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Abstract: This research article provides criticism and arguments why the canonical framework for derivatives 

pricing is incomplete and why the delta-hedging approach is not appropriate. An argument is put forward, 

based on the efficient market hypothesis, why a proper risk-adjusted discount rate should enter into the 

Black-Scholes model instead of the risk-free rate. The resulting pricing equation for derivatives and in 

particular the formula for European call options is then shown to depend explicitly on the drift of the 

underlying asset, which is following a geometric Brownian motion. It is conjectured that with the 

generalized model, the predicted results by the model could be closer to real data. The adjusted pricing 

model could partly also explain the mystery of volatility smile. The present model also provides answers to 

many finance professionals and academics who have been intrigued by the risk-neutral features of the 

original Black-Scholes pricing framework. The model provides generally different fair values for financial 

derivatives compared to the Black-Scholes model. In particular, the present model predicts that the original 

Black-Scholes model tends to undervalue for example European call options. 
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1. Introduction 

Pricing of financial derivatives was revolutionized in 1973, when the famous Black-

Scholes framework was introduced (Black and Scholes 1973). The value of, say a European 

call option is given by a linear parabolic partial differential equation, and an explicit 

formula is available to compute the value of the option, given parameters. The explicit 

formulas are obtained by transforming the Black-Scholes partial differential equation 

(PDE) into a constant coefficient PDE and using Fourier methods for example. The Black-

Scholes PDE can also be seen as a Hamilton-Jacobi-Bellman equation for a certain 

stochastic control problem (Lindgren 2020). The parameters needed are the risk-free rate, 

volatility, exercise price and time to maturity. In empirical terms, the Black-Scholes model 

does not predict true market values of options, so as a scientific model, it performs rather 

poorly. However, it has been thought that it gives a reasonable benchmark for traders and 

financial markets professionals, as well as for risk managers. One classical narrative 

against the assumptions of the model comes from (Bergman 1982) and (Musiela and 

Rutkowski 2005), where it is argued that the hedging portfolio is not self-financing in the 

first place in the original model. The present approach goes further and claims that the 

whole premise of the model is too narrow and in particular the argument related to delta-

hedging is almost irrelevant to any real speculant, hedger or investment professional.  

One of the hardest concepts to understand intuitively within the Black-Scholes model 

is indeed the fact that in the Black-Scholes formulas, the fair price of the option does not 

depend on the drift of the underlying asset. This is a result of the framework, even though 

the geometric Brownian motion for the underlying asset is assumed to have some non-

zero drift. The prediction of the model is rather counterintuitive - one would assume that 
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placing one's bet on an option with a higher positive drift would affect the value of the 

respective call option in a positive manner. The Black-Scholes model in effect works as if 

the market was risk-neutral as a whole, or in other words, as if the drift of the asset was 

equal to the risk-free rate. 

The mathematical reason why the true drift is irrelevant in the Black-Scholes model 

is nevertheless a direct consequence of the hedging portfolio approach and the reason is 

the following: in the hedging portfolio, one is shorting the underlying asset an amount 

which is the delta of the option. In terms of the hedging portfolio, if the asset has a higher 

positive drift, the call option goes up in terms of value, but the short position goes down 

in terms of value and the effects cancel each other out exactly. That is the reason why the 

hedging portfolio should be instantaneously risk free and yield the risk free rate. This is 

the core of the Black-Scholes reasoning. The value of the option is determined as a kind of 

residual, in order to keep the hedging portfolio locally risk-free. There are however at least 

two main problems with this approach. 

First, the fair price of a call option given by the Black-Scholes model is thus the fair 

value merely for the hedging portfolio holder, and this is the main problem with the 

model. If a randomly chosen market participant buys a call option on say a stock of a blue-

chip company, it is unreasonable to assume that he or she holds a short position on the 

company exactly an amount corresponding to the delta of the call option. If a speculant 

holds a long call option, his portfolio is probably not completely offset by shorting the 

respective underlying asset. 

