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Abstract: Generation of unique identifiers extracted from the physical characteristics of the underlying 1

hardware ensures the protection of electronic devices against counterfeiting and provides security to 2

the data they store and process. This work describes the design of an efficient Physical Unclonable 3

Function (PUF) based on the differences in the frequency of Ring Oscillators (ROs) with identical 4

layout due to variations in technological processes involved in the manufacture of the integrated 5

circuit. The logic resources available in the Xilinx Series-7 programmable devices are exploited in 6

the design to make it more compact and achieve an optimal bit-per-area rate. On the other hand, 7

the design parameters can also be adjusted to provide a high bit-per-time rate for a particular target 8

device. The PUF has been encapsulated as a configurable Intellectual Property (IP) module, providing 9

it with an AXI4-Lite interface to ease its incorporation into embedded systems in combination with 10

soft- or hard-core implementations of general-purpose processors. The capability of the proposed 11

RO-PUF to generate implementation-dependent identifiers has been extensively tested, using a series 12

of metrics to evaluate its reliability and robustness for different configuration options. Finally, in 13

order to demonstrate its utility to improve system security, the identifiers provided by RO-PUFs 14

implemented on different devices have been used in a Helper Data Algorithm (HDA) to obfuscate 15

and retrieve a secret key. 16

Keywords: Hardware Security; Physical Unclonable Functions; Device Authentication; Key Genera- 17

tion; Reconfigurable Devices; Embedded Systems 18

1. Introduction 19

The combination of encryption, authentication, and data verification provides robust 20

and reliable mechanisms necessary to guarantee the security of the information captured, 21

processed, and transmitted by devices today connected to the Internet to support a multi- 22

tude of services related to leisure, health, business, or industry [1,2]. To be truly effective, 23

security protocols for authentication and integrity of critical data need to be grounded in 24

hardware and not reliant on pure software-based solutions. The grounding of security in 25

silicon manufacturing processes provides a hardened layer of protection that increases 26

confidence in electronic systems [3,4]. 27

Physically Unclonable Functions (PUFs) have emerged as a potential solution to build 28

trusted anchors that provide secure hardware solutions for consumer and industrial IoT 29

devices [5]. Based on their properties, PUFs can be used to generate unique identifiers 30

that facilitate device authentication to prevent spoofing and counterfeiting. They also 31

introduce an extra hardware-based layer for building lightweight encryption schemes, as 32

they can be used to obfuscate the secret keys used by ciphers, ensuring the confidentiality 33

of data exchanged by the electronic device in which the PUF is embedded or attached. 34

In addition, PUFs can provide seeds to be used in the creation of public and private key 35
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pairs for public-key cryptography, increasing system security by avoiding the need to share 36

secret keys. 37

A PUF maps an input challenges sequence to an output response in a unique (it cannot 38

be replicated, that is, it is unclonable), reliable (it can be reproducible over time), and 39

unpredictable (it cannot be anticipated) way. The initial idea for this type of one-way 40

function was introduced by R. Pappu et al. in [6]. The operating principle of silicon PUFs is 41

based on the variations that arise during the manufacturing process of an integrated circuit. 42

Roughly, research on silicon PUFs has focused on three categories: (i) memory-based 43

PUFs (SRAM [7], DRAM [8,9]) that use unpredictable start-up values of memory cells; (ii) 44

delay-based PUFs that use the relative time delay differences between two theoretically 45

identical circuits (Ring oscillators [10]-[19], Arbiter [20], Butterfly [21]); and (iii) analog 46

PUFs that exploit measurements of variables in mixed-signal and analog integrated circuits 47

(for instance, current mirrors [22]). 48

The use of Field-Programmable Gate Arrays (FPGAs) and programmable Systems on 49

Chip (SoCs) to implement embedded systems for specific applications has experienced a 50

significant boom in recent years. The possibility of incorporating general-purpose proces- 51

sors such as soft-cores in the former, or of using the powerful processing systems available 52

in the latter, makes these reconfigurable devices very advantageous for providing solutions 53

with reduced size, energy consumption, and cost, especially suitable for IoT applications. 54

Security requirements for these implementations are identical to those for realizations 55

employing Application-Specific Integrated Circuits (ASICs), so the proposed solutions are 56

largely independent of the implementation technique. 57

PUF implementations on FPGAs have been mainly focused on RO-PUFs, since SRAM- 58

based PUFs are not feasible because on-chip memories of programmable devices are usually 59

initialized to a fixed value after start-up, and arbiter PUFs impose severe restrictions in 60

the layout in order to obtain symmetric delay paths, which is difficult to achieve on 61

programmable devices. RO PUFs are based on closed delay chains (delay loops) whose 62

oscillation frequencies are compared to obtain the PUF output. In theory, the oscillation 63

frequencies of two ideally identical inverter chains should be the same, but this is not the 64

case due to variability in the manufacturing process of the CMOS ICs that affects each 65

device differently. 66

This paper describes the design of an RO-PUF to improve the security of embedded 67

systems implemented on programmable devices. The combination of different design 68

strategies proposed in the literature, as well as previous results obtained by the authors, 69

gives rise to an efficient implementation in terms of resource consumption and speed of op- 70

eration on Xilinx Zynq-7000 SoC devices. The design has been conceived as a configurable 71

IP module, which includes mechanisms for the generation of the challenges sequence and 72

the selection of the output bits, and includes a standard connection interface to facilitate its 73

incorporation as a basic block for identification and generation of cryptographic keys in 74

embedded systems. The paper also presents the different metrics used to verify the func- 75

tionality of the PUF and perform its characterization under different operating conditions. 76

The main contributions of the work are: 77

• Take advantage of the internal structure of programmable devices with the aim of 78

obtaining a compact implementation of an RO-PUF. This strategy is carried out by 79

using absolute and relative location directives in the VHDL descriptions used as input 80

to the Vivado design tools for synthesis and implementation on Series-7 Xilinx devices. 81

