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Abstract: In this work, we explore the extreme searching of multidimensional functions by natural 1

gradient descent based on Dirichlet and generalized Dirichlet distributions. The natural gradient 2

is based on describing multidimensional surface with probability distributions, which allows us to 3

reduce changing the accuracy of gradient and step-size. In this article, we propose an algorithm of 4

natural gradient descent based on Dirichlet and generalized Dirichlet distributions. We demonstrate 5

that the natural gradient descent with step-size adaptation with Dirichlet and generalized Dirichlet 6

distributions has higher accuracy and does not take a large number of iterations for minimizing test 7

functions than gradient descent and Adam. 8

Keywords: Natural gradient descent, optimization, K-L divergence, Dirichlet distribution, general- 9

ized Dirichlet distribution 10

1. Introduction 11

The optimization methods remain the most important and actual problem in artificial 12

neural networks, which significantly impact the process of recognition. It lets us solve 13

many problems approximately without a complex analytical approach. The most usable 14

optimization algorithm in machine learning is stochastic gradient descent (SGD) and its 15

modifications such as AdaGrad in [1] and [2], RMSprop in [3], ADADELTA and Adam 16

algorithm in [4] and [5], respectively. But they are not rapid enough and, usually, converge 17

to thelocal extreme. Even step-size adaptation from [6] can’t obtain the required accuracy 18

in minimum time. But researching the loss function from the geometrical point of view, 19

especially Riemannian, can perform the minimization. 20

The metric properties are described in Riemannian geometry on arbitrary n-dimensional 21

smooth manifolds with local coordinates. According to the kind of manifold, we can pro- 22

vide the gradient flow that improves the quality of the optimization process. The gradient 23

flow from [7] is the product between metric tensor and gradient of the optimizing function. 24

The optimization accelerates the computations and minimizes iterations (epochs) applying 25

smooth manifolds. But in this manuscript, we provide the extreme search with manifolds 26

of probability distributions. 27

Probability distribution manifolds mostly meat in information geometry, where the 28

analog of gradient flow is natural gradient. The natural gradient in information geometry 29

is the product between Fisher information matrix and gradient of the optimizing function. 30

The Fisher matrix is calculated by the Kullback–Leibler divergence (K–L divergence in 31

[8]–[10]). Remarkable that changing the length of step or value of the gradient for NGD 32

is not necessary for increasing the accuracy. Then selecting appropriate parameters for 33

distributions suffices. 34

Natural gradient descent (NGD) is an alternative for stochastic gradient descent and its 35

modifications, as it was noted in [11]. Unfortunately, for models with many parameters such 36
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as large neural networks, computing the natural gradient is impractical due to the extreme 37

size of the Fisher matrix. That problem can be solved, using various approximations to 38

the Fisher matrix in [12] and [13]. It is designed to facilitate the computation, storing, and 39

finally inverting the exact Fisher. 40

In this article, we propose algorithm of natural gradient descent based on Dirichlet 41

and generalized Dirichlet distributions. We demonstrate that the natural gradient descent 42

with step-size adaptation with Dirichlet and generalized Dirichlet distributions has higher 43

accuracy and does not take a large number of iterations for minimizing test functions than 44

gradient descent and Adam. Later we discuss results, perspectives, and directions of the 45

developing new modifications for natural gradient descent. 46

The remaining of the paper is organized as follows. Section II presents the background 47

of gradient descent, Adam, and gradient flow. Section III demonstrates calculations of 48

Fisher matrices with Dirichlet and generalized Dirichlet distributions and proposing the 49

Algorithm 3. Section IV represents experiments of minimization with graphs and tables. In 50

section V reported conclusions and suggestions for developing the natural gradient descent 51

further. 52

2. Preliminaries 53

2.1. Gradient Descent with Step-Size Adaptation 54

Let’s consider optimizing a smooth function f : Ω→ R over closed convex set Ω ∈ R. 55

