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Abstract: Climate change is a phenomenon that makes the climate system of a given region to be 1

more unpredictable and increases the risk of water-related problems. GCMs under the new CMIP6 2

framework holds several climate models with many improvements as compared to past similar 3

efforts. The improvements are mainly in the number of scenarios formulated, setup, parametrization, 4

and resolution. In this study, 10 downscaled climate models from CMIP6 are evaluated by applying 5

statistical and data mining tools and are ranked based on their capability to describe the historical 6

observed series. The result of the analysis showed that the outputs of the MPI-ESM1-2-HR model 7

have a good overall ranking among those 10 models. The output of this top-ranked model is used to 8

understand future climate over UASB after properly bias-corrected using the QM method. Results of 9

the bias correction step show that average annual precipitation has shown an increment of 6.5% in the 10

middle (SSP2-4.5) and 10.3% in the worst (SSP5-8.5) case scenarios for the mid-century (2040 - 2069). 11

Similarly, for the end of the century (2070 - 2099) an increment of 4.7% and 17.5% was predicted for 12

the two scenarios respectively. Whereas average annual maximum temperature series showed an 13

increment of 1.5 ◦C for middle and 2.6 ◦C for the worst case in the mid-century. At the same time, an 14

increment of 2.2 ◦C and 3.5 ◦C were predicted for the end of the century similarly for those scenarios. 15

Furthermore, it was predicted that the average annual minimum temperature series will have an 16

increment of 2.6 ◦C and 3.1 ◦C for mid-century and 3.1 ◦C and 4.7 ◦C for the end century for the two 17

scenarios respectively. An increase in precipitation with increased land degradation problems in the 18

sub-basin increases the risk of flood events in the future. 19

Keywords: GCMs; PDF; Trend Test ; IDW; QM; PCA; DTW; �Cias correction; Ethiopia; climate change 20

1. Introduction 21

Securing water that satisfies every human need is the main priority and still a challenge 22

to date being faced by many countries throughout the world. Socio-economic growth, 23

changing consumption patterns, and population growth are thought to be the main driving 24

factors for the ever-increasing water demand [1]. The global freshwater composition which 25

is accessible to a human being is less than 1% which makes it a limited resource [2]. In 26

addition, the natural uneven distribution of rainfall globally further adds to the complexity 27

of making this resource accessible in adequate amount to all. 28

Aside from the natural variation in rainfall distribution, since the past few decades, 29

it is being contemplated that climate change is further contributing to this variability [3]. 30

This artificial climate variability is manifesting itself as droughts and floods in different 31

parts of the world. Two recent phenomena that support this point are the flood events in 32
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Mecca, Saudi Arabia in April 2021 [4] and the drought event in southeastern Alaska, the 33

USA in July, 2019 [5]. 34

According to a study done by NMA (National Metrological Agency) on climate 35

change adaptation, the major impacts of climate variability in Ethiopia are food insecurity, 36

outbreaks of water-borne diseases, land degradation, and damage to infrastructure [6]. 37

Particularly Awash basin is a basin that supports a huge population since it holds several 38

major cities and towns including the capital city Addis Ababa [7]. The basin is one of the 39

highly utilized basins in the country in terms of water use mainly for irrigation purposes. 40

Most of the irrigation is practiced in the middle and lower part of the basin. In addition, 41

intensive rain-fed agriculture dominates the upper basin areas [8,9]. This part of the basin 42

is mostly highland and is densely populated as compared to the middle and lower part of 43

the basin. 44

Awash River is the major river that drains the Awash basin and a large proportion of 45

its average annual flow comes from the upper basin areas. This is due to a relatively high 46

average annual precipitation that falls on these parts of the basin [10]. In recent years, water 47

security issues are becoming more evident. This is due to the occurrence of more frequent 48

flood and drought events especially in the middle and lower parts of the basin [11,12]. 49