• Include a mechanism for challenges generation that allows two different comparison 82

strategies to be performed simultaneously. This feature doubles the number of bits 83

generated per each comparison, maximizing the ratio between the length of the PUF 84

response and the amount of resources required to obtain it. 85

• Implement the RO-PUF as a configurable IP module that can be connected to soft- and 86

hard-core processors using standard interconnection buses. The size and placement of 87

the RO bank in the programmable logic, as well as other design parameters that affect 88
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the performance of the PUF, can be selected by the designer through a graphical user 89

interface supported by Vivado’s IP Integrator tool. 90

• Provide a set of drivers that facilitate the use of the RO-PUF in a high-level program- 91

ming language, such as C, and allow the development of software applications to 92

calculate different metrics in order to evaluate its performance. 93

The paper is structured as follows: Section 2 provides a general review of the different 94

RO-PUF designs available in the literature and combines the ideas coming from these 95

sources with those obtained from previous works by the authors, to define the specifications 96

of a new RO-PUF whose architecture, building blocks, and use as IP module are detailed in 97

Section 3. The results obtained from the test battery used to verify the functionality and 98

evaluate the performance of the PUF with different configuration options and operating 99

conditions are collected and discussed in Section 4. Section 5 illustrates the use of the 100

proposed RO-PUF as a basic element of an HDA to obfuscate and retrieve secret keys. 101

Finally, the main conclusions obtained in this work are summarized in Section 6. 102

2. Ring-Oscillator PUFs 103

A ring oscillator PUF (or RO-PUF) is a particular type of delay-based PUF whose 104

operation is founded on the difference of frequencies in closed chains (rings) with an odd 105

number of inverters. In practice, the ring usually consists of an even number of inverters 106

and a NAND gate that receives an enable signal to open or close the feedback loop. When 107

the loop is closed, each inverter generates an oscillating signal at its output, the frequency 108

of which depends on the delays accumulated in the different stages and connection paths 109

in the ring. Thus, two ROs with the same number of stages and identical layout should 110

provide the same oscillation frequency. However, the frequencies are not equal because of 111

the variability caused by the manufacturing processes of CMOS integrated circuits, making 112

each RO have a unique characteristic frequency. 113

In order to provide the appropriate number of bits to generate an identifier or obfuscate 114

a cryptographic key, an RO-PUF must include a sufficient number of pairs of ROs. The 115

RO-PUF proposed in [10], shown in Figure 1a, uses a bank of N ROs that can be selected by 116

pairs using two multiplexers. The concatenation of the signals that select the pairs of ROs 117

to be compared, challenge1 and challenge2, allows to establish the sequence of challenges 118

in this type of PUF. Each time a pair of ROs is selected, the frequencies of the two ROs are 119

compared by connecting their outputs to two counters that will increase at the frequency 120

determined by each RO. After a certain comparison time fixed externally, the counter values 121

are compared to obtain a single bit response (so-called herein as "sign bit") depending on 122

the counter that reaches a larger value. Due to each pair of ROs only generates one single 123

bit response, and only N/2 pairs of ROs are selected to provide noncorrelated output, the 124

generation of bitstreams with a large number of bits requires implementations with a large 125

number of ROs. 126

This handicap is partially alleviated in the RO-PUF proposed in [17,18], which allows 127

more than one bit to be added to the PUF response for each comparison. Unlike the 128

conventional proposal in which the counting interval is fixed by an external clock, in this 129

case, the decision is taken when the counter of the faster RO overflows. Then, the counter 130

associated to the slower RO is stopped and the response is taken from the output bits of 131

this counter. For the selection of the response bits, the authors analyzed the entropy and the 132

average probability and stability per bit, selecting those that provide the highest entropy 133

and average stability while keeping the average probability around 50%. Each RO is used 134

only once to generate the PUF response, splitting the N ROs into two banks of N/2 ROs, 135

where the challenge signal selects one RO per bank, as illustrated in Figure 1b. 136

To further increase the PUF response length for a given RO bank size, it is necessary to 137

maximize the number of comparisons without compromising the PUF output bit correlation 138

[13]. Area efficiency can also be improved resorting to the use of dynamic reconfiguration 139

techniques available for current families of programmable devices [23], as well as using 140

comparison strategies such as those described later in this work. 141
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Figure 1. Block diagrams of (a) conventional RO-PUF in [10], and (b) RO-PUF presented in [17].

In addition to the bits-per-area ratio, the main features that define the quality of a 142

PUF are its reliability and uniqueness. Reliability determines the extent to which the PUF 143

response is repeatable throughout the lifetime of the device, while uniqueness establishes 144

its potential to generate an output that is unique and identifies univocally to this device. 145

Both magnitudes can be quantified for a given PUF by evaluating the Hamming distances 146

between the codes resulting from the repeated application of the challenges sequence 147

to the same PUF (intra-Hamming distance, HDintra) and to other replicas of it placed 148

in other locations on the same programmable device or in the same location on different 149

programmable devices (inter-Hamming distance, HDinter), respectively. 50% is the optimal 150

value for the HDinter metric. The desirable value of HDintra is 0%, which means that the 151

response that produces a given PUF implementation is always the same. 152

Unfortunately, this last objective is hardly achieved as a consequence of different 153

sources of noise in the device as well as small changes in the operating conditions (mainly 154

operating temperature and voltage), which cause the PUF response to vary slightly in 155

successive applications of the same sequence of challenges. Under these circumstances, 156

to improve the repeatability of the PUF output for a sequence of challenges so that it can 157

be used in device authentication applications, a helper data algorithm must be applied 158

to achieve the required reliability. HDAs typically consider three stages: bit selection, 159

Error-Correcting Codes (ECCs), and entropy compression [24]. 160

Bit selection is essential to ensure an acceptable starting value in the reliability of a 161