The problem of minimization is to calculate minx∈Ω( f (x)). This is necessary part of every 56

artificial neural network. 57

The gradient descent with appropriate step-size adaptation in [6] has advantages in 58

rate and accuracy over stochastic gradient descent. 59

Gradient descent with step-size adaptation is defined as Algorithm 1. 60

Algorithm 1 Gradient Descent with Step-Size Adaptation

Input: x ∈ Rn (starting point), f (x) (scalar function), ∇ f (x) (gradient), a (initial step-size)
Output: some x minimizing f

1: initialize fx = f (x) ∈ R
2: g = ∇ f (x)T ∈ Rn and Fisher matrix F
3: for i from 0 to n - 1 do
4: y← x− ag/|g|
5: fy ← f (y)
6: if fy < fx then
7: x ← y
8: fx ← fy

9: g← ∇ f (x)T

10: a← 1.2a
11: else
12: a← 0.5a
13: end if
14: end for

Remark that in general cases gradient descent can not reach the minimum, because 61

of constant step and confusing of gradient in case of several local extremes. Submitting 62

step-size adaptation does not guarantee descent into global minimum, due to big number of 63

local minimums. But it allows us to increase the accuracy. This problem led the researchers 64

to replace this method with Adam. 65

2.2. Adam Algorithm 66

The Adam algorithm ([5]) is an attempt to improve the stochastic gradient descent, 67

which updates exponential moving averages of the gradient mt and the squared gradient 68

vt with the hyper-parameters β1, β2 ∈ [0, 1) control the exponential decay rates of these 69

moving averages. The moving averages themselves are estimates of the first moment (the 70
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mean) and the second raw moment (the uncentered variance) of the gradient. However, 71

these moving averages are initialized as (vectors of) 0’s, leading to moment estimates 72

that are biased towards zero, especially during the initial time steps, and especially when 73

the decay rates are small. The good news is that this initialization bias can be easily 74

counteracted, resulting in bias-corrected estimates m̂t and v̂t. The step-size adaptation 75

improves the quality of the Adam algorithm, which means accelerating the minimization 76

and increasing the accuracy. These amendments can be helpful in deep neural networks 77

because the optimizer gives more accurate results in less time. 78

Let us present the pseudo-code of the Adam method in Algorithm 2. 79

Algorithm 2 Adam algorithm

Input: x ∈ Rn (starting point), f (x) (scalar function), ∇ f (x) (gradient), a (initial step-size),
β1, β2 (exponential decay rates)

Output: some x minimizing f
1: initialize fx = f (x) ∈ R, g = ∇ f (x)T ∈ Rn, m0 = 0, v0 = 0
2: for i from 0 to n - 1 do
3: gi ← ∇ f (xi)
4: mi ← β1mi−1 + (1− β1)gi
5: vi ← β2vi−1 + (1− β2)g2

i
6: m̂i ← mi/(1− βi

1)

7: v̂i ← vi/(1− βi
1)

8: y← x− a · m̂i/(
√

v̂i + ϵ)
9: if fy < fx then

10: x ← y
11: fx ← fy
12: a← 1.2a
13: else
14: a← 0.5a
15: end if
16: end for

In process of learning neural networks, the Adam algorithm is the most preferred 80

optimization method, because it converges faster and gives the required accuracy. But this 81

algorithm does not contain the engaging the curvature of the function n− 1-surfaces, for 82

n ≥ 2. Therefore it does not reach the global minimum for little steps in the case of very 83

convex functions such as Rastrigin, which is shown in subsection 4.2. 84

2.3. Background on Riemannian Gradient Flow 85

The main idea of natural gradient descent initially comes from Riemannian geometry, 86

where the definitions of derivative, flow, and curvature are generally described. 87

Let (M, g) be an Riemannian manifold, where the topological space M = Rn and 88

metric tensor g :M×M→ R. 89

The tangent space Tx, for which holds TxM = Rn, and the metric tensors g(x) ∈ 90

Sn
++, where Sn

++ is the cone of real symmetric definite positive matrices [14], can be 91

taken for manifoldM. The tensor matrix g(x, x + δx) defines the local distances at x as 92

d(x, x + δx)2 = δxT g(x, δx)δx for δx → ∞. 93

We denote by
∇g f |Ω= g(x, x + δx)−1∇ f (x) (1)

the corresponding Riemannian gradient vector field of the objective function f restricted to 94

