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Abstract: Fog, haze, or smoke are usual atmospheric phenomena that dramatically compromise
the overall visibility of any scene, critically affecting features such as illumination, contrast, and
contour detection of objects. The decrease in visibility compromises the performance of computer
vision algorithms such as pattern recognition and segmentation, some of them very relevant for
decision-making in the fields of security and autonomous vehicles. Several dehazing methods have
been proposed. However, to the best of our knowledge, all proposed metrics in the literature compare
the defogged image to its ground truth for evaluation of the defogging algorithms, or need to estimate
parameters through physical models. This fact hinders progress in the field as obtaining proper
ground truth images is costly and time-consuming, and physical parameters greatly depend on
the scene conditions. This paper aims to tackle this issue by proposing a gradient-based metric for
image defogging evaluation that does not need a ground truth image or a physical model. The
proposed metric only requires the original hazy RGB image and the RGB image obtained after the
defogging procedure. A comparison of the proposed metric with metrics already used in the NTIRE
2018 defogging challenge is performed to prove its effectiveness in a general situation, showing
comparable results to conventional metrics. A Matlab implementation of the proposed metric can be
found at the following GitHub repository: https://github.com/GDMG99/Gradient-based-metric-
for-image-defogging-without-ground-truth.

Keywords: Image defogging; image evaluation metrics, visual enhancement evaluation; edge detec-
tion; deep neural networks; autonomous systems.

1. Introduction

In recent years, there has been a rise and important advances in automated surveillance
and autonomous vehicles of different kinds. These systems use cameras as well as other
sensors to gather data about their surroundings and process it with image processing
algorithms to obtain relevant information about the scene. Nevertheless, these algorithms
perform poorly under adverse weather conditions such as fog, smoke, or haze, since they
compromise the visibility in images. Other atmospheric scattering media, such as sand or
smog, behave similarly. They critically affect illumination, color, contrast, and contours of
the scene due to the scattering behavior of the media. Therefore, there is a need to achieve
a processing solution that reduces the effect of bad weather conditions, as the reduction
of visibility can directly affect the performance of the algorithms involved. The process of
developing image processing algorithms for enhancing visibility on images in bad weather
conditions is known as defogging or dehazing.

Nowadays there are several approaches to defog an image. On the one hand, active
approaches rely on using gated images [1] or polarized light [2,3] to get more information
about the scene. Gated imaging requires usually expensive electronics, and polarimetric
imaging is difficult to implement in outdoor systems, which is the main target of defogging.
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Polarimetric images are also difficult to automatize and to be implemented in autonomous
systems, because they usually require estimating physical parameters of the scene [4].

Another common approach to tackle defogging is to apply Deep Neural Networks
(DNNs), which have already produced some very promising results. The New Trends
in Image Restoration and Enhancement Workshop and Challenges (NTIRE) reflects the
advancement in the image defogging field in image and video processing. This work-
shop proposes challenges in image and video processing in several fields. For instance,
homogeneous [5,6] and non-homogeneous [7,8] fog removal were among the topics of
interest explored for some years in the workshop. In these challenges, some research groups
exploited previous information on the image and tried to evaluate the natural parameters
through deep learning techniques [9,10]. Alternatively, other groups took advantage of the
generative capability of DNNSs, especially with Generative Adversarial Networks (GANs),
and used them to directly generate a defogged image from a foggy one without estimating
any physical parameter [11-13]. In order to evaluate the effectiveness of the defogging net-
works, classical computer vision metrics such as the structural similarity index (SSIM), the
Peak Signal to Noise Ratio (PSNR), or CIEDE2000 [14] were used to compare the defogged
image with a ground truth of the scene. Nevertheless, classical computer vision metrics for
evaluation perform poorly when it comes to quantifying an enhancement in the visibility
of the scene. Moreover, and as its most important drawback, these metrics need a ground
truth image which is not always available.

