1 /|c(\Delta t)|, A[m 1, m 2]]$, and $E e=\# n . M[1 /|c(\Delta t)|, M[m 1, m 2]]$. The Es reference is 'addition' or differentiation, the Ee reference is 'multiplication' or integration. Both results agree with Newtons second law from differentiation of equations 38 and 39 , Es due to differentiation to Δt and coordinate Δq being positive and decreasing and Ee due to differentiation to Δq, [4, Hollestelle], [6, Goldstein] and [7, Newton I]. In particular differentiation to resp. $\Delta \mathrm{t}$ or $\Delta \mathrm{q}$ implies opposite sign. The mass quantities for both equations 38 and 39 being regarded identical is the basis for the interpretation of matter properties and of the equivalence principle [1, Arnold], [17, Newton III], [18, Einstein]. Now it is tried to apply the arguments of the description of reciprocal quantities, paragraph 3.

Following the discussion below equation 8 for a pair of Noether charges, introduced is a simultaneous reference transformation TR, where pair-part for Ee is the transform of pair-part for Es and vice versa. Still, energies Es and Ee are Δt-quantities that allow application of A, M and $\mathrm{D}^{*} \| \Delta \mathrm{t}$ while remaining within the same pair-part.

The proposed pair transformation TR implies for the energies: $\mathrm{A}[\mathrm{Es}, \Delta \mathrm{t}]$ to $\mathrm{M}[\mathrm{Ee}, \Delta \mathrm{t}]$, from addition to multiplication and reverse, where evidently the value for Es and Ee remains the same. Both pair-parts depend on energy invariance, valid for propagation surface energy due to noninteraction and for gravitation energy due to the time interval property $\mathrm{D}^{*} \| \Delta \mathrm{t}[\mathrm{Ee}]=\mathrm{Ee}$.

With $\mathrm{D}^{*} \| \Delta \mathrm{t}[\mathrm{Es}]=\mathrm{Es}$ and $\mathrm{D}^{*} \| \Delta \mathrm{t}[\Delta \mathrm{t}]=\Delta \mathrm{t}$, since $\Delta \mathrm{t}=\Delta \mathrm{U}$ there is $\mathrm{Es}=\mathrm{M}[\Delta \mathrm{t}, \mathrm{Es}]=\mathrm{M}[\mathrm{Es}, \Delta \mathrm{t}]$ and it follows Es $=\mathrm{D}^{*} \| \Delta \mathrm{t}[\mathrm{M}[\mathrm{Es}, \Delta \mathrm{t}]]=\mathrm{A}[\mathrm{c} 1 . \mathrm{M}[\mathrm{Es}, \Delta \mathrm{t}]$, $\mathrm{c} 2 . \mathrm{M}[\mathrm{Es}, \Delta \mathrm{t}]]=\mathrm{A}[\mathrm{c} 1$. Es, c2. Es $]$. A reference transformation results in $\mathrm{Ee}=\mathrm{M}[\mathrm{c} 1 . \mathrm{Ee}, \mathrm{c} 2 . \mathrm{Ee}]$. This also means: $\mathrm{D}^{*} \| \Delta \mathrm{t}[\mathrm{Es}]=\mathrm{A}[\mathrm{c} 1 . \mathrm{Es}, \mathrm{c} 2 . \mathrm{Es}]$ and $\mathrm{D}^{*} \| \Delta \mathrm{t}[\mathrm{Ee}]=\mathrm{M}[\mathrm{c} 1 . \mathrm{Ee}$, c2. Ee].

The pair Es and Ee relate due to the specific reference transformation, just like a multiple of reciprocal quantities that relate due to a certain equilibrium requirement that can be described with a transformation, say $\mathrm{cn}(\Delta \mathrm{t})$ to $\mathrm{cn}^{\prime}(\Delta \mathrm{t})$ and a specific TL, such that $\mathrm{cn}\left(\Delta \mathrm{t}^{\prime}\right)=\mathrm{cn} n^{\prime}(\Delta \mathrm{t})$.