On top of this conceptual problem, there is the well-known technical challenge in 

terms of self-financing portfolios. The key assumption in the Black-Scholes model is the 

assumed self-financing of the hedging portfolio, in other words, it is assumed that there 

is no net flows of funding in or out of the hedging portfolio. A self-financing delta-hedging 

portfolio in this case means that the holdings of the option and underlying are not 

changed, i.e. the changes in the value of the portfolio come purely from changes in the 

value of the option and the underlying asset. However, this seems to be false and is quite 

clearly argumented in (Bergman 1982) and (Bartels 1995). This possibly fundamentally 

flawed assumption of a self-financing hedging portfolio might mean in itself that the rate 

of return on the hedged portfolio is not truly riskless. If this is indeed the case, the Black-

Scholes pricing model assumptions are fundamentally problematic. Then again, the false 

assumption of a self-financing portfolio does not destroy the Black-Scholes model as such, 

as is argued in (Bana 2007). On top of this, naturally the assumption of geometric 

Brownian motion for the underlying asset is itself perhaps not fully correct, but is less of 

concern. Whether a geometric Brownian motion is a proper model for asset price 

dynamics is an important issue, but it does not affect qualitatively the reasoning within 

the Black-Scholes model. 

In literature concerning imperfect hedging portfolios due to market incompleteness, 

the value of the contingent claim is shown to lie within some hedging bounds, see for 

example (Hao 2008). On the other hand, costly short-selling has been shown to affect the 

bid-ask-spreads of options, see (Atmaz and Basak 2019). An equal risk pricing rule in 

incomplete markets was developed in (Guo and Zhu 2017), and further developed in 

(Marzban et al. 2022). For equal risk pricing using deep learning, see (Carbonneau and 

Godin 2021). These approaches do not however consider the fundamental problem of 

delta-hedging, so that usually holding a long call option, the portfolio is probably not 

completely offset by shorting the respective underlying asset. 
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2. Properly anticipated prices in the options pricing framework - a general framework 

for pricing derivatives without the hedging portfolio 

 

The present model argues that the canonical framework for options pricing based on 

Black-Scholes pricing is to be generalized to be consistent with the efficient markets 

hypothesis as put forward by Paul Samuelson (Samuelson 1965, Samuelson 1973). The 

traditional approach of delta-hedging is therefore not suitable in general; instead, we need 

to consider first what the appropriate discount rate of an efficient financial market is. The 

underlying asset following geometric Brownian motion is not a martingale due to its drift 

as such, but properly discounted it is. To require the martingale property from the 

discounted price process is in line with (Samuelson 1973) is a mathematical consequence 

of the efficient market hypothesis (Fama 1965, Fama 1970). The key assumption thus is 

that the properly discounted process must be a martingale in an efficient market. 

Consider an asset such as a common stock. 

Suppose that an asset price �� follows geometric Brownian motion: 

 

��� = ����� + ������, (1) 

 

with some drift of instantaneous return � > 0 and volatility � > 0. �� is a standard 

Brownian motion, and we consider valuing a generic financial derivative written on the 

asset. 

In line with the formulation of the efficient market hypothesis by Samuelson 

(Samuelson 1973), we now require that the discounted price process is a martingale. Given 

that for a geometric Brownian motion, the expectation for the price at future time � > 0 

is given by: 

 

��(��) = ����(���), (2) 

 

where ��  is an expectation operator with respect to the probability measure 

generated by the Brownian motion. We see immediately, that we need to introduce a 

discount factor ���(���) for the market in order to obtain: 

 

�� = ������(���)���. (3) 

 

This requirement of market efficiency can be interpreted as follows: the expected 

discounted price of an asset at future time must be equal to the current price of the asset. 

In other words, the risk aversion preferences of the market as a whole are reflected in the 

discount factor and all relevant information is already reflected in the current price of the 

asset.  