PUF. How this selection is carried out depends on the type of PUF. In PUFs that only use the 162

sign bit of the comparisons, it basically consists of choosing the RO pairs that are involved 163

in each comparison. The approach followed in [10] is to select ROs for each comparison 164

of eight possible candidates, choosing those with the largest frequency differences to 165

increase the robustness of the PUF against environmental variations and noise. In [11], 166

the ROs are placed as close as possible in a 2D matrix, and two adjacent ROs are used 167

in each comparison. A Configurable ring oscillator PUF that allows choosing the most 168

suitable stages in each RO is described in [12]. Other techniques to improve the reliability 169

of PUFs are based on generating enable signals to activate only the ROs involved in the 170

comparisons [13], choosing the most appropriate challenge–response set [14,15], or using 171

a sensor integrated on-chip to select the pairs of ROs based on their performance in a 172

temperature range [16]. 173

In PUFs whose output incorporates more than one bit from each comparison, the 174

appropriate selection of these bits is essential to maximize the quality of the PUF. The subset 175

of metrics used to accomplish this task includes the average stability (S) and probability 176

(P), and the entropy per bit [17,18]. The ideal value for stability is 1, which means that 177

the bit output is reproducible in all responses (reliable). A value of 0.5 in the average 178
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probability ensures that there is no tendency towards a given logical value (no bias). Finally, 179

to corroborate if the PUF output fulfills the uniqueness requirement, two metrics of entropy 180

are evaluated, the intra-entropy (Hintra) to evaluate the uniqueness of the PUF output 181

bits within each PUF implementation, and the inter-entropy (Hinter) to evaluate the bit 182

uniqueness for each of the RO pairs in different PUF implementations. A maximum entropy 183

(Hintra and Hinter) equal to 1 guarantees that there is no correlation between the different 184

output bits at each PUF and there is no correlation between the same bits among different 185

implementations (unique and unpredictable). 186

The different bit-selection metrics often do not reach their ideal values. In these cases, 187

the other two stages of an HDA can be included to improve the performance of the PUFs 188

so that they can be used as reliable and robust hardware security elements. ECCs improve 189

the reliability of PUFs by reducing the effect of noisy output [25]. The proposed techniques 190

range from the use of a simple scheme (such as a repetition code) or a combination of 191

ECCs that are efficient in terms of resource consumption, to more complex ones, which 192

significantly reduce the size of helper data, based on polar coding [26] or nested polar and 193

Wyner-Ziv coding [27]. Other pre- and post-processing techniques have been described 194

in the literature to improve the quality of identifier and secret key generation schemes, 195

although in most cases they are difficult to implement on resource-limited embedded 196

systems. On the other hand, compression can be used to increase the entropy in the PUF 197

response in order to decrease correlations or bias that lead to information leakage that 198

can be exploited by an attacker to reduce the search space to obtain the secret. A hash 199

function can be used to improve the entropy of the PUF response and minimize leaks by 200

compressing the original output into a shorter one [28]. It is worth mentioning that the 201

usage of both ECC and entropy compression increases the number of bits required from 202

the PUF output to obtain a key of a given length. 203

A test structure to analyze different strategies for the design of RO-PUFs on Xilinx 204

programmable devices was recently described in [19] by the authors. In that study, different 205

alternatives were considered for the number of stages of the ROs, the generation of the 206

challenges sequence, the choice of the size of counters, and the selection of the output bits 207

of the PUF. In particular, the two bit selection options described above (sign bit or bits 208

chosen from the slower counter) were compared, observing that each of them is appropriate 209

depending on the relative location of the two compared ROs. In addition, with the idea of 210

optimizing the response time of the PUF, tests were carried out using counter sizes between 211

14 and 16 bits, showing a similar behavior in terms of the metrics used to evaluate the 212

reliability and uniqueness of the different configurations analyzed. Based on the results of 213

this previous study and incorporating some of the proposals that appear in the literature, 214

the following section describes the structure, building blocks, and functionality of a new 215

RO-PUF implemented as a configurable IP module with the following features: 216

• Compact: optimizes the use of logic elements available in the Configurable Logic 217

Blocks (CLBs) of Xilinx 7-Series programmable devices. 218

• Efficient: in terms of cost (bits per number of resources), by simultaneously compar- 219

ing two pairs of ROs and extracting two bits from each comparison; and regarding 220

operation speed (bits per unit of time), by allowing the effective counter size to be 221

adjusted depending on the target device. 222

• Functional: incorporates in the design a challenge selection mechanism, a bit selection 223

scheme, and an output memory to store the PUF response. 224

• Reusable: provided as a highly configurable IP module, with a standard connection 225

interface and drivers that make its use easy from the general-purpose processor of an 226

embedded system. 227

3. RO-PUF IP Module Design and Implementation 228

The internal structure of the proposed RO-PUF is shown in Figure 2. Like other PUFs 229

based on ring oscillators, its operation essentially consists of comparing the oscillation 230

frequencies of pairs of elements selected among those available in a bank of ROs (ro_bnk). 231
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To do this, the output signals of the two ROs being compared increment the values of 232

two counters, so that when one of them overflows, the counting process is interrupted to 233

identify the faster counter (which determines the sign bit) and acquire the value of the 234

slower counter (from which the rest of the bits for the PUF output corresponding to this 235

comparison will be extracted). The output of the RO-PUF is a bitstream conformed by the 236

concatenation of the bits selected for each of the comparisons after the complete challenges 237

sequence has been applied. 238

Figure 2. Block diagram of the proposed RO-PUF.

However, in our contribution, two simultaneous comparisons will be carried out in 239

parallel taking advantage of the two different behaviors identified in [19], depending on 240

whether the comparison is made between two ROs implemented in LookUp Tables (LUTs) 241

placed in the same position of different CLBs or between ROs implemented in LUTs placed 242

in different positions within the same or a different CLB, thus doubling the bit generation 243

rate in the PUF response. The selection and enabling signals for the two pairs of ROs to be 244

compared in each comparison cycle are provided, respectively, by the challenge generation 245

(ro_chl) and enable (ro_en) blocks. On the other hand, the information provided by the 246

two comparison blocks (ro_cmp) constitutes the input to a bit selection block (ro_sel) that 247

chooses the most suitable bits for each of the two mentioned comparisons. In the first case, 248

the sign bit plus a bit from the counter associated to the slower RO that has adequate values 249

of S, P, Hintra and Hinter and, in the second, two bits of the counter incremented by the 250

slower RO that meet the same condition. Finally, the PUF output, consisting of a bitstream 251

generated by the concatenation of the bits selected when applying the challenges sequence, 252

is structured in 32-bit registers and stored in a memory located in the PUF output block 253