Comment 23. The time interval densities for $\mathrm{cn}(\Delta t)$ and $c n '(\Delta t)$ decide on the second associativity factors $c 1$ and $c 2$ for differentiation $D^{*}| | \Delta t[M]$ of a multiplication $M=[A 1, A 2]$, like for instance $M=$ Ee proportional with $M[m 1, m 2]$, due to $D^{*}| | \Delta t[c n(\Delta t)]=A\left[c 1 . c n(\Delta t), c 2 . c n\left(\Delta t^{\prime}\right)\right]$ for Δt-quantity $c n(\Delta t)$, one pair-part of the multiple cn (Δt) and $c n^{\prime}(\Delta t)$.
The $m 1$ and $m 2$ represent the Δt and Δt ' sources and star source for Ee respectively. The differentiation constants c1 and c2 are recognized to relate to multiple Δt-quantities like Δt-Noether charges due to their multiplication being invariant, in this case equal to ΔN, and themselves are properties changing with Δt, ie propagation and time development.

It is inferred that differentiation as an expression for geometry is directly related to source interaction like gravitational energy. Since differentiation is part of the usual wave equation description of qm , the inference means geometry and gravitation can be integrated with qm through the second associative factors for differentiation. Indeed, one way to derive qm wave functions is from Noether charges.
This inference is a time interval only result. It is expected that similarly differentiation can be generalized to space-time intervals and second associativity property factors related to Noether charges that describe properties changing with space-time intervals. However, there is a difference for time intervals and space intervals, already encountered in [4, Hollestelle] and [5, Hollestelle]: time intervals and time do not allow to 'turn backwards' where 3-dimensional space intervals do, and, the propagation sphere surface requirement of invariant metric
area only emerges from $\Delta \mathrm{t}$, not from $\Delta \mathrm{q}$. This difference is also discussed when introducing structure constants, paragraph 10 , and the distribution theorem, paragraph 11, comment 27.

II. Radiation energy and wave particle number

The time interval description of time development applies MVT equilibrium instead of Lagrangian equilibrium. A multiplication of with q and p corresponding quantities, within the context of the time interval description of star source radiation, recovers the uncertainty relation $\mathrm{h}+=1 / 2\left(\Delta^{*} \mathrm{p} . \Delta^{*} \mathrm{q}+\Delta^{*} \mathrm{q} . \Delta^{*} \mathrm{p}\right)$, paragraph 12 , reducing to Planck's constant h for H time independent [5, Hollestelle].

Resuming the de Broglie complementary wave energy h. v, one finds: $\mathrm{M}[\mathrm{h}+, \Delta \mathrm{ti}]=\mathrm{M}[\mathrm{M}[\Delta \mathrm{p}, \Delta \mathrm{q}], \Delta \mathrm{ti}]=\mathrm{M}[\mathrm{h}$, v] and without interaction the invariant radiation energy equals Es = \#n. h. v for \#n wave particles or photons. It is argued Δ^{*} variances are equal to Δ variations except for a minus sign, and when including interaction, the variable t -quantity is $\# \mathrm{n}$ even while the relevant event time interval $\Delta \mathrm{t}=[\mathrm{tb}, \mathrm{ta}]$ starts or ends with a noninteracting situation. Then, radiation energy $E s(t a)=\# n . E s(t b)$ for $E s(t b)=\# n . h . v$ depends nonlinear on \#n however linear on frequency v, paragraph 11. This relation can provide independent confirmation from measurements for the de Broglie Einstein relation for the interdependence of kinetic energy and frequency, $E=$ h.v for wave particle and wave respectively.