Consider now a financial derivative written on the asset. The financial derivative has 

a payoff at terminal time � and a respective payoff function �(��). In line with above, 

we are looking the fair value independent of individual risk preferences of market 

participants, instead we discount the derivative payoff using the market discount function 

above and evaluate the expectation according to the physical or real probability measure: 

 

�(�(�), �) = �� ����(���)�(��)�, (4) 

 

where �(�(�), �) is the fair value of the financial derivative at time � when the asset 

has some known price �(�) . It is straightforward to use the Feynman-Kac formula 

(Pavliotis 2014) to write down the partial differential equation describing the evolution of 

the value of the financial derivative: 

 
��

��
(�, �) + ��

��

��
(�, �) +

�

�
���� ���

���
(�, �) − ��(�, �) = 0. (5) 
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With the initial condition �(�, �) = �(��). Notice that the only difference to the 

canonical Black-Scholes partial differential equation is that the risk-free rate is replaced 

with the discount rate reflecting the efficiency of the financial market. As an instructive 

example, consider now pricing a plain vanilla European call option. The payoff is 

�(��) = ��� (�� − �, 0), where � > 0 is the exercise or strike price of the call option 

maturing at time  � > �. As everything else is the same as in the Black-Scholes pricing 

PDE, we can deduce the price for a European call option easily by using the well-known 

formulas and by just replacing the risk-free rate in the formulas with the drift of the 

underlying asset: 

 

�(��, �) = �(��)�� − �(��)����(���) (6) 

 

where � is the cumulative distribution function of the standard normal variable,  

and 

�� =
�

�√���
���� �

��

�
� + �� +

�

�
��� (� − �)� (7) 

 

�� = �� − �√� − �. (8) 

 

It is instructive to note that now the price of the European call depends explicitly on 

the drift of the asset, as it should intuitively be and the Rho of the option for the call is 

positive so that an increase in the drift increases the value of the European long call. The 

only difference with the canonical Black-Scholes model is therefore that the risk-free rate 

is replaced by the drift of the underlying asset performing geometric Brownian motion.  

 

 

3. Discussion and conclusions 

It is argued that based on the assumption that in an efficient market the risk-adjusted 

discounted expected price of an asset following geometric Brownian motion should be the 

current price, it is deduced that the correct risk-adjusted discount rate should be the drift 

of the asset process. These assumptions will lead to derivatives pricing, where the fair 

value of the financial derivative can be evaluated as a conditional expectation, discounted 

at the above rate reflecting market efficiency. The fair value for an option can then be 

solved by using the Feynman-Kac formula, leading to a modified Black-Scholes PDE, 

where the drift of the underlying process is explicitly present.  

The results thus suggest that the approach based on the hedging portfolio is too 

limited. The fair price of an option in the Black-Scholes approach is based on the idea of a 

hedging portfolio. The value of the financial derivative is forced to be such that the 

hedging portfolio yields exactly the risk-free rate. In the present approach, it is argued 

that the delta-hedge approach is not sufficient in general, as it implicitly requires that the 

option holders have that delta-hedged portfolio. For an investor with the delta-hedging 

portfolio, it is indeed true that the drift of the underlying asset does not make any 

difference. If the underlying goes up, the short position on the underlying goes down and 

the call option gains in value; these effects cancel each other out. However, for a general 

investor, there is no perfectly hedging portfolio and the increase in the drift of the asset 

has an effect on the value of the call option, for example.  

In this article, it is shown mathematically, based on the theory of efficient markets, 

why the drift should in fact matter when pricing financial derivatives. The present model 

predicts that for a generic call option holder, the price of a European call option depends 

explicitly on the drift of the underlying asset. The results might lead to better empirical 

results when comparing the actual prices of options in the markets and the theoretical 

prices predicted by the present model. Furthermore, volatility smile (Derman and Miller 

2016) should be examined through the lens of this extended model. The higher discount 
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rate compared to the original Black-Scholes model implies that the fair value of the 

financial derivative depends in general on the drift of the underlying asset performing 

geometric Brownian motion. Therefore, if an option holder is long in a European call 

option, the value of the call is higher for underlying assets, which have higher 

instantaneous return or drift. The reason is simply that the fair value of the option is not 

valued in terms of a hedging portfolio, but instead demanding that the market risk 

aversion is such that assets with a drift are martingales when discounted properly. The 

well-known discrepancy between option market data and the values predicted by the 

Black-Scholes model has been empirically verified many times. 
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