Obtaining ground truth images in adverse weather conditions is costly, time-consuming
and, often, simply unfeasible. In natural conditions fog is a time-variant and complex
weather phenomenon. Reproducing the same scene for acquiring images without fog but
with equivalent luminance, positioning of the objects, etc, is a very complex task in practice.
Thus, research is often based on artificial fog generation in rather controlled environments,
usually large-scale fog chambers. However, such artificially generated fog is not fully
equivalent to natural fog in terms of homogeneity and distribution [15]. This problem is
especially sensitive with DNNs because they need huge datasets to achieve good results
and avoid overfitting. Even though there exist defogging DNNs which are trained in an
unpaired manner [11], the problem still perseveres when it comes to validation, as the most
used evaluation metrics require a ground truth for comparison.

Hence, this work proposes a novel, general-purpose gradient-based metric for evaluat-
ing image defogging that needs neither a ground truth image of the scene nor an evaluation
of the physical parameters of the image. The proposed metric only relies on the original
and defogged images. The proposed metric will be compared for validation with the
performance of SSIM on the O-Haze [16] dataset with some results of the NTIRE 2018
defogging challenge [5].

The paper is organized as follows. The next section overviews the current state-of-the-
art of defogging evaluation metrics, and presents several proposals that tackle the problem
of obtaining the ground truth images of natural fog scenes. Secondly, we present our
method, a gradient-based metric for evaluating image defogging that can directly measure
the improvement in the output defogged image with respect to the original hazy RGB
image without the need of any ground truth or the estimation of any physical parameter.
Afterwards, we compare our metric with the currently used SSIM algorithm on the O-Haze
dataset [16] applied to some defogging results of the NTIRE 2018 defogging challenge [5]
to prove its effectiveness.

2. State of the art

The problem of evaluating the visibility of a scene without having any reference
beyond the original fogged RGB image has been of interest in the past years due to the
complexity of obtaining reliable ground truth images of fogged scenes. Within this section,
we briefly review different approaches used for evaluation of defogging algorithms. We
can divide the evaluation methods into three groups [17]. The first two are called full-
reference image quality assessment (FR-IQA) and no-reference image quality assessment
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(NR-IQA). The first group, FR-IQA, needs a ground truth image to evaluate quantitatively
the defogging result. This is the case of SSIM and PSNR. On the contrary, NR-IQA metrics
either do not need a reference or do not use a fog-free ground truth image for comparison.
Our proposed metric explained in Section 3 falls into this category. The third group
simulates hazy images from clear images based on Koschmieder’s law [18] and then
employs FR-IQA metrics to evaluate dehazing algorithms.

Hautiere et. al. [19] and Pormeleau et. al. [20] presented different NR-IQA methods to
evaluate the attenuation coefficient of the atmosphere by means of a single camera on a
moving vehicle. Nevertheless, their method cannot be used as metric for a general single
image visibility evaluator, as Pormeleau et. al. needed multiple images of the scene and
Hautiere et. al. required a road and the sky to be present in the scene.

A different NR-IQA method was presented by Liu et. al. [21] and consisted on the
analysis of the histogram of the image on the HSV colourspace. First, the image is converted
from the RGB colourspace to HSV. Then, fog detection is achieved by analyzing different
features of the histogram of each channel: Hue (H), Saturation (S), and Value (V). They
stated that the overall value of the three channels decreased due to scattering resulting
from the fog, so the distribution was modified in presence of fog. Feature extraction of each
histogram was performed by adding the values of the pixels of the image and normalizing
to the number of pixels different of 0 in the channel. After that, a classification into different
visibility categories was done by comparing the results obtained from the histogram with
some empirical values. Even though Liu et. al. claimed good results with this method there
is certain subjectivity in the choice of values of the thresholds for the classification.

Li et. al. [22] compared the results of two FR-IQA (SSIM and PSNR) with two NQ-IQA
methods (spatial-spectral entropy-based quality - SSEQ) [23] and blind image integrity
notator using DCT statistics (BLIINDS-II) [24]). However, their results do not bring to a
general conclusion about which IQA method has a better judgement. Besides, BLIINDS-
II [24] is based on the statistical behavior of a group of 100 people, so there is inherent
subjectivity in the metric.