III. The 'set rule' and Stokes theorem. The meaning of 'close' and 'remote'

Comment 24. Scalar multiplication $\mathrm{M}[\Delta \mathrm{t} 1, \Delta \mathrm{t} 2]=\Delta \mathrm{t} 3=\mathrm{a}$. $\Delta \mathrm{ta}$ can be evaluated by applying transformation T 1 and 'scale' transformation T2, termed B and C in [4, Hollestelle] and discussed below equation 8. T1 includes the specific transforms $\mathrm{T} 1[\mathrm{tb}]=\mathrm{tb}$ and $|\mathrm{T} 1[\mathrm{t} 0]| \ll|\mathrm{t} 0|$ and $\mathrm{T} 1[\mathrm{ta}]=-1$. tb, and T 2 is a scale transformation transforming $\Delta \mathrm{t}=[\mathrm{tb}, \mathrm{ta}]$ to $\mathrm{T} 2[\Delta \mathrm{t}]=[\mathrm{C} . \mathrm{tb}, \mathrm{C}$. ta $]$ with C a scalar and boundary parameters t to $\mathrm{T} 2[\mathrm{t}]=\mathrm{C} . \mathrm{t}=$ t 0 . $(\mathrm{T} 2[\mathrm{t} 0])^{\wedge}(-1)$. t , for a certain given T 2 [t 0$]$, except for $\mathrm{t}=\mathrm{t} 0$, since t 0 is not a possible boundary parameter. T 1 and T 2 transform time intervals to time intervals while remaining within the time interval set. $\Delta \mathrm{tb}$ within commutator $[1 / \mathrm{tb}, \mathrm{A}] \| \Delta \mathrm{tb}$, is the result of repeated application of T 1 and T 2 to $\Delta \mathrm{t}=[\mathrm{tb}, \mathrm{ta}]$.

From equation 23 for 'set rule' remain Rest(a) \mid t, the third part is derived independently and confirms the second part: derivative $\mathrm{D}^{*}[\mathrm{a}]=\mathrm{D}^{*} \| \Delta \mathrm{t}[\mathrm{a}]$ equals the ordinary commutator [1/tb, a]u. This indicates that situations 'remote' from and 'close' to with respect to situations with H time independent are also more similar than the terms suggest. The situations 'remote' from and 'close' to Newtonian, with Newtonian meaning: with H time independent, can be related by interpretation from MVT equilibrium of the commutators $[1 / t, a] \| \Delta t$ and $[1 / t, a] u$ for any quantity a and any $\Delta \mathrm{t}$.

A change of the relevant time interval $\Delta \mathrm{t}$ from $\Delta \mathrm{t}$ ' to $\Delta \mathrm{t}$ ' ' corresponds with a change of the interval boundaries. The time interval derivative to one moment time parameter tb then can be defined to be equal to $[1 / \mathrm{tb}, \mathrm{a}] \| \Delta \mathrm{tb}$ with $\Delta \mathrm{tb}=\left[\mathrm{tb}\right.$, , $\left.\mathrm{tb}{ }^{\prime \prime}\right]$ and similarly for ta with $\Delta \mathrm{ta}=\left[\mathrm{ta}, \mathrm{ta}^{\prime}{ }^{\prime}\right]$. Recall that these $\Delta \mathrm{tb}$, and $\Delta \mathrm{ta}$, are for all tb' and tb" well defined time intervals, due to T 1 and T 2 transforming proper time intervals to proper time intervals. One derives $[1 / \mathrm{tb}, \mathrm{a}] \| \Delta \mathrm{tb}$ is equal to $[1 / \mathrm{t}, \mathrm{a}] \| \Delta \mathrm{t}$, and thus corresponds with $\mathrm{D}^{*} \| \Delta \mathrm{t}[\mathrm{a}]$. For this to confirm Stoke's theorem, in a time interval set version, it should be $\mathrm{D}^{*} \| \Delta \mathrm{t}[\mathrm{a}]=\mathrm{a}$. This is valid for a equal to a multiplication like $\Delta \mathrm{N}$, paragraph 10 .

