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Abstract: Matrix multiplication is probably one of the most basic and important operations having a 1

wide range of applications in studying Linear algebra. We will be primarily focused on reviewing 2

different algorithms for the multiplication of two n × n matrices. The most Naive method has a 3

complexity of O(n3) but interestingly, algorithms with better complexity have been achieved. We 4

will get to see how the complexity can be improved further, occasionally giving a survey. 5
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Tensor product ; Tensor power 7

1. Introduction 8

Matrix multiplication forms one of the most basic operations which we need to fre-
quently implement. However, the naive method is not optimal and hence will take a lot of
time to deal with large data. Strassen[4] had made a remarkable discovery on the complex-
ity of matrix multiplication, achieving an upper bound of log2 7 ≈ 2.807 for the exponent.
Following that marvelous discovery, progress began on improving the upper-bound. The
language of tensors played an important role in this. Interestingly it was conjectured that
for some ϵ > 0 we can run an algorithm for matrix multiplication in O(n2+ϵ) [1], therefore
the at-most we can do is to get closer to 2. As of December of 2020, the upper-bound for the
exponent is 2.3728596. In this paper we will be focusing on various algorithms to multiply
two matrices and how the upper-bound of the complexity can be improved.
Coming to the naive method, it is probably the most basic where for a matrix A = [aij]

and B = [bij], the product gives us AB = [cij] =

[
∑
k

aikbki

]
, using the idea of divide and

conquer. For square matrices of size n × n, n steps are taken to give a single element of the
product matrix. For a total of n2 number of elements, we have the complexity of n3. The
following represents matrix multiplication in the naive method for a 2 × 2 matrix.(

a b
c d

)
·
(

e f
g h

)
=

(
ae + bg a f + bh
ce + dg c f + dh

)
We note that the total number of multiplications in this case is 2 for each element, which
makes a total of 8 multiplications. Now for a general matrix, we can divide the matrix into

sub-matrices of size
n
2
× n

2
in the following way.

(
a | b
c | d

)
·
(

e | f
g | h

)
=

(
ae + bg | a f + bh
ce + dg | c f + dh

)
Complexity: T(n) = 8T(n/2) + O(n2)(Addition requires n2 complexity) 9

Which gives a complexity of O(n3) 10
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2. Strassen’s method 11

Strassen’s method is pretty similar to the divide and conquer method but it reduces
the number of multiplication using the following method.
We first need to divide the matrix into sub-matrices just like the naive method.(

a | b
c | d

)
·
(

e | f
g | h

)
We will then define the following

p1 = a( f − h) p2 = (a + b)h

p3 = (c + d)e p4 = d(g − e)

p5 = (a + d)(e + h) p6 = (b − d)(g + h)

p7 = (a − c)(e + f )

We can then get the final product from the following(
a | b
c | d

)
·
(

e | f
g | h

)
=

(
p5 + p4 − p2 + p6 | p1 + p2

p3 + p4 | p1 + p5 − p3 − p7

)
We note that, unlike the naive method, we need to do only 7 multiplications with the 12

sub-matrices. 13

Complexity: T(n) = 7T(n/2) + O(n2) 14

Therefore the complexity becomes O(nlog7) ≈ O(n2.807). 15

3. Discussion 16

The following table shows the execution time for the naive and Strassen’s method of 17

multiplication for different dimensions of matrix.

Size(n × n) Strassen’s method Time(ms) Naive method Time(ms)
32 × 32 135 11
64 × 64 847 66

128 × 128 7304 479
256 × 256 31626 3146
512 × 512 258892 17109

Table 1. Execution time of Naive and Strassen’s algorithm. (The codes were written in Python 3)

18

We notice that for the following data, Naive algorithm beats Strassen’s algorithm. However, 19
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for really large matrices, we get to see a different picture. When the size of matrix gets 20

around 236 × 236 and above, Strassen’s method starts leading significantly.

Figure 1. Blue line represents the Naive method and the orange denotes Strassen’s method.
21

However, Strassen’s method has a few disadvantages which makes it unproductive in real 22

life applications. 23

24

1. Recursive stacks consume more memory. 25

2. The recursive calls add latency. 26

3. We face precision error with Strassen’s method. 27

Thus for smaller matrices, its more practical to use the Naive method. 28

4. Algorithm for approximate matrix multiplication 29

For a given m × n matrix A and n × p matrix B, we will can use algorithms to give an
approximation P for A · B where bounds on the norm of the error matrix (ϵ = P − A · B) is
provable. In case of the naive algorithm, we will have the complexity as O(mnp). Using
the algorithms of AMM, we can reduce it to O(mnt) where t < p. The entire idea here is
to choose t columns and take only t columns from A, forming the m × t S and taking t
rows from B, forming the t × n matrix R. The approximate matrix we get is P = S · R. the
strategy is to choose the t columns and rows effectively.
Theorem: For a fixed t > 0, there is a randomized algorithm which approximates the matrix
A · B by P such that it runs in O(tmp) and

E(||P − A · B||2F) ≤
1
t

(
n

∑
k=1

||A(k)B
(k)||

)2

≤ 1
t
||A||2F||B||2F

Where || · || is the Frobenius norm. The problem with this method is that we may get a 30

huge variance which can render this method ineffective in real-life applications. The author 31

in [9] states two algorithms which can run in O(mn + np + mp) with a suitable choice of 32

probability distribution. 33

5. Matrix multipication tensors 34

Before moving further we need to know the definition of the matrix multiplication
constant ω. This constant is the least number such that for any ϵ > 0, the complexity of
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multiplying two matrices is O(nω+ϵ). It has been conjectured that ω = 2.
Strassen had used the language of tensors to represent his algorithm.

