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Simple Summary: Amino acid positron emission tomography (PET) complements standard mag-
netic resonance imaging (MRI) since it directly visualizes the increased amino acid transport into
tumor cells. Amino acid PET using O-(2-[*®F]fluoroethyl)-L-tyrosine ([**F]FET) has proven to be rel-
evant for example for glioma classification, identification of tumor progression or recurrence, or for
the delineation of tumor extent. Nevertheless, a relevant proportion of low-grade gliomas (30%) and
few high-grade gliomas (5%) were found to show no or even decreased amino acid uptake by con-
ventional visual analysis of PET images. Advanced image analysis with extraction of radiomic fea-
tures is known to provide more detailed information on tumor characteristics than conventional
analyses. Hence, this study aimed to investigate whether radiomic features derived from dynamic
[F]FET PET data differ between ['®F]FET-negative glioma and healthy background and thus pro-
vide information which cannot be extracted by visual read.

Abstract: 46 patients with a newly diagnosed, histologically verified glioma that was visually clas-
sified as ["*F]FET-negative were included. Tumor volumes were defined using routine T2/FLAIR
MRI data and applied to extract information from dynamic [*¥F]JFET PET data, i.e. early and late
tumor-to-background (TBRs-15, TBR2040) images and time-to-peak (TTP) images. Radiomic features
of healthy background were calculated from the tumor volume-of-interest mirrored to the contrala-
teral hemisphere. Differences between tumor and healthy tissue features were compared using Wil-
coxon test. Additionally, the ability to distinguish tumor from healthy tissue was assessed using
logistic regression. 5 % of features derived from TBRzo-40 images were significantly different; 16 % of
features derived from TBRs1s images and 69 % of features derived from TTP images. The high num-
ber of significantly different features derived from TTP images was even found in isometabolic gli-
omas (after exclusion of photopenic gliomas) with visually normal [*¥F]FET uptake in static images.
However, the differences did not reach satisfactory predictability for machine learning based iden-
tification of tumor tissue. In conclusion, radiomic features derived from dynamic [*F]FET PET data
may extract additional information even in [*®F]FET-negative gliomas, which should be investigated
in larger cohorts and correlated with histological and outcome features in future studies.
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1. Introduction
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In neurooncology, magnetic resonance imaging (MRI) represents the gold standard
when diagnosing gliomas, monitoring treatment and assessing treatment response. Due
to the widely spread use, the high spatial resolution and the good contrast in soft tissue,
MRI is the method of choice. However, the use of MRI has limitations. First the differen-
tiation between glioma entities, as well as between neoplastic and other lesions, particu-
larly after treatment, causes difficulties. Chemo- and radiotherapy can induce post-thera-
peutic effects including radiation necrosis and edema, which are difficult to differentiate
from tumor progression or recurrence [1]. Additionally, MRI can be unreliable when de-
termining tumor size or growth. Recent studies have shown that when comparing the
tumor volume assessed in positron emission tomography (PET) and MRI, substantial spa-
tial differences can be found [2]. Therefore, according to the RANO working group, the
additional use of radiolabeled amino acids is recommended [3]. O-(2-[*¢F]fluoroethyl)-L-
tyrosine (['8F]FET) PET can be used to detect biologically active tumor parts and the low
uptake in normal brain parenchyma leads to an enhanced tumor-to-brain contrast, thus
enabling an accurate differentiation of tumor from healthy tissue. Previous studies have
shown that amino acid PET can identify the glioma extent more reliably than MRI [4].
However, around 30% of low-grade gliomas and 5% of high-grade gliomas show indiffer-
ent or even decreased amino acid uptake compared to healthy tissue [5]. The pathomech-
anism for this phenomenon is still unclear. Although previous studies suggest that the L-
amino acid transporter 1 (LAT1) primarily promotes ['*F]FET uptake, ['®F]FET-negative
gliomas did not show a reduced LAT1 expression in immunohistochemistry [6, 7]. It re-
mains indistinct whether ['®F]FET-negative gliomas have a favorable prognosis or not.
One study reported for a small number of patients that photopenic gliomas, meaning gli-
omas with lower amino acid uptake than the healthy tissue, even have an inferior prog-
nosis compared to isometabolic gliomas [8]. However, these findings need to be further
validated on larger patient cohorts also with respect to the underlying biological mecha-
nisms.