The derivatives $\mathrm{D}^{*}[\mathrm{a}]$ and $\mathrm{D}^{*} \| \Delta \mathrm{t}$ [a] being equal is discussed below 'set rule' equation 23 . One also derives $[1 / \mathrm{tb}, \mathrm{a}] \| \Delta \mathrm{tb} \sim 1 / 2[1 / \mathrm{tb}, \mathrm{a}] \mathrm{u}$ with both correspondences only valid for 'close' to Newtonian, H time independent, situations. It follows $\mathrm{D}^{*} \| \Delta \mathrm{t}[\mathrm{a}] \sim 1 / 2[1 / \mathrm{tb}, \mathrm{a}] \mathrm{u}$, which both are proper quantities, for 'close' to Newtonian situations meaning $\Delta \mathrm{t}$ is 'close' to, ie asymptotically, symmetrical, while the independent confirmation, comment 19, of this correspondence for both expressions from equation 23 is derived for all situations, H time dependent or time independent. This implies some questions concerning what means 'close' to time independent for H and what means 'close' to symmetrical for $\Delta \mathrm{t}$. In the description of star source radiation 'close' to or 'remote' from symmetrical for Δt means 'remote' from or 'close' to for the propagation surface from the star source [5, Hollestelle]. The above relativity of the concept of measure and asymmetry in terms of the relevant time interval Δt can be an introduction to space time itself and to the resolution of the problem of action at a distance.
IV. Scalar multiplications and scale transformations. Linear subsets within the time interval set. Closure theorem

From $\mathrm{M}[\Delta \mathrm{t} 1, \Delta \mathrm{t} 2]=\Delta \mathrm{t} 3$, per definition a time interval, and since any time interval is neutral in $\Delta \mathrm{t}$, there is assumed $\Delta \mathrm{t} 3$ is linear in $\Delta \mathrm{t}: \Delta \mathrm{t} 3=\mathrm{e} . \Delta \mathrm{t}$ for some scalar e. Transformation T 2 with scale factor $\mathrm{C}=$ a provides meaning for scalar multiplication with a time interval result: a. $\Delta \mathrm{ta}=\Delta \mathrm{t} 3=\mathrm{M}[\Delta \mathrm{t} 1, \Delta \mathrm{t} 2]$ with a. $\Delta \mathrm{ta}=\mathrm{T} 2$ [$\Delta \mathrm{ta}]$ remains a proper, ie well defined, time interval. Now write $\Delta \mathrm{ta}$ itself linear in $\Delta \mathrm{t}$. With $\mathrm{ca}=\Delta \mathrm{U}$ and a $=1$ multiplication $\Delta \mathrm{t} 3^{\prime}=\mathrm{M}[\Delta \mathrm{U}, \Delta \mathrm{ta}]=\mathrm{e}^{\prime} . \Delta \mathrm{t}=\Delta \mathrm{ta}$. All a. $\Delta \mathrm{ta}$ can be expressed with time intervals e. $\Delta \mathrm{t}$ linear in Δt. By choosing $\Delta t a=\Delta t$ one finds specific ca and a where $M[\Delta t 1, \Delta t 2]=e . \Delta t=c a$.