One of the widely used techniques in studying the impacts of climate change on the 50

water resource of a given place is through the use of outputs from Global Climate Models 51

(GCMs). GCMs are mathematical equations that describe the global climate system with 52

three-dimensional grids and are used to simulate the effect of greenhouse gas emissions on 53

climate [13]. It is undeniable that since their introduction, the outputs from GCMs have 54

been essential in understanding the past, current, and future climate of the earth. The use 55

of GCMs is often limited to global or regional scales mainly due to their coarse resolution. 56

However, with a proper application of a combination of downscaling and bias correction 57

techniques, GCMs can be useful in understanding the local climate and play a vital role in 58

decision making process for water resource planning and management [14,15]. 59

In recent years the challenge in predicting future climate is not not only focused on cli- 60

mate modeling but also how to use them. This is due to the sheer number of climate model 61

outputs currently available worldwide. As a result, often models have to be evaluated for 62

their performance in simulating the climate characteristic of the area in which they are to 63

be applied. The criteria to be used for climate model evaluation is dependent on the goal of 64

climate model selection [16]. 65

There are different versions and experiments of climate models generated at different 66

institutions and locations throughout the world. This makes the inter-comparison between 67

models highly cumbersome. This is the reason behind the establishment of CMIP with 68

the intention of putting the various model development efforts throughout the world by 69

different institutions into one framework [17]. Currently, new sets of models belonging to 70

sixth CMIP framework have been released. The main difference between models released 71

at each stage of the framework is mainly improvements in the model setup, resolution, 72

scenarios, and parametrization [18]. 73

The CMIP6 archive currently holds model output results from more than 30 climate 74

research centers found on different continents throughout the globe [17]. Each model which 75

comes from these centers is different, because of this the outputs generated for the same 76

experiment and scenario are different [19]. As a result, not all models perform well in a 77

certain location. And this is why there is a need to evaluate the capabilities of models 78

and select those which have better performance in describing the local climate is required 79

[16,20]. 80

In practice, one climate model or a small ensemble of climate models are selected 81

for climate change impact studies. In most cases, the selection could be based on a single 82

criterion or a whole set of criteria. Climate models are often selected based on their skill to 83

simulate the present and near past climate. This approach is known as Past–Performance 84

Approach. Another one is called Envelop Approach where an ensemble of models covering 85
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a wide range of projections for one or more climate variables of interest is selected from the 86

pool of available models [16,21]. 87

Up to know there is no clearly defined methodology to be used for evaluating and 88

selecting a single or group of climate models. The selection method and process mainly 89

depend on the aim of the study and the variables involved [16]. Most of the works which 90

have been done so far use statistical or data mining techniques. Also, there is a difference 91

in the output (single or ensemble model), Analysis period (daily, monthly, seasonal, and 92

Annual), and level (station, grid, regional, or spatial averaged). 93

The most common statistical techniques applied for evaluation of climate models 94

are Performance indicators, Descriptive Statistics, and indices [22–25]. Aside from this 95

data mining methods such as Singular Value Decomposition (SVD), Principal Component 96

Analysis (PCA), Hierarchical Clustering, Symmetrical Uncertainty (SU), and Canonical 97

Correlation Analysis (CCA) are also applied [20,21,26–29]. Using a combination of these 98

various techniques instead of a single method helps not only in reducing the uncertainty of 99

wrong selection but also improves it by including various characteristics of the time series. 100

Techniques that are often used and help in incorporating multiple selection methods are 101

Skill Score (SS) and Multi-Criteria Decision Analysis (MCDA) [16,30]. 102

In the past, there were few attempts which aimed at understanding the climate of the 103

Awash basin at large and the Upper-Awash basin in particular. One of the earliest works 104

on the Awash basin was by [31] where the outputs from three randomly selected GCMs 105

