Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2022 d0i:10.20944/preprints202209.0150.v1

Article
A short review on fast ways to multiply two matrices

Ishan Banerjee 14

1 Affiliation 1; ishanbanerjee.314@gmail.com

* Correspondence: ishanb@cmi.ac.in;
t Current address: AC Nath Street, Kantadhar, Ichapore, Kolkata-743144, West Bengal, India.

Abstract: Matrix multiplication is probably one of the most basic and important operations having a
wide range of applications in studying Linear algebra. We will be primarily focused on reviewing
different algorithms for the multiplication of two n x n matrices. The most Naive method has a
complexity of O(n®) but interestingly, algorithms with better complexity have been achieved. We
will get to see how the complexity can be improved further, occasionally giving a survey.

Keywords: Matrix multiplication; Complexity; Matrix multiplication constant ; Algorithm ; Tensors;
Tensor product ; Tensor power

1. Introduction

Matrix multiplication forms one of the most basic operations which we need to fre-
quently implement. However, the naive method is not optimal and hence will take a lot of
time to deal with large data. Strassen[4] had made a remarkable discovery on the complex-
ity of matrix multiplication, achieving an upper bound of log, 7 ~ 2.807 for the exponent.
Following that marvelous discovery, progress began on improving the upper-bound. The
language of tensors played an important role in this. Interestingly it was conjectured that
for some € > 0 we can run an algorithm for matrix multiplication in O(n?+€) [1], therefore
the at-most we can do is to get closer to 2. As of December of 2020, the upper-bound for the
exponent is 2.3728596. In this paper we will be focusing on various algorithms to multiply
two matrices and how the upper-bound of the complexity can be improved.

Coming to the naive method, it is probably the most basic where for a matrix A = [a;;]

and B = [b;], the product gives us AB = [c;j] = [Z aikbkl} , using the idea of divide and
k

conquer. For square matrices of size n x n, n steps are taken to give a single element of the
product matrix. For a total of #> number of elements, we have the complexity of n3. The
following represents matrix multiplication in the naive method for a 2 x 2 matrix.

a b\ (e f\ _ (aet+bg af+bh

c d g h) \ce+dg cf+dh
We note that the total number of multiplications in this case is 2 for each element, which
makes a total of 8 multiplications. Now for a general matrix, we can divide the matrix into

sub-matrices of size g X g in the following way.

(a | b\ (e | f_ [(ae+bg | af+Dbh\
\c [d) \g [h) \eetdg [cf+dh)

Complexity: T(n) = 8T(n/2) + O(n*)(Addition requires n> complexity)

Which gives a complexity of O(n%)

© 2022 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0000-0000-000X
https://doi.org/10.20944/preprints202209.0150.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2022

2 0f5

2. Strassen’s method

Strassen’s method is pretty similar to the divide and conquer method but it reduces
the number of multiplication using the following method.
We first need to divide the matrix into sub-matrices just like the naive method.

(a | by (e | £
\e [d) \g [h)

We will then define the following

pr=a(f—h) p2=(a+Db)h
p3=(c+d)e ps=d(g—e)
ps=(a+d)(e+h) pe=(b—d)(g+h)
p7 =(a—c)(e+f)

We can then get the final product from the following

(a | b\ (e | f_(ps+ps—p2tps | p1+p2 \
\e 1d) g I n) \ ptp | pr+ps—ps—p7)

We note that, unlike the naive method, we need to do only 7 multiplications with the
sub-matrices.

Complexity: T(n) = 7T(n/2) + O(n?)
Therefore the complexity becomes O(n'%87) ~ O(n?>877).

3. Discussion

The following table shows the execution time for the naive and Strassen’s method of
multiplication for different dimensions of matrix.

Size(n x n) | Strassen’s method Time(ms) | Naive method Time(ms)
32 x 32 135 11
64 x 64 847 66

128 x 128 7304 479

256 x 256 31626 3146

512 x 512 258892 17109

Table 1. Execution time of Naive and Strassen’s algorithm. (The codes were written in Python 3)

We notice that for the following data, Naive algorithm beats Strassen’s algorithm. However,

d0i:10.20944/preprints202209.0150.v1

https://doi.org/10.20944/preprints202209.0150.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2022 d0i:10.20944/preprints202209.0150.v1

30f5

for really large matrices, we get to see a different picture. When the size of matrix gets
around 23¢ x 236 and above, Strassen’s method starts leading significantly.

le31l

1.50

1.25

1.00 H

Time in {ms)

0.75 H

0.50

0.25 4

0.00

20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5
Power of 2

Figure 1. Blue line represents the Naive method and the orange denotes Strassen’s method.