Then a. $\Delta \mathrm{ta}=\mathrm{M}[\mathrm{ca}, \Delta \mathrm{ta}]$ and $\mathrm{a} . \Delta \mathrm{ta}=\mathrm{a} . \mathrm{M}[\Delta \mathrm{U}, \Delta \mathrm{ta}]=\mathrm{M}[\mathrm{a} . \Delta \mathrm{U}, \Delta \mathrm{ta}]$. This means multiplication with 'multiplication unit' ΔU or with ca both leave the linear subset for Δt invariant. Indeed, it follows M [$\Delta t 1, \Delta t 2]$ is linear in $\Delta t a$. The linear subset for $\Delta t a$ is the part of the time interval set defined from, time interval or scalar, multiplication with $\Delta \mathrm{ta}$. It follows $\mathrm{M}[\Delta \mathrm{t} 1, \Delta \mathrm{t} 2]=\mathrm{a} . \mathrm{e}^{\prime} . \Delta \mathrm{t}=\mathrm{e} . \Delta \mathrm{t}$ with scalar $\mathrm{e}=\mathrm{a} . \mathrm{e}$ ' and part of the linear subset for $\Delta \mathrm{t}$. When $\Delta \mathrm{t} 2$ equals $\Delta \mathrm{t}$ there is $\mathrm{M}[\Delta \mathrm{t} 1, \Delta \mathrm{t}]=\Delta \mathrm{t} 1$ and this confirms the assumption: any time interval $\Delta t 1$ from the time interval set can be written like a multiplication including Δt, and is linear in Δt, one of the properties for M, paragraph 8 . This confirms in terms of linear subsets the time interval set closure theorem, comment 12 .

V. Linear and non-linear events

Introduced are two different quantities within the time interval description, t-quantities and Δt-quantities. It is possible to relate non-linear events, including Δt-quantities like Noether charges that depend on multiplication properties, with linear events, with t-quantities like one moment time t coordinates that depend on addition properties, by applying transformations 'working to the right' like multiplication with t or $1 / \mathrm{t}$. This means, nonlinear events are related to linear events within the time interval description by applying one of these transformations.

VI. Structure constants

Usually, structure constants are defined from the multiplication properties for the set or group elements writing these like exponentials of generator set elements. From assuming the canonical property for the set elements, it follows the commutator for two generator elements can be assumed to be linear within the generator set, ie gives another generator set element for result, including a scalar multiplication. These scalars are termed structure constants. Taking care of the multiplication Taylor series depends on writing out all higher order ordinary commutators of generators that should reduce to first order ordinary commutators which provides a linear result, depending on the structure constants for the set. For the time interval set, multiplication includes a linear result with $\mathrm{M}[\Delta \mathrm{t} 1, \Delta \mathrm{t} 2]=\Delta \mathrm{t} 3=\mathrm{a} . \Delta \mathrm{ta}$ providing the linearity constants and in this case this is enough to find the structure constants, without applying the generator set.

For any set, structure constants themselves are independent of the set representation. Indeed, for the time interval set the structure constants are independent of the number of necessary and different $\Delta \mathrm{ta}$, ie whether the subset of Δ ta is reducible or not. Similarly, the Δ ta subset is not completely determined by structure constant properties. There being only one independent subset for the time interval set, confirms the time interval set being 1-dimensional, and the existence of only one independent structure constant. A structure constant is to relate to the essential properties or quantities of the set, in this case these are the group velocity $c(\Delta t)$ and the differentiation arguments $c 1$ and c2, that together introduce the specific relations for space-time and time development, like propagation.

There is $\mathrm{c}(\Delta \mathrm{t})=\mathrm{M}[\Delta \mathrm{q}, \Delta \mathrm{ti}]=\mathrm{D}^{*}\|\Delta \mathrm{t}[\Delta \mathrm{q}]=[\Delta \mathrm{t}, \Delta \mathrm{q}]\| \Delta \mathrm{t}$ is equal to ordinary commutator $[\Delta \mathrm{t}, \Delta \mathrm{q}] \mathrm{u}$ which is independent of t within $\Delta \mathrm{t}$. For $\Delta \mathrm{q}$ a neutral $\Delta \mathrm{t}$-quantity, $\mathrm{M}[\mathrm{c}(\Delta \mathrm{t}), \Delta \mathrm{t}]=\mathrm{c}(\Delta \mathrm{t})=\mathrm{M}[\mathrm{M}[\mathrm{c}(\Delta \mathrm{t}), \Delta \mathrm{ti}], \Delta \mathrm{t}]$ provides the linearity constant for $\Delta \mathrm{t}$, and ordinary commutator $[\Delta \mathrm{t}, \Delta \mathrm{q}] \mathrm{u}=\mathrm{M}[\mathrm{M}[\mathrm{c}(\Delta \mathrm{t}), \Delta \mathrm{ti}], \Delta \mathrm{t}]$ with $\mathrm{M}[\mathrm{c}(\Delta \mathrm{t}), \Delta \mathrm{ti}]=$ $c(\Delta t)$ a structure constant for the time interval set. However, $c(\Delta t)$ does not have scalar dimension.