Ω [14]. 95

Information geometry [15] is concerned with a manifold of probability distributions, 96

e.g. in a parametric family p(x; θ) : θ ∈ Θ ⊆ Rn, typically endowed with the metric derived 97

from the Kullback-Leibler divergence. Natural gradient is defined in such manifolds. 98
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3. Theoretical calculations 99

3.1. Natural Gradient Descent and K-L divergence 100

Natural Gradient Descent in [11] is obtained as the forward Euler discretization with 101

stepsize η of the gradient flow (1): 102

x(k+1) = x(k) − ηkF(x(k))−1∇ f (x(k)), (2)

where x(0) = x0. 103

The main part of natural gradient descent is a Fisher matrix F(xk) from [11], that can 104

be calculated on manifold of probability distributions. Suppose we optimize the f (θ). Let 105

p(x; θ) is some family of probability distributions over x parametrized by a vector of real 106

numbers θ. Let’s the KL-divergence be 107

KL(p(x; θt)||p(x; θt + δθ)) =
∫

p(x; θt) log
p(x; θt)

p(x; θt + δθ)
dx

=
∫

p(x; θt) log p(x; θt)dx−
∫

p(x; θt) log p(x; θt + δθ)dx. (3)

The second Taylor series expansion of the function f is

f (θ) ≈ f (θt) +∇ f (θt)
Tδθ +

1
2

δθT∇2 f (θt)δθ, (4)

where θ = θt + δθ, and ∇2 f = Hess( f ) is an Hessian matrix. 108

Substituting the K-L divergence (3) into second Taylor series (4), we receive the 109

following expansion 110

KL(p(x; θt)||p(x; θt + δθ)) ≈
∫

p(x; θt) log p(x; θt)dx

−
∫

p(x; θt)

[
log p(x; θt) +

(
∇p(x; θt)

p(x; θt)

)T
δθ

]
dx +

1
2

∫
p(x; θt)

[
δθT
(
∇2 log p(x; θt)

)
δθ
]
dx

=
∫

p(x; θt) log
p(x; θt)

p(x; θt)
dx−

(∫
∇p(x; θt)dx

)T
δθ − 1

2
δθT
(∫

p(x; θt)∇2 log p(x; θt)dx
)

δθ.

First two integrals are equal to 0, because log p(x;θt)
p(x;θt)

= log 1 = 0 and

∫
∇p(x; θt)dx = ∇

∫
p(x; θt)dx = ∇1 = 0.

Therefore we receive K-L divergence for continuous probability distribution.

KL(p(x; θt)||p(x; θt + δθ)) ≈ 1
2

δθT
(∫

p(x; θt)∇2 log p(x; θt)dx
)

δθ.

Next we can provide the following Hessian ∇2log p(x; θt), then it holds that

∇2 log p(x; θt) = ∇ log p(x; θt)∇ log p(x; θt))
T .

Then the K-L divergence can be represented as

KL(p(x; θt)||p(x; θt + δθ)) = −1
2

δθTE
[
∇ log p(x; θt)∇ log p(x; θt)

T
]
δθ, (5)

where −E
[
∇ log p(x; θt)∇ log p(x; θt)

T
]
= F(θt) is a Fisher information matrix, which is a 111

Riemannian structure on manifold of probability distributions. 112
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3.2. Fisher matrix for Dirichlet and Generalized Dirichlet Distributions 113

The Dirichlet distribution of order K ≥ 2 with parameters α1, ..., αK > 0 [16] has a 114

probability density function with respect to Lebesgue measure on the Euclidean space RK−1
115

given by 116

f (x1, ..., xK; α1, ..., αK) =
1

B(α)

K

∏
i=1

xαi−1
i , B(α) = ∏i Γ(αi)

Γ(∑i αi)
, (6)

where {xi}K
i=1 belongs to K− 1 simplex. 117

Now let’s calculate the logarithm of Dirichlet distribution. 118

log f (x1, ..., xK; α1, ..., αK) = log

[
Γ(∑i αi)

∏i Γ(αi)

K

∏
i=1

xαi−1
i

]

= log Γ(
K

∑
i=1

αi)−
K

∑
i=1

log Γ(αi) +
K

∑
i=1

(αi − 1) log xi.