However, Strassen’s method has a few disadvantages which makes it unproductive in real
life applications.

1. Recursive stacks consume more memory.
2. The recursive calls add latency.

3. We face precision error with Strassen’s method.

Thus for smaller matrices, its more practical to use the Naive method.

4. Algorithm for approximate matrix multiplication

For a given m X n matrix A and n X p matrix B, we will can use algorithms to give an
approximation P for A - B where bounds on the norm of the error matrix (¢ = P — A - B) is
provable. In case of the naive algorithm, we will have the complexity as O(mnp). Using
the algorithms of AMM, we can reduce it to O(mnt) where t < p. The entire idea here is
to choose f columns and take only ¢ columns from A, forming the m x t S and taking ¢
rows from B, forming the ¢ X n matrix R. The approximate matrix we getis P = S - R. the
strategy is to choose the t columns and rows effectively.

Theorem: For a fixed ¢ > 0, there is a randomized algorithm which approximates the matrix
A - Bby P such that it runs in O(tmp) and

2
1(& 1
E<||PA'B|%>st<2||A<k>B<k>||> < 114IBI1BIR
k=1

Where || - || is the Frobenius norm. The problem with this method is that we may get a

huge variance which can render this method ineffective in real-life applications. The author
in [9] states two algorithms which can run in O(mn + np + mp) with a suitable choice of
probability distribution.

5. Matrix multipication tensors

Before moving further we need to know the definition of the matrix multiplication
constant w. This constant is the least number such that for any € > 0, the complexity of

https://doi.org/10.20944/preprints202209.0150.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2022 d0i:10.20944/preprints202209.0150.v1

4 0of 5

multiplying two matrices is O(n%*€). It has been conjectured that w = 2.
Strassen had used the language of tensors to represent his algorithm.

2
XijYixzki = (X11 + x22) (Y11 + y22) (211 + 222) + (x21 + x22)y11 (221 — 222) +
ijk=1
x11 (V12 — ¥22) (212 + 222) + x22(y21 — y11) (211 + 221) +
(x11 + x12)y22 (=211 + 212) + (%21 — x11) (Y11 + Y12) 200+
(%12 = x22) (Y12 + ¥22)211

We call this (can also be represented as (2,2, 2)) the matrix multiplication tensor. In this case,
the above expression represents the product of two 2 x 2 matrices. It is indeed possible
to show that the rank of this tensor is at-most 7 (Strassen showed that it is exactly 7).
But why do we care about the rank of the tensor? It is worth noting that the expression
R({n,n,n)) = n" says that a basis algorithm exists such that multiplication of # x n matrices
can be done in n* multiplications which can be further iterated to n* x n*. Therefore
the matrix multiplication constant must satisfy w < « which means that we can write
n“ < R({n,n,n)). Let’s now have a look on some of the important results.

N 3n% n
Theorem 1 (Lickteig): R((n,n,n)) > - + >~ 1

Theorem 2 (Bliser): R({n,n,n)) > gnz —3n

Theorem 3 (Brockett-Dobkin): R({n,n,n)) > 2n> — 1
Corollary (Winograd): R((2,2,2)) =7
Theorem 4: R((2,2,2)) =7

Here R represents the boundary rank of the tensor.

5.1. Schonhage’s asymptotic sum inequality

The asymptotic sum inequality is a vast generalization of this idea which says

L . L
Y (nimip;) 3 < R<@<"i' mi, m))

i=1 i=1

Schinhage showed that R((4,1,4) & (1,9,1)) < 17. On applying the inequality, we get
16973 + 99/3 < 17, which finally gives us the bound w < 2.55.

5.2. Laser Method
For an integer parameter g, Coppersmith and Winograd considered the following
tensor

q
T =Y (xoyizi + XiYozi + Xi¥iZ0) + X0Y0Zg+1 + X0Yg+120 + X44+1Y0Z0
i-1

The above expression can also be written in the form of partitioned tensors as the following.
(1,1,9) 011] 4 (9,1,1) (101] 4 (1,4,1) (L10] (1,1,1) [0,0,2] (1,1,1) 02,0] 4 (1,1,1) [2,0,0]

We will partition the x-variable into three parts, Xo = {xo},X; = {x1,x2,...%;} and
Xz = {x411}. We will do the same thing with the y and z variables. It is worth noting that
every term of the second expression is dependent on a single group of x, y and z variables
(Which is represented by the superscripts). It was shown that R(T) < g + 2.