Radiomics, as a subdiscipline of artificial intelligence, is based on the extraction of
quantitative features from medical images such as MRI, PET or computed tomography
(CT). Radiomics is increasingly used to noninvasively determine lesion properties such as
the degree of tumor heterogeneity or shape, providing additional information from rou-
tinely acquired images [9-11]. By combining pathomolecular parameters and radiomic
features, prognostic models can be generated enabling automation of various steps within
the diagnostic routine. Radiomics is of increasing interest, as it often achieves a higher
diagnostic accuracy than conventional PET image parameters alone [12, 13].

The aim was to evaluate whether ['8F]FET-negative gliomas contain information
which cannot be extracted by conventional visual read but by radiomic feature analysis,
and to what extent radiomics from conventional late static, early static, and dynamic time-
to-peak PET images may help to identify tumor tissue.

2. Materials and Methods
2.1. Patients

For this retrospective study we included 46 patients with a newly diagnosed, histo-
logically verified glioma who had undergone a dynamic ['8F]FET PET scan at the Depart-
ment of Nuclear Medicine of the University Hospital, LMU Munich and showed tumoral
[*F]FET uptake equal or below the background activity. Gliomas were visually classified
as [¥F]FETnegative by trained nuclear medicine physicians. All patients signed written
informed consent as part of the clinical routine and the local ethics committee approved
the retrospective analysis of the data (approval number 604-16).

Tissue samples were obtained from stereotactic biopsy or surgery and used for gli-
oma classification according to the 2021 WHO guidelines [14]. Molecular markers such as
isocitrate dehydrogenase (IDH) mutation status and codeletion of chromosome arms 1p
and 19q (1p/19q codeletion) were obtained in accordance with previous studies [15][16].
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Furthermore, the O*-methylguanine-DNA-methyltransferase (MGMT) promoter methyl-
ation was determined [16].

2.2 [F]FET PET Imaging

Dynamic [*®F]FET PET scans were acquired with an ECAT EXACT HR+ scanner (Sie-
mens Healthineers, Erlangen, Germany) after intravenous bolus injection of a standard
dose of 185 MBq of [*¥F]FET, according to standard protocols [17]. Dynamic emission data
were recorded 0-40 min post injection (p. i.) in 3D mode with 16 frames (7 x 10s, 3 x 30 s,
1 x 2 min, 3 x 5 min, and 2 x 10 min). Image reconstruction and processing including mo-
tion correction was performed as described previously [18].

2.3 MR Imaging

All patients underwent routine MRI prior to tissue sampling with a 1.5 T or 3.0 T
magnet before and after the injection of a gadolinium-based contrast agent (MultiHance,
Bracco Imaging, Milan, Italy). Axial T1- and T2-weighted and FLAIR sequenced were ac-
quired.

2.4 Delineation of Tumor and Background Volumes

All volumes-of-interest (VOIs) were defined using PMOD View tool (version 3.5,
PMOD Technologies LLC, Zurich, Switzerland). First, PMOD Fusion tool (version 3.5)
was used to coregister and resample each patient’s T2/FLAIR image to the corresponding
['F]FET PET image. Since for ['*F]FET-negative gliomas the VOI cannot be defined within
PET images, manual contouring of signal hyperintensity was performed in the T2/FLAIR
weighted images. This VOI was then applied to extract information from dynamic
[*F]FET PET data.

A crescent shaped background VOI manually drawn in the contralateral hemisphere
served as reference tissue for the quantification of tumor-to-background ratios (TBR). This
procedure has proven to yield most stable background values for quantification purposes
with the lowest inter- and intra-reader variability [19].

A second background VOI was obtained by mirroring the manually generated tumor
VOI to the contralateral unaffected brain tissue, excluding the ventricle (Figure 1). This
second VOI was chosen, as it enables a direct comparison between healthy and tumor
tissue for radiomics analyses.

Tumor VOI
Mirrored VOI
Backgound VOI for
TBR normalization

Figure 1. Volumes-of-interest used for analyses of ['*]FET-negative gliomas: tumor VOI defined
manually within T2/FLAIR images (red); tumor VOI mirrored to the contralateral site (green);
background VOI for image normalization (blue).

2.5 Generation of Parametric Images

Static early 5 — 15 min p. i. and standard 20 — 40 min p. i. summation images were
calculated from dynamic PET data and normalized with the respective mean uptake
within the crescent shaped background VO], yielding early TBRs-1s and standard TBRzoo
images. In addition to quantification using static images, parametric images containing
information on the peak time point of each voxel’s time-activity curve were created as
described previously [12, 18].