Second order partial derivative of f with respect to α:

∂2

∂aj∂ak
log f = ψ′

(
K

∑
i=1

αi

)
,

∂2

∂a2
j

log f = ψ′
(

K

∑
i=1

αi

)
− ψ′(αj).

Therefore, we can find the Fisher matrix 119

FDir(α) =

ψ′(α1)− ψ′(∑i αi) ... −ψ′(∑i αi)
... ... ...

−ψ′(∑i αi) ... ψ′(αK)− ψ′(∑i αi)

. (7)

The generalized Dirichlet distribution [? ] for x1 + ... + xK ≤ 1 and αi > 0, βi > 0, i = 120

1, ..., K− 1 has a probability density function, which is defined as 121

f (x1, ..., xK; α1, ..., αK, β1, ..., βK) =
K

∏
i=1

1
B(αi, βi)

xαi−1
i

(
1−

i

∑
j=1

xj

)γi

, (8)

where γi = βi − αi+1 − βi+1 for i = 1, ..., K− 1 and γK = βK−1. 122

The logarithm is 123

log f = log

[
K

∏
i=1

Γ(αi + βi)

Γ(αi)Γ(βi)
xαi−1

i

(
1−

i

∑
j=1

xj

)γi
]
=

K

∑
i=1

log Γ(αi + βi)

−
K

∑
i=1

log Γ(αi)−
K

∑
i=1

log Γ(βi) +
K

∑
i=1

(αi − 1) log xi +
K

∑
i=1

γi log(1−
i

∑
j=1

xj).

The second order partial derivatives of log f (x; α, β): 124

1)
∂2

∂αj∂αl
log f =

∂2

∂β j∂βl
log f =

∂2

∂αj∂βl
log f = 0, j ̸= l,

2)
∂2

∂α2
j

log f = ψ′(αj + β j)− ψ′(αj),
∂2

∂β2
j

log f = ψ′(αj + β j)− ψ′(β j),

3)
∂2

∂αj∂β j
log f =

∂2

∂β j∂αj
log f = ψ′(αj + β j).

Then the Fisher matrix for generalized Dirichlet distribution has the following form: 125
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FGenDir(α) =


Ψ1 O ... O
O Ψ2 ... ...
... ... ... ...
O ... O ΨK

, (9)

where 126

Ψi =

(
ψ′(αi)− ψ′(αi + βi) −ψ′(αi + βi)
−ψ′(αi + βi) ψ′(βi)− ψ′(αi + βi)

)
and O is zero matrix.

According to Fisher information matrix for Dirichlet and generalized Dirichlet distri- 127

butions and adding the step-size adaptation, we propose Algorithm 3. 128

Algorithm 3 Natural Gradient Descent with Dirichlet and generalized Dirichlet distribution

Input: x ∈ Rn (starting point), f (x) (scalar function), ∇ f (x) (gradient), a (initial step-size)
Output: some x minimizing f

1: initialize fx = f (x) ∈ R, g = ∇ f (x)T ∈ Rn and Fisher matrix F
2: for i from 0 to n - 1 do
3: y← x− a F−1 g/|g|, fy ← f (y)
4: if fy < fx then
5: x ← y, fx ← fy, g← ∇ f (x)T , a← 1.2a
6: else
7: a← 0.5a
8: end if
9: end for