Also, Choi et. al. [25] presented a reference-less prediction of perceptual fog density
and perceptual image defogging based on natural scene statistics and fog-aware statistical
features. Their proposed model, Fog Aware Density Evaluator (FADE), predicts the visi-
bility of a foggy scene from a single image without reference to a corresponding fog-free
image and without being trained on human-rated judgments. FADE only makes use of
measurable deviations from statistical regularities observed in natural foggy and fog-free
images. Apart from that, they present a single image defogging network called DEFADE.
More recently, Chen et. al. [26] presented a visibility detection algorithm of a single fog
image based on the ratio of wavelength residual energy. Nevertheless, their algorithm uses
the transmisivity map, which is obtained by estimating certain atmospheric parameters.

Other approaches have been trying to fix the method using edge detection metric
evaluation [27], as we propose. However, they are mostly focused on the evaluation of the
edge detection method rather in an improvement of the visibility of a scene by gradient
comparison. Moreover, these metrics require a ground truth edge image for a proper
evaluation.

Currently, the most used metric in defogging challenges is SSIM [28]. This well-
known metric takes into account different aspects of an image and directly compares them
with a sample image. SSIM basically focuses on contrast, luminance and structure. In
fact, these are some of the most affected image features when fog is present in a scene.
Nevertheless, defogging techniques, usually, do not try to completely recreate the original
image but rather to produce an enhancement in the visibility of the fogged image by
adjusting luminance, contrast, and other aspects of the scene. This could lead to a defogging
procedure being heavily punished for not being similar enough to its ground truth even
if the defogging results are good. Still, the main drawback of the metric for defogging
evaluation is the need of a ground truth. As mentioned earlier, obtaining a ground truth
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Figure 1. Gradient comparison between a fogged image (left) and its fog-free ground truth (right).
Both colour images are presented on top with their associated edge images below.

image of a natural foggy scene is difficult, and the issue becomes more relevant when
DNN:s are introduced.

3. Methodology

In this section we introduce our proposed gradient-based metric for image defogging
without the need of a ground truth. We thoroughly explain every step to validate a defog-
ging procedure without a ground truth reference using our method. The reader can find a
Matlab implementation of the gradient-based metric algorithm on the following GitHub
repository: https://github.com/GDMG99/Gradient-based-metric-for-image-defogging-
without-ground-truth.

As Fig. 1 shows, the main effect that hazy weather has on a scene is decreased lu-
minance and contrast, that dramatically reduce the contours and textures of the scene.
Maintaining defined contours in adverse weather conditions is key to proper object recog-
nition and segmentation, which are the basis of several applications. The visibility metric
we present is based on gradient detection for image defogging evaluation. Our approach
compares the gradient of the foggy image to the gradient of its defogged counterpart, i. e.
after the defogging procedure is done. Hence, there is no need for a ground truth. Besides
that, our method does not need to estimate any atmospheric parameter, which is difficult
from a single RGB image and, in general, requires the sky to be present in the image.

Thus, as a first step, we need to obtain the derivative of both images (original and
defogged), as can be seen in Fig. 1. There are several well-known image processing
operators to perform such procedure. Some of the most used are Canny [29], Roberts,
Prewitt, and Sobel [30]. For our method, we used the Sobel edge detector [31] due to its
simplicity. The horizontal and vertical derivatives are obtained by respectively applying
the horizontal and vertical kernels on the image, as shown in Eq. 1,

-1 0 1 -1 -2 -1
Fr=1-2 0 2y®I ; F,=1]0 0 0|®I, 1)
-1 0 1 1 2 1

where Fy and Fy are the corresponding horizontal and vertical derivatives of the image
I. The image integrating all gradients is retrieved following
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Note that in any image, most of the pixels do not represent an edge, yielding small
values in the processed gradient image. This can be appreciated in Fig. 1 where the white
pixels that represent null or negligible gradients are dominant in the image. Hence, we
define a threshold value for the gradient values in order to differentiate the gradients of
interest from the background (white).