2.6 Extraction of Radiomic Features
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Different kinds of quantitative features were extracted from medical images. These
were calculated directly from image intensities or intensity histograms (first order), or
from a secondary image obtained by the application of image filters aiming to describe
image texture, or from the tumor label mask yielding shape information on the segmented
tumor VOL. These radiomic features were extracted with the open-source Python (version
3.8) package pyradiomics (version 3.0.1 [18]). The default first order (n = 18) and texture
(n = 75) features were included. Most of the feature definitions implemented in pyradi-
omics comply with definitions by the Image Biomarker Standardization Initiative (IBSI)
[20].

2.7 Statistical Analyses

Results are provided as mean and standard deviation and/or median and range. Sta-
tistical analysis was performed with IBM SPSS Statistics (version 28). For each radiomic
feature, differences between tumor and healthy tissue were evaluated using Wilcoxon test
for paired non-parametric variables. P-values below 0.05 were considered statistically sig-
nificant.

Analyses were performed for the entire patient cohort of ['*F]FET-negative gliomas
and for the subgroup of only isometabolic gliomas after exclusion of cases with visually
photopenic defects.

2.8 Differentiation of Tumor From Healthy Tissue Using Logistic Regression

In addition to the direct comparison of single radiomic features in [**F]FET-negative
gliomas and healthy tissue, the ability to differentiate tumor from healthy tissue using
machine learning was addressed. Tumor was distinguished from healthy tissue for the
whole cohort and for isometabolic and photopenic gliomas separately. The respective
classification procedure was implemented using python (version 3.8) and scikit-learn
package (version 1.0.2).

Machine learning was performed using logistic regression (LR) classifiers optimizing
the area under the receiver operating characteristic curve (AUC). LR was applied in bal-
anced mode, which allows to automatically adjust sample weights according to class fre-
quencies and thus to reduce the effect of imbalanced input data. Liblinear solver was ap-
plied with L2 regularization thus allowing to prevent overfitting and to handle multicol-
linearity. The remaining settings of the LR classifiers were set to the default values defined
in scikit-learn.

The machine learning pipeline included the following steps: (1) standardization of
features by removing the mean and scaling to unit variance, (2) exclusion of features with
zero variance, (3) tuning of the inverse regularization strength C which adjusts L2 penalty
using cross-validation (CV). In order to report cross-validated scores this pipeline was
inserted into an outer CV-loop of a nested-CV procedure. Inner and outer CV-loops were
chosen to have 50 repeats and 5 folds with stratified splits containing equal distributions
of the class labels in each fold. The high number of random splits in repeated-CV improves
the robustness of performance estimates.

3. Results
3.1. Patient Characteristics

A total of 46 patients (median age 35 years, range 16-72 years) were enrolled in this
study. 29 gliomas were classified as astrocytoma, IDH mutant (22 WHO grade 2, 6 WHO
grade 3, 1 WHO grade 4), 5 gliomas as oligodendroglioma, IDH mutant with 1p/19q
codeletion (5 WHO grade 2), 11 gliomas as glioblastoma, IDH wildtype, and 1 glioma as
WHO grade 1. In 3 cases the IDH mutation status could not be determined due to lack of
tumor tissue for reevaluation (two cases histologically classified as diffuse astrocytoma
WHO grade 2, one case as anaplastic astrocytoma WHO grade 3 according to WHO 2016
classification). 17 patients presented with photopenic defects and 29 with isometabolic
gliomas which are not visually identifiable in ['"*F][FET PET images.
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3.2 Differences Between [SF]FET-Negative Tumor and Healthy Tissue — Overview

The numbers of significant features (p < 0.05) according to Wilcoxon test for paired
non-parametric variables are given in Table 1. Notably, the largest proportion of signifi-
cant features comprised parameters derived from TTP images (> 60 %) and was lower in
static early TBRs-15 and standard TBRzo40 images, particularly in the subgroup of isometa-
bolic gliomas. All results from Wilcoxon test are provided in supplementary Table S1.

Table 1. Number of significant features (p < 0.05) according to Wilcoxon test for paired non-para-
metric variables. The total number of included features per image was 93 (pyradiomics default
excluding shape features). Numbers are provided as absolute values and percentages.