When measuring $c(\Delta t)$ the time interval Δt is the relevant event time interval, which also is the relevant event time interval for measuring $\Delta \mathrm{q}$. This can be resolved with the quantity $\mathrm{h}+$. One of the assumptions for noninteraction star source wave propagation [4, Hollestelle] is $\left|\Delta^{*} \mathrm{q}\right|=|\Delta \mathrm{q}|$ and $\left|\Delta^{*} \mathrm{p}\right|=|\Delta \mathrm{p}|$ and this implies, $\mathrm{h}+$ is a Δt-quantity linear in $|\Delta \mathrm{q}| .|\Delta \mathrm{p}|$, and due to being equal to $\mathrm{M}[\mathrm{E}, \Delta \mathrm{t}]$, linear in $\Delta \mathrm{t}$, paragraph $12 . \mathrm{E}=\mathrm{M}[\mathrm{h}+, \Delta \mathrm{ti}]$ for E invariant during propagation and without interaction. Both these relations are equal to ordinary commutator relations and both $h+$ and Δq are linear in Δt since they are Δt-quantities. It follows $E=M[h+, \Delta t i]$ $=[\Delta \mathrm{t}, \mathrm{h}+] \mathrm{u}$ and this ordinary commutator equals $\mathrm{E}=[\mathrm{E}, \Delta \mathrm{t}]=\mathrm{M}[\mathrm{M}[\mathrm{E}, \Delta \mathrm{ti}], \Delta \mathrm{t}]$ with $\mathrm{M}[\mathrm{E}, \Delta \mathrm{ti}]=\mathrm{E}$ a structure constant for the time interval set like $c(\Delta t)$. E and $\mathrm{h}+$ are only introduced to find that from quantities with
different dimensions the structure constant for a set remains the same, the number of structure constants depending just on the dimension of the set, and the time interval set is 1-dimensional.

Interaction can be included with $\mathrm{h}+=\mathrm{h}+(\Delta \mathrm{t})$ or with $\Delta \mathrm{q}=\Delta \mathrm{q}(\Delta \mathrm{t})$ and time interval differentiation to $\Delta \mathrm{t}$ without applying parameter t . The wave velocity $\mathrm{c}(\Delta \mathrm{t})$ and energy $\mathrm{E}, \Delta \mathrm{t}$-quantities, can be interpreted to be structure constants disregarding dimension. Now introduce the following invariant velocity and energy quantities c_/|c_| and $\mathrm{h} . \mathrm{v} / \mathrm{h} . \mathrm{v} \mid$ that render dimensionless multiplication results with $\mathrm{c}(\Delta \mathrm{t})$ and E respectively. It follows sc $=M$ $\left[c(\Delta t),\left(c_{-} \backslash c_{-} \mid\right) i\right]$ and $s e=M[E,(h . v /|h . v|) i]$ are structure constants for the time interval set.