(pu f _mem). The implementation details of each of the building blocks are described in the 254

following subsections. 255

3.1. RO-PUF Building Blocks 256

3.1.1. RO bank (ro_bnk) 257

The main component of the RO-PUF is a matrix of Nx columns by Ny rows of CLBs, in 258

which each CLB implements four 4-stage ROs. As illustrated in the schematic of Figure ??a, 259

three stages of each RO correspond to logic inverters, while the fourth is a NAND gate 260

whose objective is twofold: it closes the feedback loop of the ring oscillator and receives 261

the row and column enable inputs. The Xilinx Series-7 and Zynq-7000 CLBs include eight 262

LUTs, each of which can implement two independent Boolean functions of three inputs or 263
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less [29]. Therefore, by using appropriate placement directives in the VHDL description, it 264

is possible to place the 4 ROs in the same CLB, taking full advantage of the logical resources 265

of the programmable device. 266

(a) (b)

Figure 3. Four 4-stage ROs implemented on a CLB: schematic (a) and device (b) representation.

Another question arises regarding the location of the ROs within the CLB. It is usually 267

argued that the two ROs to be compared in a PUF must have identical layouts, so that the 268

difference in their oscillation frequencies is only due to variations in the manufacturing 269

process. Information concerning the internal layout of programmable devices is not usually 270

available to designers, but it is reasonable to assume that the same geometric pattern is 271

maintained in CLBs with the same functionality. Considering that the left and right Slices 272

of certain CLBs provide different functionalities and, therefore, their layouts must differ, in 273

the proposed design, location constraints are used to force a horizontal layout (shown in 274

Figure 3b) in order to obtain closer oscillation frequencies between the ROs. 275

3.1.2. Challenge generator (ro_chl) 276

The challenge generator block provides the challenges sequence that determines the
two pairs of ROs to be compared in each comparison cycle. Any pair of ROs can be
compared, including those located on the same CLB. The block provides four outputs
(sel1, sel2, sel3, sel4) that are connected to the enable signal generator block and to the
control inputs of the multiplexers that select the ROs that will act as clock inputs in the
comparison blocks. The sel1 signal is generated by a counter, which increments by one
(sel1 = sel1 + 1) on each comparison cycle. The other selection signals depend on sel1
according to Equation (1),

sel2 = sel1 + 1 + s_inc ∗ 4; sel3 = sel1 + 2; sel4 = sel1 + 6 + s_inc ∗ 4 (1)

where s_inc allows us to define the distance, in terms of number of CLBs, between ROs. 277

The sel1 and sel2 signals determine the two ROs involved in the first comparison. They 278

select ROs implemented in LUTs located at different positions in the same or contiguous 279

CLBs (if s_inc = 0) or in two different CLBs (for s_inc in [1, Nx ∗ Ny − 1]). On the other 280

hand, sel3 and sel4 control the ROs participating in the other simultaneous comparison. 281

The elements selected by these signals correspond to ROs implemented in LUTs located at 282

the same position of two CLBs that are contiguous (s_inc = 0) or separated by a certain 283

distance (s_inc ̸= 0). 284

To provide flexibility to choose different configurations, the proposed RO-PUF includes 285

an online mechanism to select whether the two simultaneous comparisons are made 286

between the closest or farthest ROs of each type within the RO-bank. Depending on the 287

value of the NR (Nearby/Remote) option, in the first case, a null value is set for s_inc, while 288
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in the second case, an internally calculated value is used based on the parameters Nx and 289

Ny that determine the size of the PUF RO-bank. 290

3.1.3. Enable-signals generator (ro_en) 291

With the goal of minimizing the activity of the components of the RO-block to reduce 292

energy consumption and avoid mutual influences between them, only the four ROs corre- 293

sponding to the applied challenge are activated in each comparison cycle. The enable signal 294

generation block (ro_en) is responsible for activating row (Ey) and column (Ex) enable 295

signals, which close the feedback loop of the four ROs indicated by sel1-sel4. To simplify 296

the implementation of this block, only values of Nx that are powers of two are allowed in 297

the PUF design. 298

3.1.4. Comparison block (ro_cmp) 299

Two identical comparison blocks (ro_cmp) are included in the PUF to perform the two 300

simultaneous competitions that provide the response corresponding to a challenge. Each 301

of these blocks contains two counters, which use as count signals the output of the two 302

selected ROs, as well as the logic required to stop the operation of the other counter when 303

one of them reaches the maximum value. 304

The maximum size of the counters is fixed through a parameter established when 305

synthesizing and implementing the design. However, with the idea of minimizing the PUF 306

response time and optimizing it for different target devices, the count_st input shown in the 307

block diagram of Figure 2 can be used to define an effective length less than the maximum 308

in each invocation of the PUF. 309

The comparison cycle starts simultaneously in both blocks, when the cmp_str signal 310

is activated by the PUF control block, and ends when the busy outputs of both blocks go 311

down to 0 to indicate that one of the two counters has reached its maximum value. Then, 312

the signals that identify the faster counter in one of the blocks and the output of the slower 313

counter in both blocks are accessible to the input of the last stage in the block diagram of 314

the design. 315

3.1.5. PUF output block (puf_mem) 316

The functionality of the PUF output stage (pu f _mem) is twofold. On the one hand, it 317

selects the bits that will be part of the PUF response for each challenge. On the other hand, 318

as the application of the sequence of challenges progresses, it is in charge of structuring the 319

successive responses in 32-bit registers and storing them in a memory, from which the PUF 320

output will be read once its operation has been completed. 321

The selected bits depend on the type of ROs being compared, as well as on a configura- 322

tion option (Lower/Higher) defined at run-time by the user. For comparisons between ROs 323

implemented in LUTs located in different positions of the CLB, bits 6 and 7 (for the Lower 324

option) or bits 7 and 8 (for the Higher option) of the slower counter are chosen to form part 325

of the PUF output. On the other hand, in comparisons between ROs implemented in LUTs 326

located in the same position of different CLBs, their contribution to the output of the PUF 327

will consist of the sign bit in combination with bit 7 (Lower option) or 8 (Higher option) 328

of the slower counter. (For notation purposes, we call bit 0 the sign bit, and the rest of the 329

bits are named in ascending order, bit 1 being the MSB of the counter value, as so called in 330

other works in the literature). 331

The four bits selected in each comparison cycle are sent to a 32-bit shift register, in 332

charge of organizing the PUF output bitstream in registers of this size and storing them in 333

consecutive locations in the PUF memory, implemented using Block RAM (BRAM) in the 334

programmable device. The PUF output can be accessed from outside the design using the 335

address and data buses associated with this memory. 336
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3.1.6. Control block (puf_ctrl) 337