Image Whole cohort (n = 46) Isometabolic (n=29) Photopenic (n=17)
TBR20-10 5(5 %) 11 (12 %) 17 (18 %)
TBRs-15 15 (16 %) 3 (3 %) 26 (28 %)
TTP 64 (69 %) 64 (69 %) 18 (19 %)

3.3 Differences Between Isometabolic Tumor and Healthy Tissue

In standard TBR2o40 images, 8 out of 11 significant features were first order features
quantifying the magnitude of voxel values, which was higher in tumor compared to
healthy tissue. Among texture features, for example, the size-zone non-uniformity, a fea-
ture measuring the variability of size zone volumes, presented with significantly lower
mean values in healthy tissue, indicating that tumor tissue, although visually [**F]FET-
negative, shows more heterogeneity.

In early TBRs.15 images, only 3 features presented with a p value < 0.05: skewness,
cluster shade and small area high gray level emphasis. For all features, the tumor showed
higher mean values, indicating e.g. a higher asymmetry of the intensity distribution or the
gray level co-occurrence matrix in the tumor.

When analyzing the TTP images, the tumor VOI showed higher homogeneity and
higher TTP values than the healthy tissue. 14 out of 18 first order features (78 %) and 50
out of 75 texture features (67 %) presented with significant differences supporting these
findings. This is exemplary visualized in Figure 2 for an isometabolic glioma.

3.4 Differences Between Photopenic Tumor and Healthy Tissue

In standard TBRx40 images, in case of photopenic gliomas, most of the significant
features were also first order parameters (10/17, 59 %). As expected, the features indicated
a lower magnitude of voxel intensities and lower uniformity within the photopenic glio-
mas compared to healthy tissue.

The early TBRs-15 images showed comparable findings. Significant first order features
(9/18, 50 %) included for example simple mean and median values, which were decreased
within photopenic gliomas. Texture features such as dependence non-uniformity also in-
dicated a lower uniformity of early TBRs-1s images in the tumor.

In TTP images, only the following first order features were significant (4/18, 22 %):
energy, total energy, 10 percentile and variance. Overall, the tendency of radiomic features
derived from TTP images suggested a shorter TTP and a higher variance in the tumor.
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Figure 2. Example of an isometabolic glioma which cannot be identified visually in static TBR images (b, ¢). Dynamic
analyses reveal differences between tumor and the mirrored volume in healthy tissue with predominantly late TTP (blue
in TTP overlay, d) and higher uniformity of TTP values according to the feature inverse difference moment normalized
(Idmn, e) in the tumor volume. For visualization, the 3D feature map for Idmn was calculated on a voxel-wise basis, taking
into account a volume of 5x5x5 voxels around the centering voxel.

3.5 Differentiation of Tumor From Healthy Tissue Using Logistic Regression

Classification results using logistic regression are provided in Table 2. Despite signif-
icant differences between tumor and non-tumor, the AUC values for the direct differenti-
ation between both groups remained low. Better results were obtained for univariate anal-
yses. Here, an AUC of 0.72 + 0.14 could be reached for isometabolic gliomas using the
feature high gray level run emphasis derived from TTP images and an AUC of 0.86 + 0.15
for photopenic gliomas using the first order feature 10 percentile derived from TBRs.is
images. In univariate analyses, texture features derived from TTP images and few first
order features derived from TBR images yielded highest scores for a differentiation of
isometabolic tumor from healthy tissue. In case of photopenic tumors, first order param-
eters derived from TBRs1s and TBR2o40 images yielded highest univariate AUC values.
Results from univariate analyses are provided in supplementary Table S2.

Table 2. Mean and standard deviation of AUC values obtained using logistic regression classifica-
tion with 50-repeated 5-fold CV

Included features = Whole cohort Isometabolic Photopenic
TBR20-40 0.54+£0.14 0.55+0.15 0.66 £ 0.20
TBRs-15 0.65+0.13 0.56 £0.13 0.79 £0.17
TTP 0.61+0.12 0.64+0.14 0.55+0.20
All 0.64+0.13 0.67+0.15 0.80+£0.20
Univariate 0.69 £0.12 0.72+0.14 0.86 £ 0.15