Remark that in Algorithm 3 it is unnecessary decreasing the length of steps or nu- 129

merical value of gradient for improving final values of extremes. Fisher matrix contains 130

parameters without items of vector x, which allows avoiding additional computations in 131

the loop. Including curvature properties by Fisher matrix natural gradient achieve extreme 132

faster. Finally, Fisher information matrix with generalized Dirichlet distribution is useful 133

only in cases of 2n-dimensional surfaces, where n ∈ N. 134

4. Experimental Part 135

4.1. 4-dimensional case 136

The behavior of the algorithms gradient descent with stepsize adaptation and natural 137

gradient descent of Dirichlet and general Dirichlet distributions, realized by Python 3.8.10, 138

will be observed in experiments. We choose convex and smooth functions for solving the 139

optimization problem. 140

Initial points and parameters will be defined for every function. It is made to figure 141

out the proper distribution for every experimental function. 142

In the first experiment, we minimize the Rayden function, which is defined as

f (x) =
4

∑
i=1

(exp(xi)− xi), (10)

with global minimum at x = (0, 0, 0, 0), where f (x) = 4. 143

In figure 1 shown that NGD with generalized Dirichlet distributions has the fastest 144

convergence and achieves minimal value, which is equal to 4 + 6× 10−9. For Dirichlet 145

distribution the optimization is fast enough and gives the least value 4 + 1× 10−9. For 146

the Adam algorithm, the minimimum value is 4 + 2× 10−9. GD with step-size adaptation 147

gives 4 + 2× 10−8. 148
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Figure 1. The rate of convergence on Rayden function using various algorithms.

The second minimization is implemented on generalized Rosenbrock function, which
has the form as

f (x) =
3

∑
i=1

[
100(xi+1 − x2

i )
2 + (1− xi)

2
]
, (11)

where global minimum is equal to 0 at x = (1, 1, 1, 1). 149

Figure 2. The rate of convergence on generalized Rosenbrock function using various algorithms.

In figure 2 shown that NGD with Dirichlet and generalized Dirichlet distributions has 150

the fastest convergence and achieves minimal value, which is equal to 0.01095 and 0.22170, 151

respectively. For the Adam algorithm, the minimum value is 0.01391. GD with step-size 152

adaptation reaches 0.14325. 153

The extended trigonometric function is

f (x) =
4

∑
i=1

[(
4−

4

∑
j=1

cos xi

)
+ i cos xi − sin xi

]2

, (12)

which has the global minimum at x = (π/2, π/2, π/2, π/2), where f (x) = 0 154

In figure 3 shown that NGD with Dirichlet distributions reaches the minimum at 155

1.57389× 10−10. For Adam algorithm minimal value is 2.24709× 10−09. GD with step-size 156

adaptation shows 5.70724× 10−9. NGD with Generalized Dirichlet distribution descended 157

to 1.50210× 10−09. 158
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Figure 3. The rate of convergence on extended trigonometric function using various algorithms.

As we can see, the Fisher information matrix accelerates the convergence, which allows 159

the optimizer in neural networks to work faster. 160

4.2. 3-dimensional case 161

In 3-dimensional space, we can provide the graph of convergence and descent- 162

trajectory for each optimization method. The gradient descent and Adam algorithms 163

with step-size adaptation remain unchanged, except the dimension of variable x. But 164

Dirichlet and generalized Dirichlet distributions reduce to Beta distribution. 165

B(x; a, b) =
1

B(a, b)
xa−1(1− x)b−1, (13)

where 166

B(a, b) =
∫ 1

0
ta−1(1− t)b−1dt =

Γ(a)Γ(b)
Γ(a + b)

,

for 0 < x < 1 and a > 0, b > 0. 167

The beta distribution is the Dirichlet and generalized Dirichlet distribution in 3- 168

dimensional Euclidean space. Hence the Fisher matrix of Beta distribution is 169

FBeta(a, b) =
(

ψ′(a)− ψ′(a + b) −ψ′(a + b)
−ψ′(a + b) ψ′(b)− ψ′(a + b)

)
. (14)