Gradient images are normalized to one, so our proposed threshold value is to use 5%
of the maximum edge value present in the image to still keep all the relevant information
related to edges while disregarding the background data. This threshold will be further
discussed after presenting Eq. 4. Such 5% value could be optimized for a different dataset
if needed. After obtaining the derivative of each image, we perform the relative difference
between the gradient images of the fogged and its defogged counterpart pixel by pixel, as
stated in Eq. 3,

Az y) —fely) resho
RD(x,y) = fe(x,y) de(x,y), fo(x,y) > threshold “

0 otherwise

where RD(x, y) is the relative difference computed at pixel (x,y), de(x,y) is the de-
fogged gradient image and f,(x,y) is the fogged gradient image. Let us take a moment
to analyze the "relative difference image" so obtained. This image has the same dimensions
as both input images. Each pixel stores the relative difference between the corresponding
pixel of both input gradient images. If the value of a pixel in the relative difference image
is positive, the strength of the gradients in the defogged image has improved, i. e. the
gradient value in the defogged image is larger than the gradient value in the original image.
Otherwise, if the value of a pixel in the relative difference image is negative, the strength
of the gradient has decreased after the defogging algorithm. Therefore, the value of the
difference quantifies the improvement in gradient strength obtained after the defogging
process.

Once we compute the relative difference image, we perform the histogram of said
image excluding the background pixels of the image, that is, the null values corresponding
to those pixels below the threshold value. Fig. 2 presents the resulting histogram of the
defogged image from the previous Fig. 1. The vast majority of edges in this image are
better defined when fog is not present on the scene because of the defogging algorithm,
as we would expect. Negative values close to 0 in the histogram correspond to some
regions that have not been really affected by fog, or that in such areas the defogging process
has introduced small variations in the gradient strength for these regions. These pixels,
however, are quite residual compared to the rest. Note that positive pixels can reach values
as large as 6, meaning a 6-fold improvement in the gradient strength.

At this point, the strategy of the gradient-based metric becomes clear. However, we
still need a scalar value to quantify the enhancement of the defogging procedure consistent
with the information that can be graphically observed in the histogram presented in
Fig. 2. There are several options to obtain this numerical value. Our proposal consists on
calculating the weighted ratio between the positive part of the histogram and the whole
one. Mathematically,

_ Yors h(r) =g lri |- h(ry)
Y or h() + g lri k()

where rijE is the value of the relative difference, either positive or negative, and h(rfc)
corresponds to the histogram value of rii, so the total counts on the gradient image of such
a value. R can take values from -1 to 1, being 1 when all the gradients have been enhanced
and -1 when the defogging procedure has worsened every gradient of the image. The
weighted character of the metric is used to strengthen the gradient that have been greatly

R

(4)
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Figure 2. Histogram of the relative difference between the gradient images of the ground truth and
the fogged image shown in Fig. 1. The positive values of the histogram are shown in green whereas
negative values are shown in red.

improved or worsened. If we compute the proposed metric value for the example images
shown in Fig. 1 we get R = 0.9732. This is a reasonable result since we are comparing
a fogged image directly with its fog-free ground truth, mimicking an ideal defogging
algorithm.

As we previously mentioned, the threshold value in Eq. 3 has been empirically fixed.
We noted that setting a threshold above 8% disregards low intensity gradients, and de-
creases the value of the metric. On the other side, a threshold smaller than 5% considers a
gradient almost any variation due to noise. We shall recall the reader that this threshold
was introduced to separate the background pixels, where there are no contours, edges, or
textures, from the low intensity edges.

An additional remark must be made. As previously discussed, DNNSs, and especially
GAN s, are nowadays used to tackle defogging. GANSs are very useful when it comes to
generating new data that resembles the data distribution it has learned from. This means
that these networks tend to generate new features in the images, which leads to new
contours producing better results in our metric even if the defogging is poor.