4. Discussion

The characteristics of ['*F][FET-negative gliomas are not yet clarified. This study sys-
tematically evaluates the radiomic characteristics of ["*F]FET-negative gliomas within a
group of newly diagnosed gliomas, who had undergone a dynamic ['8F]JFET PET scan and
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were visually classified as ['8F]FET-negative. Recent studies showed the usefulness of ra-
diomic features derived from ['®F]FET PET images for improved tumor classification [12,
13, 21], differentiation of treatment-related changes from tumor progression [22] or local
relapse [23, 24], or for survival prediction [25]. These studies show that radiomic analyses
enable the extraction of additional clinically relevant information from images comple-
menting simple VOI statistics, and thus improve diagnostic and prognostic performance.
However, radiomic analyses have not yet been applied to [**F]FET-negative gliomas.
Hence, the aim of this study was to investigate if radiomic analyses can provide more
information in [**F]FET-negative gliomas than is visually possible for a physician and if
differences are found between tumor tissue and healthy background. For this purpose,
radiomic features were extracted from standard 20-40 minutes p.i. TBR images, from early
5-15 minutes p.i. TBR images, and from TTP images derived from dynamic analysis, and
were then compared between the T2-hyperintense tumor and its mirrored VOI in healthy
background.

The largest fraction of significantly different features was obtained for features de-
rived from TTP images. Similar results were found for isometabolic gliomas upon exclu-
sion of photopenic gliomas, i.e. ['**F]FET-negative gliomas which cannot be visually iden-
tified.

Interestingly, only a small fraction of significantly different features derived from
static TBR images was found for isometabolic gliomas. Surprisingly, the first order fea-
tures derived from TBR20-40 images quantifying magnitude of voxel values, were signifi-
cantly increased in tumor compared to healthy tissue, although this could not be identi-
fied visually. Further, features quantifying heterogeneity, as for example size zone uni-
formity, showed a higher variability of size zone volumes implying that the uptake pat-
tern in tumor tissue is more heterogeneous than in healthy tissue. Such a heterogeneity is
not directly obvious when inspecting static TBR images and could, for example, reflect the
presence of small sub-volumes that exhibit either slightly increased or decreased uptake.
In case of TBRs-1s images, only three of all radiomic features were significantly different,
reflecting an increased asymmetry of the intensity histogram in tumor tissue. Even more
important for the differentiation of isometabolic tumor from healthy tissue were features
derived from TTP images. A large fraction of significantly different features (60%) was
observed, indicating not only higher homogeneity in tumor but also larger TTP values
compared to healthy tissue. Both observations may be related to the inhibition of vasculo-
and angiogenesis signaling pathways and thus a reduced blood volume fraction in IDH
mutant gliomas, which represents the majority of our patient cohort, while normal vascu-
lature is present in healthy tissue [26, 27]. When using univariate classification, the texture
features derived from TTP images reached highest AUC scores.

For photopenic gliomas the percentages of significantly different features were com-
parably low for all three image types. The radiomic data derived from standard TBR2o40
and early TBRs-1s showed, as expected, a lower magnitude of voxels. This finding can also
be visually identified. Whether the overall decreased uptake can be attributed to a gener-
ally reduced vascularization and thus a low tracer availability in tumor tissue, an in-
creased wash-out, or to some other phenomenon needs to be evaluated further. In accord-
ance with results of isometabolic gliomas, radiomic features derived from TBR images
insinuate an increased heterogeneity of uptake pattern in photopenic tumor tissue. In con-
trast to findings in isometabolic gliomas, the tumor TTP was found to be shorter in pho-
topenic tumor tissue than in healthy tissue and the variance was elevated. Although it is
tempting to speculate that the shorter TTP might indicate a faster wash-out of ['SF]FET
from tumor tissue, another explanation might be an increased noise in time-activity curves
and thus in derived TTP values for the very low ['8F]FET PET uptake in photopenic glio-
mas. The first order TBR features, using univariate classification, showed highest AUC
scores.

Several limitations of the study need to be addressed. A differentiation of tumor from
healthy tissue has been performed in this study by defining tumor volumes within
T2/FLAIR MRI images, which itself is already indicative of the presence of a tumor lesion.
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Also, unlike Wilcoxon test, classification does not consider the paired nature of the tumor
and the corresponding mirrored background VOI of each patient. Of further interest
might be a voxel-based classification of tumor and healthy tissue using voxel-wise radio-
mic and parametric maps derived from dynamic ['"*F]FET PET data alone. Moreover, it
might be interesting to compare [¥F]FET-negative gliomas with non-neoplastic lesions
such as Multiple Sclerosis lesions or after ischemia. For a classification of ['F]FET-nega-
tive lesions using tumor and non-neoplastic lesions as comparison groups, ratios of radi-
omic features derived from the lesion VOI and the mirrored VOI in healthy tissue might
be considered. Another limitation resulting from the use of a mirrored background VOI
for comparison is that the shape of the tumor and healthy tissue VOIs were identical, thus
shape features had to be excluded from analyses.