The time interval set is different from the usual groups considered in relation with structure constants, ie within elementary particle field theory. One difference is the canonical property usually assumed for these groups to derive the multiplication results for the generators, which however is not valid for the time interval set, due to the existence of the non-zero remain $\operatorname{Rest}(\mathrm{a})$. The structure constants being provided by the addition quantities ΔN, it is inferred that there is only one pair of $\mathrm{cn}(\Delta t), \mathrm{cn}^{\prime}(\Delta \mathrm{t})$, since equation 1 includes indeed only one corresponding pair cn and cn ', and there is only one independent structure constant for the time interval set itself, with $\mathrm{cn}(\Delta \mathrm{t})$ and cn ' $(\Delta \mathrm{t}) \Delta \mathrm{t}$-quantities. This means $\mathrm{sc}=\mathrm{se}$, they are same structure constant. Similar arguments are valid for interval quantities with a dimension different from the time interval set, for instance $\Delta q-$ quantities and the space interval set. Due to equation 23 the remain Rest(a) is included in Noether charge NC, that can be derived by assuming both the overall time interval and space interval averages for $\mathrm{cn}(\Delta t)$ are the same, [1, Arnold] and equal to $\Delta \mathrm{N}$. One finds the time interval derivative to $\Delta \mathrm{t}$ of the complete space integral $\Delta \mathrm{N}$ to be $\mathrm{NC}=\mathrm{A}[\mathrm{M}[\mathrm{c}(\Delta \mathrm{t}), \Delta \mathrm{N}], \mathrm{c}(\Delta \mathrm{t})]$, depending on the first associative property for multiplication and applying similarity for M and A , paragraph 10 . This is equal to the time interval derivative of overall time interval average $\Delta \mathrm{N}=\mathrm{M}\left[\mathrm{cn}(\Delta \mathrm{t}), \mathrm{cn}\left(\Delta \mathrm{t}^{\prime}\right)\right]$, ie equal to $\mathrm{D}^{*} \| \Delta \mathrm{t}\left[\mathrm{M}\left[\mathrm{cn}(\Delta \mathrm{t}), \mathrm{cn}\left(\Delta \mathrm{t}^{\prime}\right)\right]\right]=\mathrm{A}\left[\mathrm{a} . \mathrm{D}^{*} \| \Delta \mathrm{t}[\Delta \mathrm{ta}]\right.$, $\operatorname{Rest}(\mathrm{a}) \mid \Delta \mathrm{t}]=\mathrm{NC}$, for $\mathrm{a}=\mathrm{c}(\Delta \mathrm{t})$ and $\Delta \mathrm{ta}=\Delta \mathrm{N}$ and $\operatorname{Rest}(\mathrm{a}) \mid \Delta \mathrm{t}=\mathrm{c}(\Delta \mathrm{t})$. From paragraph 10, D* $\| \Delta \mathrm{t}[\Delta \mathrm{N}]=\Delta \mathrm{N}$ meaning $\Delta \mathrm{N}=\mathrm{NC}$ and $\mathrm{NC}=\mathrm{M}[\mathrm{c}(\Delta \mathrm{t}), \mathrm{NC}]$ with solutions $\mathrm{c}(\Delta \mathrm{t})=\mathrm{NC}$ or $\mathrm{c}(\Delta \mathrm{t})$ equals 'multiplication unit' $\Delta \mathrm{U}$.

Comment 25. the non-linear property of the time interval set is included in Noether charge NC, with NC =sc.M $\left[c_{-} \backslash c_{-} \mid, \Delta N i\right]$ where sc the structure constant for the time interval set depending on $c(\Delta t)$, and with $N C=M$ $[\operatorname{Rest}(c(\Delta t)), \Delta N]=M[c(\Delta t), \Delta N]$.

Comment 26. considered only are time intervals with domain measure non zero. Not considered are time intervals with the domain measure zero.

VII. Equation-sign and the addition commutator

The equation $\mathrm{A}[\Delta \mathrm{U} 0, \Delta \mathrm{t} 0]=\Delta \mathrm{t} 0$ from $\Delta \mathrm{U} 0=(1-1) . \Delta \mathrm{t} 0=\mathrm{A}[\Delta \mathrm{t} 0,-1 . \Delta \mathrm{t} 0]$ seems contradictory, unless one considers comment 20 for $\Delta \mathrm{U} 0$, and indicates there is an extra freedom when quantities can be subject to 'moving to the other side of the equation-sign' by multiplication with scalar -1. It means introducing an addition commutator. When commutation quantities are added the related multiple changes to include these quantities and similar for the Noether charge and structure constants, and the number of degrees of freedom. The equationsign side seems to matter and have different value, depending on the order of the involved time intervals. This is subject for another paper, however the time interval set seems to be a good start to investigate this. A similar freedom seems to reside with Newton's laws and equilibrium definitions.