(CCCM, GFD3, and GFDL) together with two scenarios were used in predicting a future 106

runoff condition. After evaluating the potential of GCMs for their annual cycle, seasonal 107

biases, variability, and trend three CMIP5 GCMs were selected and used for studying the 108

impact of climate change by [32]. The impact of climate change on the river basin was 109

studied with help of a few selected models from the CMIP5 archive for different scenarios 110

identified from previous works [33]. Similarly, an ensemble of two GCMs [34] and three 111

selected GCMs [35] from the CMIP5 archive was used to characterize the river flow in 112

the first case and to estimate river nutrient load in the second one. Ensemble mean of 113

five randomly selected GCMs from the CMIP5 archive was used in characterizing the 114

hydro-meteorological situation in the Upper-Awash Basin by [36]. Most recently similar 115

research which was published also suggests a group of four climate models which come 116

from different ensembles of the CMIP6 climate model as an output [37]. Two approaches 117

that combine envelop and past performance approach are put to use in evaluating outputs 118

of CMIP6 after [16]. 119

Previous climate model selection efforts undertaken so far have not evaluated climate 120

models thoroughly for their capability to simulate the climate system over UASB. Therefore, 121

in this study, more robust approaches which mainly rely on statistical and data mining 122

techniques are proposed to evaluate the climate model outputs from the new CMIP6. The 123

result of the selection process would enable us to answer two main questions: 1) Which 124

climate model can better simulate the climate over UASB? And 2) What could be expected 125

in terms of future climate over the basin? 126

2. Materials and Methods 127

2.1. STUDY AREA AND DATA USED 128

The study is focused on the Upper Awash sub-basin which is found in central Ethiopia 129

and is located between a longitude of 37◦57′4′′E − 39◦17′28′′E and a latitude of 8◦4′52′′N − 130

9◦19′47′′N. The basin has a total drainage area of 12043 km2 and contributes the majority of 131

the annual flow to the larger Awash Basin. The mean annual precipitation ranges from 861 132

mm to 1223 mm at Boneya and Addis Ababa respectively. And the mean annual temperature 133

is in the range of 17◦C at Addis Ababa to 21◦C in Melkasa. The topography of the drainage 134

basin ranges from 3561 m in altitude near ArbGebya and as low as 1547 m at Koka lake. 135
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Figure 1. Map of Upper Awash Sub-Basin with major rivers and location of metrological stations.

For the climate model evaluation a total of 15 rainfall and 10 temperature stations are 136

used. The list of stations used is shown in the Table 1 below. 137

Table 1. List of metrological stations in the Upper Awash Sub-Basin used for analysis.

No. Station Name Location (y) Location (x) Altitude
1 Addis Ababa Obs* 472248.08 996952.4 2386
2 Addis Alem** 432225.93 999552.91 2372
3 Aleltu 516771.63 1016119.33 2648
4 Ambo** 372449.79 993358.73 2068
5 Asgori* 426775.97 971700.31 2072
6 Boneya 460591.24 971046.06 2251
7 Bui** 450940.01 920899.89 2054
8 ChefeDonsa 513542.53 991537.73 2392
9 Debrezeit* 494500.33 965370.79 1900
10 Ejere 528246.66 969798.67 2254
11 Enselale 435870.79 987532.37 2000
12 Ginchi 404738.43 996808.09 2132
13 Hombole 475209.16 925006.74 1743
14 Huruta* 537697.21 900012.17 2044
15 Melkasa* 534861.76 928532.98 1540
16 Mojo 511901.68 951220.7 1763
17 Nazret 531179.91 945113.49 1622
18 Sebeta 459322.66 986027.98 2220
19 Teji 430354.91 976481.48 2091
20 Tulu Bolo* 414188.26 958456.67 2100
21 Welenchiti 547305.49 958395.38 1458
22 Woliso** 388113.76 945249.62 2058

N.B: ** are only used for temperature stations and * are for both.