These situations may occur with images lacking edge information. Under this con-
dition, two scenarios could happen. First, the original haze-free might does not have any
contours. In this case, fog will not be a problem since no information would be hidden
due to fog. Moreover, once the defogging procedure is done the resulting image will be
very similar to the original hazy one because there is no element on the scene that needs
to be improved. Second, the original haze-free scene has contours, but the fog is so dense
that there is no visibility. This is a more delicate case since there are elements in the image
that could be improved. Nevertheless, no realistic defogging method could recover any
information under such conditions. Any contour generated under extremely low visibility
can in practice be considered a “ghost” object as long as it is appearing in the image from
nothing.

In our opinion, generating these "ghost" features in the image should directly discard
the defogging method. Defogging is especially useful to increase the performance of
object detection and image segmentation, which will ultimately execute an action in an
autonomous vehicle. Executing an action due to a "ghost" feature could be extremely
dangerous. So our metric works under the premise that no new features are added to the
defogged image during the defogging procedure, and only already existing features are
highlighted.
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A complete algorithm for the metric computation is presented in Algorithm 1.

Algorithm 1: Algorithm to compute the gradient-based metric for image defogging
without ground truth.

o Obtain the gradient images of both Fogged and Defogged images:

-1 0 1 -1 -2 -1
Fe=|-2 0 2/®l ; F,=|0 0 0|®I
10 1 1 2 1

F=,/F2+F2

o Obtain the relative difference image from the gradient images:

de(x,y) — fe(x, )
RD(x,y) = [ACED) de(x,y), fe(x,y) > threshold

0 otherwise

o Perform the histogram of the relative difference image;
o Obtain the ratio of enhancement:

Lior h(r) — X2 lri |- k()

R == AR
Yor k() + X0 lri |- h(r)

4. Results and discussion

To validate our proposed metric, we tested it on the O-Haze dataset [16]. This dataset
was used in the NTIRE 2018 challenge [5]. It consists of 45 outdoor scenes. Each fogged
scene has its ground truth counterpart, so there is a total of 90 images in the dataset. The
example images shown in Fig. 1 are also part of this dataset. We used our metric to compare
the results of some groups who participated in the challenge. During the challenge, the
groups received 35 fogged images, with their respective ground truth for training their
networks. They also received 5 more images for validation purposes and 5 more for testing,
which were evaluated by the jury. Again, the last ten images had their respective ground
truths delivered.

As mentioned above, the metrics used for evaluation in the NTIRE 2018 challenge
were SSIM and PSNR, calculated relative to the ground truth image. Fig. 3 shows several
examples from the O-Haze dataset. The defogged images have 800 pixels of height or
width at most whereas both the ground truth and the original hazy images have greater
resolutions so we resized them to match the dimensions of the defogged image, to enable
proper comparison. The resize method used was the bi-cubic algorithm. After resizing, we
calculated both the SSIM value and our proposed contour metric. Numerical values are
shown in Table 1. The classification according to their ranking can be seen in Fig. 4, where
worst and best values of each metric are plotted in red and green, respectively.

Table 1. Mean over the 45 images of the O-Haze [16] dataset of SSIM (with ground truth) and our
proposed metric (without ground truth). The best and worst performing results are colored in green
and red respectively for each metric.

Heet. al. Meng et. al. Fattal et. al. Be;rr;a;nn Cai et. al. Ren et. al. Ancuti et. al.
SSIM 0.399 0.498 0.441 0.545 0.433 0.519 0.573

Ours 0.911 0.872 0.769 0.944 0.747 0.889 0.975
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Hazy He et. al. Meng et. al. Fattal et. al. Bermann et. al. Cai et. al. Renet. al. Ancutiet. al. Ground Truth

Figure 3. Several examples from the O-Haze dataset. From left to right, the hazy scene, He et al. [32],
Meng et. al. [33], Fattal et. al. [34], Bermann et. al. [35], Cai et. al. [36], Ren et. al. [37], Ancuti et. al. [38]
and the ground truth.