The control signals necessary to coordinate and sequence the operation of the different 338

blocks are provided by the pu f _ctrl block. VHDL description of this block includes two 339

types of components: a Finite State Machine (FSM) to generate the signals controlling the 340

comparison cycles; and a series of processes to generate the signals defining the different 341

operation phases and controlling the access to the PUF memory. 342

The FSM receives two external inputs: n_challenges, which defines the number of 343

challenges used in the PUF invocation (i.e., PUF-length/4), and pu f _str, which sets the 344

start of the PUF operation, as well as the internally generated cmp_end signal indicating 345

the completion of the two comparisons. It provides as output the cmp_rst and cmp_start 346

signals, to initialize and start the comparisons, respectively; and the cmp_cap signal, to 347

capture the bits selected in the two simultaneous comparisons. 348

Figure 4 shows the FSM state diagram. FSM operation starts from an IDLE state in 349

which the three output signals (cmp_rst, cmp_str, and cmp_cap) are deactivated by setting 350

them to 0. When the pu f _str signal goes high, the FSM goes to the CMP_RESET state, 351

and cmp_rst is activated to reset the counters of the two comparison blocks. After one 352

clock cycle, the FSM goes directly to the CMP_DLY state and deactivates cmp_rst, and 353

after another clock cycle, goes to the CMP_START state and activates cmp_str to start the 354

operation of both comparison blocks. The FSM waits in the CMP_CYCLE state until both 355

comparisons are complete and the cmp_end input is set. When this happen, it goes to the 356

CMP_CAPTURE state and activates cmp_cap to capture the four bits that are sent to the 357

shift register to be part of the PUF output. In the next clock cycle, the FSM returns again to 358

the IDLE state, waiting for the start of a new comparison cycle. 359

Figure 4. State diagram of the control Unit.

Each time the cmp_cap signal goes high, indicating that a comparison cycle has fin- 360

ished, a counter is incremented to record the number of challenges evaluated. When eight 361

challenges have been completed, the pu f _ldr signal is activated to store the content of the 362

shift register in the PUF memory location indicated by pu f _wa, and its value is increased by 363

one. Finally, when the number of evaluated challenges is equal to the value defined by the 364

n_challenges input, the done output signal is activated to indicate that the PUF operation 365

has finished. 366

3.2. IP Encapsulation and Test System Integration 367

The PUF design has been encapsulated as a configurable IP module with an Advanced 368

Extensible Interface (AXI) bus for interconnection with general-purpose processors. The 369

selected protocol, AXI4-Lite, allows for low resource implementation, especially suitable 370

for connecting processors with memory-mapped low- or medium-speed peripherals. The 371

interface uses three channels for write operations (address, data, and response) and two 372

more for read operations (address and data), with 32 or 64 bits for width of data. 373

Inputs and outputs represented in Figure 2 in blue and red, respectively, are connected 374

to four 32-bit registers following the bit association scheme shown in Figure 5. Input register 375
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CONTROL is used to provide the PUF with the number of challenges (n_challenges), the 376

counter-stop mask (count_st), and configuration options (LH and NR), as well as to send 377

the PUF initialization (reset) and operation start (pu f _str) signals. All fields are fixed 378

lengths, except the first one, which depends on the size established when implementing the 379

PUF. PUFADDR is also an input register, used to access the PUF memory once its operation 380

has finished. The maximum number of bits to represent the read memory addresses 381

(pu f _addr) is adequately adjusted when the design is synthesized, depending on the length 382

of the PUF response and, consequently, the number of memory cells required to store it. 383

The DATAOUT output register contains three fields. ID is a user-defined identifier, which 384

can be set by the designer for debugging or verification purposes when he/she instances 385

the IP into a higher-level design. On the other hand, pu f _end is a signal that indicates the 386

PUF has finished its operation, while pu f _addw contains the address of the last memory 387

position containing the PUF output, so allowing the user to corroborate that it has the 388

expected length. Finally, the PUFOUT register provides in the 32-bit pu f _out field the 389

content of the PUF memory location addressed by pu f _addr. 390

Figure 5. Input and output IP module registers.

To optimize its implementation and facilitate its use in different applications, the 391

design of the PUF has been extensively parameterized. Some of these parameters can be 392

defined by designers through a Graphical User interface (GUI) when using Vivado’s IP 393

integrator tool to incorporate the PUF into their design. Specifically, the set of parameters 394

that can be defined through the PUF GUI includes the number of rows (Ny) and columns 395

(Nx) of adjacent CLBs that make up the RO-bank, its location within the programmable 396

device (Xo, Yo coordinates), the maximum number of bits of the counters used to compare 397

the frequencies of the ROs (Nbc), and the identifier associated with the PUF (ID). 398

3.2.1. Test system 399

Programmable SoCs that combine a Processor System (PS) and Programmable Logic 400

(PL) in an integrated circuit have become excellent platforms for prototyping and im- 401

plementation of small series of devices for validation and performance analysis of new 402

designs. They put together the flexibility provided by software with the efficiency gained 403

by implementing part of the system on dedicated hardware specially tailored to a given 404

application. Taking advantage of these features, a test system has been implemented in the 405