In case of 2-dimensional surfaces we can observe their graphs and descent trajectories 170

of each optimization methods. It allows us to understand the work of every algorithm and 171

estimate the efficiency of their models. 172

The surface, which is described as

f (x, y) = sin(
1
2

x2 − 1
4

y2 + 3) cos(2x + 1− ey) (15)

is Sine-Cosine function with initial point (x, y) = (5, 5). 173

The best result gives beta distribution and achieves −1 + 2× 10−8. The Adam shows 174

−1 + 6× 10−8, but it converges slower. The gradient descent moves in the wrong direction 175

and achieves −0.04198. 176

The second simulation was implemented on Rastrigin function

f (x) = An +
n

∑
i=1

[xi − A cos(2πxi)], (16)
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Figure 4. Experiment on Sine-Cosine function: a) the appearance of the function; b) the trajectory of
movement to a minimum using various algorithms.

where A = 10 and xi ∈ [−5.12, 5.12]. It has the global minimum at x = (0, 0), where 177

f (x) = 0. 178

This function contains many local minimums, then the method like gradient descent 179

will not achieve the global minimum with a small step-size. For Adam, the step-size needs 180

to be greater than 1.6. But for natural gradient descent with beta distribution step-size can 181

be less than 0.5. 182

Figure 5. Experiment on Rastrigin function: a) the appearance of the function; b) the trajectory of
movement to a minimum using various algorithms.

The NGD with beta distribution reached the global minimum and gave 0.69984. The 183

Adam and GD achieved the local minimums, which does not suffice for minimization. 184

The third simulation was implemented on Rosenbrock function

f (x) =
n−1

∑
i=1

[100(xi+1 − x2
i )

2 + (1− xi)
2]. (17)

It has a global minimum at x = (1, 1), where f (x) = 0. 185

In this case will be demonstrated descent in the area of local minimums, where for 186

each method required the achieving the global minimum. 187

The NGD with beta distribution for the least number of iterations achieved the min- 188

imum 0.00082. The GD moves along the area of local minimums, but because of the 189

insufficient number of iterations stops with value 4.36387. Adam goes the same way as GD 190

does and reaches the value 0.02243, which is not progressive compared with NGD. 191

Let us summarize the results in the table below. 192
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Figure 6. Experiment on Rosenbrock function: a) the appearance of the function; b) the trajectory of
movement to a minimum using various algorithms.

Table 1. Minimum values achieved by various algorithms.

Optimization algorithmsFunction
GD [6] Adam [5] Proposed

Sine-Cosine -0.04198 -1+6×10−8 -1+2×10−8

Rastrigin 12.93446 12.93451 0.69984
Rosenbrock 4.36387 0.02243 0.00082

Table 2. Number of iterations by various algorithms.

Optimization algorithmsFunction
GD [6] Adam [5] Proposed

Sine-Cosine 19 100 26
Rastrigin 5 12 32

Rosenbrock > 500 200 20

According to the results of graphs in figures 4(b) – 6(b), we can put the number of 193

iterations into the table. We can conclude that Natural gradient descent with Dirichlet (Beta) 194

distribution works better than known analogs. It is simple for the program realization and 195

does for the least number of iterations can give the best results in the optimization process. 196

5. Discussion 197

According to the results of experiments, we conclude that Adam algorithm has no 198

difficulties with reaching the minimal point with required accuracy and takes a not large 199

number of iterations for functions with only one minimum. But in the case of functions, 200

which contain a lot of local minimums and can confound a gradient in directions of growth, 201

natural gradient descent is suitable. Moreover, the accuracy is more qualified. It happens by 202

taking into account the gradient directions and the curvature properties of the optimizing 203

function, which allows avoiding local minimums. Hence, this optimization algorithm can 204

be applied in neural networks, where the advantage of natural gradient descent over Adam 205

can improve and accelerate the learning process. 206

In further research, we can examine the behavior of Algorithm 3 with the Fisher matrix 207

of other distributions, such as gamma, Gompertz, or Gumbel distributions. Moreover, 208

we can reduce the Riemannian gradient flow to another smooth manifold other than the 209

manifold of the probability distribution, which can potentially facilitate the optimization 210

method. 211
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