5. Conclusions

Several radiomic features which allow to differentiate ['"*F]FET-negative tumor tissue
from healthy tissue using dynamic ['®F]FET PET information could be identified. A de-
creased ['SF]FET PET signal in tumors visually classified as photopenic gliomas could be
confirmed using radiomic analyses, where first order features from static images pre-
sented with highest significance. Even visually not recognizable differences could be ob-
served in the time-dependent uptake pattern of isometabolic gliomas, where texture fea-
tures derived from TTP images were most relevant. Yet, the underlying pathophysiolog-
ical mechanisms and the clinical applicability of dynamic [*¥F]FET PET information for
diagnostic purposes in ['**F]FET-negative gliomas need to be further addressed in future
studies.

Supplementary Materials: The following supporting information can be downloaded at:
www.mdpi.com/xxx/sl and www.mdpi.com/xxx/s2 , Table S1: Wilcoxon test results; Table S2: Uni-
variate AUC results.

Author Contributions: Conceptualization, K.v.R.,, M.U., N.L.A. and L.K.; methodology, K.v.R,, S.Z.,
N.L.A. and LK, software, L.K,; validation, K.v.R., N.L.A. and L.K,; formal analysis, K.v.R., A.H,,
M.AK, N.L.A. and L.K,; investigation, K.v.R., N.L.A. and L.K,; data curation, K.v.R., A H, M.AK,,
N.L.A. and L.K,; writing—original draft preparation, K.v.R., N.L.A. and L.K,; writing —review and
editing, Z.L., LM.U,, B.S, M.B,,].C.T,, P.B., S.Z,; visualization, K.v.R., N.L.A. and L.K,; supervision,
N.L.A. and L.K,; project administration, K.v.R., N.L.A. and L.K,; funding acquisition, P.B., N.L.A.
All authors have read and agreed to the published version of the manuscript.

Funding: This project was partly funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) (FOR 2858 project number 421887978). N.L.A. was supported by a research
grant of the Else Kroner-Fresenius-Stiftung. M.B. was funded by the Deutsche Forschungsgemein-
schaft (DFG) under Germany’s Excellence Strategy within the framework of the Munich Cluster for
Systems Neurology (EXC 2145 SyNergy — ID 390857198).

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the local ethics committee (Ethikkommission der
Medizinischen Fakultdt der LMU Miinchen, approval number 604-16).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to ethical restrictions.

Conflicts of Interest: N.L.A. and M.B. are members of the Neuroimaging Committee of the EANM.
All authors declare that the research was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest.


http://www.mdpi.com/xxx/s1
http://www.mdpi.com/xxx/s2
https://doi.org/10.20944/preprints202209.0133.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 September 2022 doi:10.20944/preprints202209.0133.v1

References

1. la Fougere, C., et al., Molecular imaging of gliomas with PET: opportunities and limitations. Neuro Oncol, 2011. 13(8): p. 806-19.

2. Lohmann, P., et al.,, FET PET reveals considerable spatial differences in tumour burden compared to conventional MRI in newly
diagnosed glioblastoma. Eur ] Nucl Med Mol Imaging, 2019. 46(3): p. 591-602.

3. Law, L, et al., Joint EANM/EANO/RANO practice guidelines/ SNMMI procedure standards for imaging of gliomas using PET with
radiolabelled amino acids and [18FIFDG: version 1.0. Eur ] Nucl Med Mol Imaging, 2019. 46(3): p. 540-557.

4. Floeth, F.W.,, et al., Prognostic value of O-(2-18F-fluoroethyl)-L-tyrosine PET and MRI in low-grade glioma. ] Nucl Med, 2007.
48(4): p. 519-27.

5. Unterrainer, M., et al., Serial 18F-FET PET Imaging of Primarily 18F-FET-Negative Glioma: Does It Make Sense? ] Nucl Med,
2016. 57(8): p. 1177-82.

6. Vettermann, F.J., et al., L-type amino acid transporter (LAT) 1 expression in (18)F-FET-negative gliomas. EINMMI Res, 2021. 11(1):
p. 124.