Xilinx Zynq-7000 SoC device available on the Pynq-Z2 development board to facilitate the 406

validation and characterization of the proposed PUF through a series of routines encoded 407

in C language and executed on one of the ARM cores provided by the device. 408

The test system instantiates 10 identical RO-PUF IP modules, each with 8 rows and 409

15 columns of CLBS (containing 480 ROs) and a maximum counter size of 15 bits. The 410

locations of the PUF RO-banks are distributed in the different clock zones present in the 411

device. The remaining components of each PUF are placed in resources belonging to the 412
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same clock zone and close to the RO-bank with the help of ’pblock’ directives. Figure 6 413

shows a symbolic representation of the programmable device, in which the distribution 414

of the different PUFs can be observed. Orange cells correspond to the RO-banks whose 415

positions were established when the PUFs were instantiated. The purple boxes mark the 416

zones defined by the ’pblock’ directives to locate the other components of each PUF. Finally, 417

the cells in green show the device resources that are fully or partially used. 418

Each of the PUFs occupies 1862 LUTs (3.50% of the resources in the device) where 960 419

LUTs (1.80% ) are used by the matrix of ROs. It also consumes 365 (0.34%) Slice Registers, 420

256 (0.96%) F7 Muxes, 119 (0.89%) F8 Muxes, and 0.5 (0.36%) Block RAMS. The amount of 421

resources consumed by the complete test system, including those implementing the AXI4 422

infrastructure required to connect the PUFs and the PS, are 19289 LUTs, 4270 Slice Registers, 423

2560 F7 Muxes, 1190 F8 Muxes, and 5 Block RAMS. 424

Figure 6. Device view of the test system implementation.

4. RO-PUF Characterization 425

The objective of the RO-PUF characterization task is twofold. On the one hand, verify 426

that the bits selected in each comparison according to the possible options present adequate 427

values of stability, probability, and entropy. On the other hand, to obtain a series of metrics 428

that allow evaluating how the setting of the different configuration options affects the PUF 429

reliability and uniqueness. 430

To meet this dual objective, an extensive battery of tests has been developed taking 431

advantage of the Python Productivity for Zynq (PYNQ) environment available for Pynq-Z2 432

boards [30]. It provides a Python framework on an embedded Linux operating system, 433

which simplifies the interaction between the hardware and software components of an 434

embedded system. For efficiency reasons, in this work, we use the C-API available in [31], 435

which provides the same functionality through a set of C routines that can be compiled to 436

generate executable code. This API includes functions to handle the hardware elements 437

integrated into PYNQ, as a hardware equivalency to software libraries. 438

A series of specific test functions have been coded in C in order to repeatedly invoke 439

the different PUFs instantiated in the test system and capture the corresponding output 440

data. When these tests are launched, the number of challenges, the number of tests, i.e. the 441

number of PUF calls, and the debug level can be configured by the user. Different strategies 442

can also be applied by combining configuration options for selection of lower or higher bits, 443

nearby or remote ROs, and the effective size of counters. Once the tests are run through 444
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command-line or shell scripts, the output data are captured and stored in files for posterior 445

processing. 446

To carry out the study, 10 development boards were used, each one implementing 447

the test system with 10 PUFs, which means a total of 100 different RO-PUFs. In all cases, 448

the four configuration options that arise when considering the relative position of the ROs 449

involved and the bits selected in each comparison were analyzed. The number of calls to 450

each PUF and the effective length of the counters varied depending on the specific objective 451

of the test performed. Once the data are captured, a set of MATLAB scripts and functions 452

are used to calculate the different metrics that allow evaluating the quality of the proposed 453

PUF. 454

4.1. Bit-Selection Analysis 455

Figure 7 shows the average stability (S), probability (P), and entropy (Hintra and 456

Hinter) per bit, calculated when a complete sequence of 480 challenges is applied 1000 457

consecutive times to each of the 100 PUF and the obtained responses, each of them com- 458

posed of a stream of 1920 bits, are captured and processed. The data in each bar graph 459

are grouped according to the four alternatives that arise when considering the possible 460

combinations of the LH and NR configuration options. In all cases, label 1 corresponds to 461

the sign bit of the second comparison, while the bits represented by the other three labels 462

depend on the specific configuration: label 2 is bit 6 (L) or 7 (H) of comparisons between 463

ROs implemented in LUTs that occupy the same positions in different CLBs; labels 3 and 4 464

correspond to bits 6 and 7 (L) or 7 and 8 (H) when comparing ROs implemented in LUTs 465

located at different positions. 466

Figure 7. Average stability, probability, and entropy per bit.

As can be seen in the graphs, the configurations that use lower bits of the counters 467

(L) present greater stability and probability, although their entropy values are lower than 468

those of the configurations that use higher bits (H), which was predictable. As for the 469

relative position of the compared ROs, no significant differences in stability are observed 470

for configurations comparing nearby (N) or remote (R) ROs, although it does seem to affect 471

the other three metrics in some way, but without showing a clear trend for any of the bits 472

considered. 473

Once verified that the bits selected in the different configurations meet the conditions 474

required to form part of the PUF output, the following sections show the results of the tests 475

carried out to determine their performance in terms of reliability and uniqueness. 476
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4.2. PUF Performance Evaluation 477

As mentioned in the Introduction to this work, HDintra and HDinter are the metrics 478

commonly used to assess the reliability and uniqueness of a PUF. Therefore, the results ob- 479

tained when the RO-PUF behavior is evaluated considering different operating conditions 480

are summarized below. Several analyses have been carried out in order to determine: a) 481

the influence of selecting Lower or Higher bits and Nearby or Remote ROs, to check which 482

strategy provides better performance; b) the impact of the effective size of the counter, to 483

minimize the PUF response time; and c) the incidence of the number of calls to the PUF, to 484

verify the generality of the results obtained. 485

4.2.1. Selection strategies 486

This study was carried out on the same number of PUFs used to perform the bit 487

selection analysis. Data obtained in 1000 successive calls to a total of 100 PUFs, with 480 488

ROs each and an effective counter size of 14 bits, were processed with the help of a series of 489

MATLAB functions and scripts coded for this specific purpose. The mean HDinter values, 490

as well as the mean, minimum, and maximum HDintra values, for each PUF of the test 491

system, corresponding to the four possible configurations or comparison strategies, are 492

shown in Figure 8. 493

Figure 8. HDinter and HDintra values for different selection strategies of bits and ROs.