2

∑
i,j,k=1

xijyjkzki = (x11 + x22)(y11 + y22)(z11 + z22) + (x21 + x22)y11(z21 − z22)+

x11(y12 − y22)(z12 + z22) + x22(y21 − y11)(z11 + z21)+

(x11 + x12)y22(−z11 + z12) + (x21 − x11)(y11 + y12)z22+

(x12 − x22)(y12 + y22)z11

We call this (can also be represented as ⟨2, 2, 2⟩) the matrix multiplication tensor. In this case, 35

the above expression represents the product of two 2 × 2 matrices. It is indeed possible 36

to show that the rank of this tensor is at-most 7 (Strassen showed that it is exactly 7). 37

But why do we care about the rank of the tensor? It is worth noting that the expression 38

R(⟨n, n, n⟩) = nα says that a basis algorithm exists such that multiplication of n× n matrices 39

can be done in nα multiplications which can be further iterated to nk × nk. Therefore 40

the matrix multiplication constant must satisfy ω ≤ α which means that we can write 41

nω ≤ R(⟨n, n, n⟩). Let’s now have a look on some of the important results. 42

Theorem 1 (Lickteig): R(⟨n, n, n⟩) ≥ 3n2

2
+

n
2
− 1 43

Theorem 2 (Bläser): R(⟨n, n, n⟩) ≥ 5
2

n2 − 3n 44

Theorem 3 (Brockett-Dobkin): R(⟨n, n, n⟩) ≥ 2n2 − 1 45

Corollary (Winograd): R(⟨2, 2, 2⟩) = 7 46

Theorem 4 : R(⟨2, 2, 2⟩) = 7 47

Here R represents the boundary rank of the tensor. 48

5.1. Schönhage’s asymptotic sum inequality 49

The asymptotic sum inequality is a vast generalization of this idea which says

L

∑
i=1

(nimi pi)
ω
3 ≤ R

(
L⊕

i=1

⟨ni, mi, pi⟩
)

Schönhage showed that R(⟨4, 1, 4⟩ ⊕ ⟨1, 9, 1⟩) ≤ 17. On applying the inequality, we get 50

16ω/3 + 9ω/3 ≤ 17, which finally gives us the bound ω < 2.55. 51

5.2. Laser Method 52

For an integer parameter q, Coppersmith and Winograd considered the following
tensor

T =
q

∑
i=1

(x0yizi + xiy0zi + xiyiz0) + x0y0zq+1 + x0yq+1z0 + xq+1y0z0

The above expression can also be written in the form of partitioned tensors as the following.

⟨1, 1, q⟩[0,1,1] + ⟨q, 1, 1⟩[1,0,1] + ⟨1, q, 1⟩[1,1,0] + ⟨1, 1, 1⟩[0,0,2]⟨1, 1, 1⟩[0,2,0] + ⟨1, 1, 1⟩[2,0,0]

We will partition the x-variable into three parts, X0 = {x0},X1 = {x1, x2, . . . xq} and
X2 = {xq+1}. We will do the same thing with the y and z variables. It is worth noting that
every term of the second expression is dependent on a single group of x, y and z variables
(Which is represented by the superscripts). It was shown that R(T) ≤ q + 2.
The main idea behind the laser method is to take a high tensor power of T and vanish
some groups of variables such that we get a sum of disjoint tensors. We can then apply the
asymptotic sum inequality.
When we take high tensor product T⊕N , we get partitioned tensor with 6N constituent
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tensors over XN ×YN × ZN . We note that the x variables represented by XN are partitioned
into 3N parts indexed by {0, 1, 2} (Let’s call them the x indices). Similarly we will have y
and z indices. We also note that each constituent tensor has an index of x, y and z variables
(Let’s call the triple I, J, K). We will represent those tensors as T⊕N

I,J,K.
In the next step let’s vanish all the x variables except those whose index are in a set
A ⊆ {0, 1, 2}. We will do the same for the y and z variables. This will give us the final
expression as

∑
(I,J,K)∈supp(T⊕N)∩(A×B×C)

T⊕N
I,J,K

Here supp(T⊕N) represents the support of T⊕N . Suppose all the summands are over
disjoint variables. In this case R(T⊕N) ≤ (q + 2)N . We can now apply the asymptotic sum
inequality which will give us

∑
(I,J,K)∈supp(T⊕N)∩(A×B×C)

Vol(T⊕N
I,J,K)

ω/3 ≤ (q + 2)N

Volume of a tensor ⟨m, n, p⟩ represented as Vol(⟨m, n, p⟩) = mnp. Coppersmith and
Winograd considered the quantity Vpr

ρ,N(T) which is the maximum of

∑
(I,J,K)∈supp(T⊕N)∩(A×B×C)

Vol(T⊕N
I,J,K)

ρ/3

Choosing q = 6, Coppersmith and Winograd computed the value of ρ such that Vpr
ρ (T) = 53

q + 2 and deduced that ω < ρ which finally gives the upper-bound ω < 2.3872. Different 54

generalizations of the Laser method gave even better bounds, like the recursive laser 55

method gives us an upper-bound of 2.3755. 56

6. Conclusion 57

Improvements of the upper-bounds on ω is still continuing, getting even closer to 58

the mythical goal of 2. Starting with the Naive method we saw that it computed matrix 59

multiplication in O(n3). Strassen’s method on the other hand, has a better complexity but 60

its practical applications are limited as it’s helpful only for really large matrices. Once we 61

get into the language of tensors, we got to see how the upper-bounds can be made better 62

using the asymptotic sum inequality and considering the higher powers of a tensor and 63

vanishing a few variables and interestingly, different generalizations of the Laser method 64

are capable of giving us even better bounds. 65
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