The confusion exists when one applies: $-1 . \Delta \mathrm{t} 0$ to mean $\Delta \mathrm{t} 0 \mathrm{iv}$ within the above addition A , and interpreting addition to mean a difference due to scalar -1 , and can be avoided by 'moving to the other side of the equationsign'. Differences are part of the one moment time description since this description depends on vectors. However, in the time interval only description the addition inverse is defined from $\mathrm{A}[\Delta \mathrm{t} 2, \Delta \mathrm{t} 2 \mathrm{iv}]=\Delta \mathrm{t} 0$ for any time interval $\Delta \mathrm{t} 2$.

References

[1] Arnold, V. I. (1974): Mathematical Methods of Classical Mechanics, Russian/English translation, Vogtmann K. and A. Weinstein, Springer. 1989
[2] Beller, M. (1999): Quantum Dialogue, Univ. Chicago Press
[3] Roos, W. J. (1978): Grondslagen van de quantummechanica (Foundations of quantum mechanics), graduate course, Univ. of Utrecht
[4] Hollestelle, H. (2020): Time, Equilibrium, and General Relativity, Int. Jrnl. of Science and Tech.
[5] Hollestelle, H. (2021): Some Results for a Time Interval Approach to Field Theory and Gravitation, Int. Jrnl. of Science and Tech.
[6] Goldstein, H. (1950): Classical Mechanics, Addison-Wesley
[7] Newton, I. (1686) (I): The Mathematical Principles of Natural Philosophy, Latin/English translation A. Motte, Benjamin Motte Editors, 1729, Book I, pg 19, Axioms or laws of motion, Law II
[8] Hollestelle, H. (2017): Thermodynamics of a Set of Closed Curved Surfaces and Noether's Theorem, Int. Jrnl. of Science and Tech., 5, 1
[9] Curie, P. (1894): Sur la symétrie dans les phénomènes physiques, symétrie d'un champ électrique et d'un champ magnétique. J. Phys. Theor. Appl., 3 (1), published Hal archives-ouvertes
[10] Newton, I. (1686) (II): The Mathematical Principles of Natural Philosophy, Latin/English translation A. Motte, Benjamin Motte Editors, 1729, Book I, includes the principles of differentiation by infinitesimal limit [11] Noether, E. (1918): Invariant Variation Problems, German/English translation, Tavel, M. A., Transport Theory and Statistical Physics, 1971
[12] De Wit, B. and J. Smith (1986): Field Theory in Particle Physics, Vol. I, North Holland Physics/Elsevier
[13] Sakurai, J. J. (1978): Advanced Quantum Mechanics, Addison-Wesley
[14] Jacobson, N. (1974): Basic Algebra I, Freeman
[15] Veltman, M. (1974): Representations of Groups and Applications to Elementary Particle Physics, graduate course, Univ. of Utrecht
[16] Hocking, G., S. Young (1961): Topology, Addison-Wesley
[17] Newton, I. (1686) (III): The Mathematical Principles of Natural Philosophy, Latin/English translation A. Motte, Benjamin Motte Editors, 1729, Book I, Definition I, includes the definition of the quantity of matter, related to acceleration, proportional to mass known by its weight.
[18] Einstein, A. (1923): The Foundation of the General Theory of Relativity, in Lorentz, H., Einstein, A., Minkowski, H. and H. Weyl: The Principle of Relativity, (reprint of the original publication, Methuen and Company, translated by Perrett, W. and G. Jeffery, Dover Publishers, 1952)