The first 10 rows of each table show the values of HDinter and HDintra associated to 494

each of the PUFs instantiated in the test system. The value of HDinter corresponds, in this 495

case, to the average Hamming distance between the responses of a given PUF and those of 496

the PUFs implemented in the same position in the other 9 development boards. The mean, 497

minimum, and maximum values of HDintra are calculated as the average, minimum, and 498

maximum, respectively, of the Hamming distances between the successive responses of 499

the same PUF. The last row in each table collects global values when considering all PUFs. 500

HDinter is now calculated as the average of the Hamming distances between the responses 501

of one PUF and those of the other 99 PUFs. HDintra, HDintra_min, and HDintra_max 502

correspond to the mean, minimum, and maximum values of the top 10 rows. 503
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As can be seen from the results summarized in Table 1, HDinter values range from 504

47.52 (Lower bits / Nearby ROs) to 48.94 (Higher bits / Remote ROs), while HDintra 505

mean ranges from 1.47 (Lower bits / Remote ROs) to 3.16 (Higher bits / Nearby ROs). 506

Considering each of the options separately, the Lower option provides better performance 507

in terms of reliability (lower HDintra), however the HDinter is less than 48%. The Higher 508

option allows increase HDinter by more than one point, but at the cost of doubling the 509

HDintra value. Different behavior is obtained when selecting the test strategies between 510

Nearby or Remote ROs. In this second case, the mean values of the reliability and robustness 511

indicators of the PUFs are slightly better when Remote ROs are compared. 512

Table 1. HDinter and HDintra for different strategies.

Strategy HDinter HDintra HDintra_min HDintra_max

Higher / Remote 48.94 3.06 2.32 4.33
Higher / Nearby 48.89 3.16 2.25 5.22
Lower / Remote 47.93 1.47 0.90 2.32
Lower / Nearby 47.52 1.53 1.01 2.75

These data are consistent with the stability and entropy values of the PUF bits obtained 513

in Section 4.1. A lower HDintra value implies a lower Bit Error Rate (BER) and therefore 514

better reliability. On the other hand, a value of HDinter closer to 50% improves the 515

uniqueness and resistance of the PUF to possible attacks. In this way, by setting the 516

different configuration parameters of the proposed RO-PUF, the selection strategy of bits 517

and/or ROs can be chosen at run-time to establish a reliability/robustness trade-off suitable 518

for a particular application context. 519

4.2.2. Effective counter size 520

In order to analyze the timing response of the PUF, a specific study was carried out to 521

evaluate the impact of the effective size of the counters used when comparing RO pairs. In 522

this case, the metrics were calculated for 30 PUFs distributed on 3 different boards, using 523

the responses obtained by calling each PUF 1000 times with sequences of 480 challenges. 524

Table 2 shows the HDinter and HDintra values for PUFs with effective counter size of 13 525

and 14 bits, using Higher option in the upper two rows and Lower option in the lower two 526

rows to compare equivalent bits. 527

Table 2. HDinter and HDintra for different effective counter size.

Size Strategy HDinter HDintra HDintra_min HDintra_max

13 Higher/Remote 48.14 1.46 1.03 2.33
13 Higher/Nearby 47.91 1.52 1.15 2.74
14 Higher/Remote 48.02 1.41 0.90 2.32
14 Higher/Nearby 47.67 1.53 1.01 2.75

The results of this test allow us to verify, as expected, that the behavior of the PUF 528

when using the Higher bits with effective counter size of 13 bits is similar to that obtained 529

with the Lower bits and effective counter size of 14 bits, with the clear advantage that in 530

the first case the timing response of the PUF is reduced by half. 531

4.2.3. Number of PUF calls 532

To complete the characterization of the proposed PUF, a final test was performed with 533

the idea of verifying the long-term generalization of the results obtained. For this, three 534

successive series of 3000 calls each were made and data corresponding to 3000, 6000 and 535

9000 calls were processed to determine the influence of the number of calls on the PUF 536

metrics. To carry out this study, the responses of 9 different PUFs distributed in three 537
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development boards were considered. Again, PUF responses correspond to the application 538

of a sequence of 480 challenges and provide 1920 bits. 539

Bit selection metrics (as those presented in the analysis described in Section 4.1) are 540

shown in Figure 9 for the case in which the PUFs are configured to use the Lower/Nearby 541

options to select bits and ROs, respectively. The results of the other three selection strategies 542

show the same trend, so they have not been included. 543

Figure 9. Average stability, probability, and entropy per bit versus number of calls for the Lower/
Nearby selection strategy.

As can be seen in the bar charts in the figure, only the average stability per bit shows a 544

very slight decrease (less than a thousandth) when the number of calls to the PUFs doubles 545

and triples, while the variations are practically negligible for the other three metrics. 546

These data are also consistent with the global values of HDinter and HDintra shown 547

in Table 3, where it can be seen that the HDinter values are similar for all cases and that 548

average and minimum values of HDintra increase a little bit with the number of responses 549

considered. 550

Table 3. HDinter and HDintra versus number of responses for the Lower/Nearby selection strategy.