The main idea behind the laser method is to take a high tensor power of T and vanish
some groups of variables such that we get a sum of disjoint tensors. We can then apply the
asymptotic sum inequality.

When we take high tensor product T*N, we get partitioned tensor with 6V constituent

https://doi.org/10.20944/preprints202209.0150.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2022 d0i:10.20944/preprints202209.0150.v1

50f5

tensors over XV x YN x ZN. We note that the x variables represented by X" are partitioned
into 3N parts indexed by {0, 1,2} (Let’s call them the x indices). Similarly we will have y
and z indices. We also note that each constituent tensor has an index of x,y and z variables
(Let’s call the triple I,], K). We will represent those tensors as TIG?]{\}(.
In the next step let’s vanish all the x variables except those whose index are in a set
A C {0,1,2}. We will do the same for the y and z variables. This will give us the final
expression as

T@N

LJK
(L],K)esupp(TEN)N(AxBxC)

Here supp(TPN) represents the support of T?N. Suppose all the summands are over
disjoint variables. In this case R(T®N) < (g +2)N. We can now apply the asymptotic sum
inequality which will give us

y Vol(TEN)“? < (g +2)N
(L], K)esupp(TEN)N(AxBxC)

Volume of a tensor (m,n, p) represented as Vol((m,n,p)) = mnp. Coppersmith and
Winograd considered the quantity Vpp ;\,(T) which is the maximum of

Y Vol(TE NP3
(L],K)esupp(TPN)N(AxBxC)

Choosing g = 6, Coppersmith and Winograd computed the value of p such that Vpp "(T) =

g + 2 and deduced that w < p which finally gives the upper-bound w < 2.3872. Different
generalizations of the Laser method gave even better bounds, like the recursive laser
method gives us an upper-bound of 2.3755.

6. Conclusion

Improvements of the upper-bounds on w is still continuing, getting even closer to
the mythical goal of 2. Starting with the Naive method we saw that it computed matrix
multiplication in O(n?). Strassen’s method on the other hand, has a better complexity but
its practical applications are limited as it’s helpful only for really large matrices. Once we
get into the language of tensors, we got to see how the upper-bounds can be made better
using the asymptotic sum inequality and considering the higher powers of a tensor and
vanishing a few variables and interestingly, different generalizations of the Laser method
are capable of giving us even better bounds.

References

1. Alman, J. and Williams, V.V,, 2021, A refined laser method and faster matrix multiplication. In Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms (SODA) (pp. 522-539). Society for Industrial and Applied Mathematics.

2. Blaser, M., 2013, Fast matrix multiplication. Theory of Computing, pp.1-60.

3. Huss-Lederman, S., Jacobson, E.M., Tsao, A., Turnbull, T. and Johnson, J.R., 1996, Implementation of Strassen’s algorithm for
matrix multiplication. In Proceedings of the 1996 ACM/IEEE Conference on Supercomputing (pp. 32-es).

4. Cohn, H,, Kleinberg, R., Szegedy, B. and Umans, C., 2005, October. Group-theoretic algorithms for matrix multiplication. In 46th
Annual IEEE Symposium on Foundations of Computer Science (FOCS’05) (pp. 379-388). IEEE.

5. Landsberg,].M., 2012. Tensors: geometry and applications. Representation theory, 381(402), p.3.

6. Author 1, A.B.; Author 2, C.D.; Author 3, E.F. Title of presentation. In Proceedings of the Name of the Conference, Location of
Conference, Country, Date of Conference (Day Month Year); Abstract Number (optional), Pagination (optional).

7. Francis, D.P. and Raimond, K., 2018. A practical streaming approximate matrix multiplication algorithm. Journal of King Saud
University-Computer and Information Sciences.

8. Le Gall, F,, 2014, July. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th international symposium on
symbolic and algebraic computation (pp. 296-303).

9. Dirineas, P, Kannan, R. and Mahoney, M.W., 2006. Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplica-
tion. SIAM Journal on Computing, 36(1), pp.132-157.

https://doi.org/10.20944/preprints202209.0150.v1