7. Habermeier, A., et al., System L amino acid transporter LAT1 accumulates O-(2-fluoroethyl)-L-tyrosine (FET). Amino Acids, 2015.
47(2): p. 335-44.

8. Galldiks, N., et al., Photopenic defects on O-(2-[18F]-fluoroethyl)-L-tyrosine PET: clinical relevance in glioma patients. Neuro Oncol,
2019. 21(10): p. 1331-1338.

9. Lohmann, P., et al., FET PET Radiomics for Differentiating Pseudoprogression from Early Tumor Progression in Glioma Patients
Post-Chemoradiation. Cancers (Basel), 2020. 12(12).

10. Lohmann, P., et al., Feature-based PET/MRI radiomics in patients with brain tumors. Neurooncol Adv, 2020. 2(Suppl 4): p. iv15-
iv2l.

11. Gillies, R.J., P.E. Kinahan, and H. Hricak, Radiomics: Images Are More than Pictures, They Are Data. Radiology, 2016. 278(2): p.
563-77.

12. Li, Z., et al.,, Prediction of TERTp-mutation status in IDH-wildtype high-grade gliomas using pre-treatment dynamic [18F]FET PET
radiomics. European Journal of Nuclear Medicine and Molecular Imaging, 2021. 48(13): p. 4415-4425.

13. Lohmann, P, et al., Predicting IDH genotype in gliomas using FET PET radiomics. Sci Rep, 2018. 8(1): p. 13328.

14. Louis, D.N,, et al., The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro-Oncology, 2021.
23(8): p. 1231-1251.

15. Eigenbrod, S., et al., Molecular stereotactic biopsy technique improves diagnostic accuracy and enables personalized treatment
strategies in glioma patients. Acta Neurochir (Wien), 2014. 156(8): p. 1427-40.

16. Ludwig, K. and H.I. Kornblum, Molecular markers in glioma. ] Neurooncol, 2017. 134(3): p. 505-512.

17. Jansen, N.L., et al., MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET? Eur ] Nucl Med Mol Imaging,
2012. 39(6): p. 1021-9.

18. Vomacka, L., et al., Voxel-wise analysis of dynamic 18F-FET PET: a novel approach for non-invasive glioma characterisation.
EJNMMI Res, 2018. 8(1): p. 91.

19. Unterrainer, M., et al., Towards standardization of (18)F-FET PET imaging: do we need a consistent method of background activity
assessment? EJNMMI Res, 2017. 7(1): p. 48.

20. Zwanenburg, A, et al., Image biomarker standardisation initiative. arXiv preprint arXiv:1612.07003, 2016.

21. Haubold, J., et al., Non-invasive tumor decoding and phenotyping of cerebral gliomas utilizing multiparametric 18F-FET PET-MRI
and MR Fingerprinting. Eur ] Nucl Med Mol Imaging, 2020. 47(6): p. 1435-1445.

22. Lohmann, P., et al., FET PET Radiomics for Differentiating Pseudoprogression from Early Tumor Progression in Glioma Patients
Post-Chemoradiation. Cancers, 2020. 12(12): p. 3835.

23. Lohmann, P., et al., Radiation injury vs. recurrent brain metastasis: combining textural feature radiomics analysis and standard
parameters may increase (18)F-FET PET accuracy without dynamic scans. Eur Radiol, 2017. 27(7): p. 2916-2927.

24. Lohmann, P., et al., Combined FET PET/MRI radiomics differentiates radiation injury from recurrent brain metastasis. Neuroimage
Clin, 2018. 20: p. 537-542.

25. Pyka, T., et al., Textural analysis of pre-therapeutic [18F]-FET-PET and its correlation with tumor grade and patient survival in high-
grade gliomas. Eur ] Nucl Med Mol Imaging, 2016. 43(1): p. 133-141.

26. Kickingereder, P., et al., IDH mutation status is associated with a distinct hypoxia/angiogenesis transcriptome signature which is
non-invasively predictable with r*CBV imaging in human glioma. Sci Rep, 2015. 5: p. 16238.

27. Keil, V.C,, et al.,, DCE-MRI in Glioma, Infiltration Zone and Healthy Brain to Assess Angiogenesis: A Biopsy Study. Clinical

Neuroradiology, 2021.


https://doi.org/10.20944/preprints202209.0133.v1