N HDinter HDintra HDintra_min HDintra_max

3000 47,03 1,54 1,09 2,12
6000 47,05 1,61 1,13 2,15
9000 47,06 1,63 1,17 2,07

5. Generation and Recovery of Secret Keys Based on RO-PUFs 551

To illustrate one of the main applications of PUFs, the use of the proposed RO-PUF to 552

generate and retrieve secret keys is discussed in this Section. In this example, a simple ECC 553

consisting of a repetition code scheme is used to deal with the variability in successive PUF 554

responses that has become apparent when evaluating HDintra in the previous section. 555

The scheme to obfuscate and retrieve a secret key using the RO-PUF response and an 556

ECC for a given repetition code, r, is shown in Figure 10. In the enrollment (or obfuscation) 557

phase, the secret is extended by replicating r times each bit of the key. Later, the extended 558

key is XOR-ed with the RO-PUF response (which should have the same length of the 559

extended secret, that is, n × r being n the length of the secret key). As a result of the XOR 560

operation between the extended secret key and the RO-PUF response, helper data are 561

obtained. Helper data are non-sensitive data that can be public and stored in any place 562
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of the system without being ciphered. In the recovery phase, the secret key is recovered 563

using the helper data generated in the enrollment phase and a new PUF response, which 564

can differ slightly from the one used in the previous phase. The helper data and the new 565

PUF response are XOR-ed to form a new extended secret key, from which the secret key 566

is recovered using an ECC with the same repetition code used in the enrollment. If the 567

PUF response is reliable and robust, only the PUF instance that obfuscated the secret key is 568

the one that can retrieve it, even whether a counterfeit RO-PUF instance has access to the 569

helper data. 570

secret extended secret

PUF ID

Helper Data

(a)
Helper Data

PUF ID'

extended secret' ECC secret

(b)
Figure 10. HDA scheme to obfuscate (a) and retrieve (b) a secret key using the RO-PUF.

To demonstrate the capacity of the proposed RO-PUF to be used as a basic element 571

of an HDA [32], a study was carried out with MATLAB using data obtained from 90 PUFs, 572

configured to use the Higher/Nearby selection strategy. 573

For each RO-PUF instance, a key was first obfuscated, and then recovery was at- 574

tempted using the PUF responses from the same RO-PUF and using the responses from 575

the other 89 RO-PUFs. It was expected that for a given repetition value, only the RO-PUF 576

instance that obfuscated the key would be able to recover it with a desirable False Negative 577

Rate (FNR) of 0, and the rest of the instances would never be able to recover it, which means 578

a False Positive Rate (FPR) of 0. In agreement with the expected results, the calculated 579

FNR for 10 different PUF instances on different boards, after retrieving 1000 times a 128-bit 580

secret key using the 1920 response bits of a PUF was equal to 0 for an ECC repetition code 581

with r = 15 , which implies that the secret key could always be retrieved. Likewise, for the 582

same repetition value, the FPR was also always 0, so the secret key could never be retrieved 583

for a PUF instance other than the one used to obfuscate it. 584

This analysis was also performed by varying the operation conditions of the devices, 585

for which different data sets were collected at different temperatures {0, 14, 28, 42, 56, 586

70}. For each of the dataset collected at the fixed temperature, a key is obfuscated and 587

recovered using the PUF responses of the same RO-PUF and using the PUF responses 588

of the others 89 RO-PUFs for different values of r. The experiment was performed by 589

establishing the temperature values over the Pynq boards with the Thermonics [33] in the 590

lab. Fig. 11 shows the minimum value of r, where the FNR and FPR are zeros for each of 591

the temperature datasets. It is concluded that it is necessary to use an r = 19 to success in 592

all the experiments, that is, the key is always recovered for each of the RO-PUF devices at 593

each of the temperatures considered, and without any counterfeit device recovering it. 594
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Figure 11. Repetition code value vs Temperature.

6. Conclusions 595

This work addresses the design of a new RO-PUF that is efficient in terms of area and 596

speed of operation, as well as its use to generate identifiers and keys for the microelectronic 597

devices in which the PUF is attached/embedded to. The system takes advantage of the 598

resources available in the CLBs of Xilinx 7-Series programmable devices to place four 4- 599

stage ROs within one CLB, providing a very compact solution in which the ROs are located 600

in an array of Nx × Ny CLBs. It also includes a challenge generation mechanism that allows 601

two comparisons to be made in parallel. In one of them, information is extracted from 602

the sign bit, and in the other from the module of the difference in oscillation frequencies 603

between two ROs, which ensures the non-correlation between the data. The output of the 604

RO-PUF, formed by the concatenation of the four bits obtained for each challenge, is stored 605

in an internal memory as a sequence of 32-bit registers. 606

The RO-PUF is provided as an IP module, in which an AXI4-Lite interface has been 607

incorporated so that it can be easily integrated into an embedded system. The dimensions 608

of the CLB array, its location within the FPGA fabric, and the maximum size of the counters 609

can be configured before it is implemented. In addition, the PUF functionality can be 610

configured by using the I/O registers mapped into the memory space of the embedded 611

processor. By means of this mechanism, it is possible to determine when invoking the PUF 612

the length of the sequence of challenges and the effective size of the counters, as well as to 613

define the strategy to select the position (Nearby/Remote) of the ROs being compared and 614

the location (Lower/Higher) of the bits contributing to the PUF output. 615

An extensive set of tests has been performed to verify design decisions and characterize 616

the quality of the PUF in terms of the reliability and uniqueness of the outputs it provides. 617

The results of this study show that the different configuration options allow for establishing 618

different reliability/robustness trade-offs, as well as optimizing the response time of the 619

PUF depending on the target device in which it is implemented. Finally, using an ECC with 620

a repetition code equal to 15, the feasibility of the PUF as a basic element of an HDA used 621

to generate and recover 128-bit keys with null values of FPR and FNR has been verified. 622
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Abbreviations 640

The following abbreviations are used in this manuscript: 641

642

ASIC Application-Specific Integrated Circuit
AXI Advanced Extensible Interface
BER Bit Error Rate
BRAM Block Random-Access Memory
CLBs Configurable Logic Block
DRAM Dynamic Random-Access Memory
ECC Error-Correcting Code
FNR False Negative Rate
FPGA Field-Programmable Gate Array
FPR False Positive Rate
FSM Finite State Machine
GUI Graphical User interface
HDA Helper Data Algorithm
IoT Internet of Things
IP Intellectual Property
LUT LookUp Table
PL Programmable Logic
PS Processor System
PUF Physical Unclonable Function
PYNQ Python Productivity for Zynq
RO Ring Oscillator
SoC System on Chip
SRAM Static Random-Access Memory
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