m SSIM ®mOurs

Ranking
[e)] w =Y w

~J

Ancuti  Berman en Meng Fattal
Method

Figure 4. Classification of the mean over the 45 images of the O-Haze dataset for SSIM (with ground
truth) and our proposed metric (without ground truth).
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As it can be seen, both metrics agree on the ranking of the different methods. Both
SSIM and our proposal rank Ancuti as the best defogging method followed by Bermann.
Ren, Fattal and Meng dispute the middle positions in both metrics. Cai performs poorly in
both metrics. However, there is one significant discrepancy between the metrics, which
becomes evident in the case of He. According to its SSIM value, He is the worst, despite
according to our metric, it climbs up to third place. Let’s discuss this issue by looking at
Fig. 3. When it comes to defogging and, especially, to differentiating objects, He’s results
are visibly better than Meng's, Cai’s or even Ren’s. Nevertheless, all previous groups are
ahead of them when SSIM is applied. This can be explained by looking at the colors of
each image and comparing them to the ground truth. The color aberration introduced by
He is measured by SSIM as a bad defogging method. On the contrary, our metric strictly
considers one of the most affected features by fog, the edges of objects, leading to a more
reasonable position of He’s defogging method even without the need of a ground truth
comparison.

In Fig. 5, we present a comparison between SSIM and our metric by showing some
examples of the relative difference image histogram and the defogged result for the images
corresponding to different defogging methods in Fig. 3. The figures in the last row represent
the relative difference image. To ease interpretation, background is painted in white,
positive edge values in green and negative ones in red. The intensity of the edges is
conserved so darker regions express little difference between the fogged and defogged
images. An important feature to consider is that the better the defogging method, the more
similarities can be found between the histogram of the defogged image and the ground
truth, having a larger positive area under the curve when our metrics value is closer to
one. Also, our metrics values in this example agree with what we can observe: Ancuti’s
method performs a better defogging job than Meng’s and Cai’s. However, the same thing
cannot be said about the SSIM evaluation. Moreover, according to SSIM, Cai’s and Meng's
resulting defogged images are worse than the original hazy image even though they visibly
perform a good defogging task. Again, this proves that SSIM might not be a proper metric
for image defogging evaluation.

5. Conclusions

We have proposed a gradient-based metric for image defogging that does not need a
ground truth image, and measures the improvement on gradient strength on the defogged
image without estimating any atmospheric parameter. We have also reviewed several
state-of-the-art defogging techniques and metrics for evaluation. Finally, we compared our
proposed metric with the current metric used in defogging challenges, SSIM, through the
O-Haze dataset. We compared the similarities and discrepancies of both metrics and con-
cluded that the proposed metric properly measures visual enhancement of image defogging
without any reference other than the original RGB fogged scene. This metric further enables
progress in the defogging field because, in particular, it enables fast validation of defogging
DNNs with unpaired fog-fog free datasets. Additionally, other reference-less edge-sensitive
image processing tasks like blind deblurring[39] and blind super-resolution[40] might use
this metric for IQA evaluation as well. Based on its good results proved in this paper,
proper adjustments on the metric’s algorithm might broaden its use for other low-vision
tasks like the above-mentioned.
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Figure 5. Comparison between SSIM and our metric on different defogging models (by columns).
The first two rows correspond to the original hazy image and the defogging results. The second
row corresponds to the relative difference image histogram, where positive values are represented
in green and negative ones in red. The last row corresponds to the relative difference image. The
white points are the background, green points are positive edge difference values, and red points are
negative ones. The intensity of the difference is conserved.
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The following abbreviations are used in this manuscript:

DNNs Deep Neural Networks

NTIRE New Trends in Image Restoration and Enhancement
SSIM Structural Similarity Index

PSNR Peak Signal to Noise Ratio

FR-IQA Full-Reference Image Quality Assessment

NR-IQA No-Reference Image Quality Assessment

SSEQ Spatial Spectral Entropy-based Quality

BLIINDS-II  Blind Image Integrity Notator usinge Dct Statistics
FADE Fog Aware Density Evaluator

GANs Generative Adversarial Networks
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