Overall 10 climate models were preliminary identified from the WCRP CMIP6 archive 138

(https://esgf-node.llnl.gov/search/cmip6/) to be used for the study based on model 139

availability for all variables (Precipitation, Tmax and Tmin) for the historical time period. 140

The criteria used to filter the models is daily data, 100 km nominal resolution, source type: 141
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AOGCM and from r1i1p1f1 variant. The models were accessed from this site on August 142

17,2021. The list of models used for analysis is shown in the Table 2. 143

Table 2. List of candidate climate models used in the selection process

Data Type Institute Country

MRI-ESM2-0 Meteorological Research Institute Japan
ECEARTH3-CC EC-Earth consortium Sweden
NorESM2-MM Norwegian Climate Center Norway

TaiESM1 Academia Sinica Taiwan
ECEARTH3.Veg EC-Earth consortium Sweden
MPI-ESM1.2.HR Max Planck Institute for Meteorology Germany

ECEARTH3 EC-Earth consortium Sweden
CMCC-ESM2 Centro Euro-Mediterraneo sui Cambiamenti Climatici Italy
GFDL-CM4 NOAA USA
GFDL-ESM4 NOAA USA

2.2. METHODOLOGY 144

2.2.1. Climate Model Selection 145

The process starts with extracting the outputs of GCMs for the given location and time 146

period and this has been performed with the help of CDO (Climate Data Operator) [38]. 147

Since all the climate models are in coarse resolution, spatial downscaling was performed 148

assuming the outputs of GCM as grid points [39]. The Inverse Distance Weighting (IDW) 149

was used to downscale four surrounding grid points of GCMs outputs to the observed 150

station. The entire comparison between the outputs of GCMs to observed data is based on 151

spatially averaged values for the sub-basin. For spatial averaging of station point data, the 152

Thiessen polygon technique is applied. 153

The intention of the methodologies applied here mainly depends on displaying the 154

very important characters of the climate time series which play a critical role in climate 155

impact studies. So, based on the intensive literature review done on current methodologies 156

applied and also the objective of this paper, a combination of methodologies are used. 157

The selection or evaluation is based on historical/observed data and will be performed at 158

four-time steps or levels which are monthly, seasonal (JJAS and MAM), and annual. This 159

is to grasp all statistical characteristics of the time series. The selection will be done on 160

climate models before bias correction, so that not to introduce bias into selection process. 161

In total, a combination of five methodologies has been applied which highlight the 162

various characteristics of the time series. The first technique tries to fit a probability 163

distribution to all climatic variables and checks which climatic models have a similar 164

distribution to the observed climate variable. This was performed using the gamlss package 165

[40] under R programming software [41]. The result of the distribution analysis was 166

evaluated between the observed and climate models series using Akaike’s Information 167

Criterion (AIC). Then the climate model or models which have similar distribution is/are 168

assumed to be the model/s that is/are capable of better describing the observed series. 169

The second technique observes the trend using the Mann - Kendall (MK) test [42,43]. 170

In detecting the trend MK test calculates the statistic ‘S’ by ranking the data and calculating 171

the sign as described in Equation (1) [42]. 172

S =
n−1

∑
i=1

n

∑
j=i+1

sgn(xj − xi) (1)

Where: xj - is data ranked from i = 1, 2, 3, . . . , n-1 and xi- is the data ranked from j = i+1, 2, . 173

. . , n 174

The sign is the difference between the original data xi, shortened by one data point, 175

and the data itself without the first data point xj. 176

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 September 2022                   doi:10.20944/preprints202209.0108.v1

https://doi.org/10.20944/preprints202209.0108.v1


6 of 21

sgn(xj − xi) =


+1 i f (xj − xi) > 0
0 i f (xj − xi) = 0
−1 i f (xj − xi) < 0

(2)

It is observed that when the data point (observation) is more (n ≥ 10), the statistic ‘S’
becomes normally distributed with mean (E(S)) equal to zero and variance calculated as
follows:

Var(S) =
n(n − 1)(2n + 5)− ∑m

t=1 t1(t1 − 1)(2t1 + 5)
18

(3)

Where: n - is the number of data points and ti are the ties of the sample data series. The test
statistic (Zc) is calculated as:

Zc =


S−1

σ i f S > 0
0 i f S = 0
S+1

σ i f S < 0

(4)

Where: σ is standard deviation of the statistic ‘S’. From this test statistic (Zc) was concluded, 177

and a positive value indicates an upward trend while a negative value is contrary. Accord- 178

ing to [43], this approach works well for data where there is no significant correlation at lag 179

1, if there is a significant correlation at lag 1 the modified MK test is applied. The method 180

calculates the significance of the trend by modifying the variance of MK test statistic (‘S’) 181

by ESS (Effective Sample Size). The significance is determined based on the p-values at a 182

significance level of 0.05. Therefore if the p-values are greater than 0.05, then we accept the 183

null hypothesis of there is no significant trend in the data and if it is less than or equal the 184

reverse is true. 185

In the third approach, four performance metrics were applied to identify which climate 186

model/s had better simulated the observed series. The selected measures are Coefficient 187

of Determination (R2), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) 188

and BIAS. The performance measures were each applied for all time steps. And then 189

a rank is assigned to each model based on the magnitude of the performance measure. 190

Models which had an overall good performance at all four-time steps would be identified 191

by summing up the ranks at the corresponding time step and ranking again finally. 192

Another technique applies a time series clustering technique to identify which climate 193

model was able to capture the stochastic process of the observed series much better. For this, 194

the Integrated Periodogram algorithm developed by [44] is used in the TSclust package 195

[45] under R. This data mining approach tries to group time series into clusters based on 196

their Integrated Periodogram (dIP) as a distance (dissimilarity) measure. The periodogram 197

technique helps in setting the comparison to be in frequency domain and this enables to 198

characterize each time series in terms of its underlying stochastic behavior. The dissimilarity 199

measure is calculated using Equation (5) [44], 200

dIP(XT , YT) =
∫ π

−π
|FXT (λ)− FYT (λ)| dλ (5)

Where the normalized cumulative periodograms at each data point j are given by: 201

FXT (λj) =
1

CXT

j

∑
i=1

IXT (λi) (6)

FYT (λj) =
1

CYT

j

∑
i=1

IYT (λi) (7)

The weights used for normalizing the periodograms are as shown below where m is 202

the number of data points in the original data series: 203
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CXT =
m

∑
i=1

IXT (λi) (8)

CYT =
m

∑
i=1

IYT (λi) (9)

The periodograms calculated at each time stamp (k) of the observed series is given by: 204

IXT (λk) =
1
T
|

T

∑
t=1

Xte−iλkt|2 (10)

IYT (λk) =
1
T
|

T

∑
t=1

Yte−iλkt|2 (11)

Here λK = 2πk
T is the frequency component corresponding to the input data sequence 205

k ( k = 1, 2, ..., n). Where as n = T−1
2 depends on the total data length of the observed 206

series(T). In addition, Xt and Yt correspond to each pair of time series in which dissimilarity 207

measure is to be calculated for. Also the term i in Equations (10) and (11) indicates the 208

imaginary term from the Fourier transformation of each pair of series. 209

A pairwise matrix of dissimilarity measure can be produced from the above proce- 210

dure at which clustering is performed using the Agglomerative Hierarchical Clustering 211

technique under Tsclust package in R that applies hclust() function from stats package. The 212

classification into a cluster group or merging between clusters is through complete linkage 213

criteria [44]. 214

Finally, to understand the relationship between the observed and other climate model 215

series, a Principal Component Analysis (PCA) has been applied. PCA is a dimensionality 216

reduction technique that transforms a large number of correlated variables into a much 217

smaller uncorrelated variable called Principal Components (PCs) [46]. Here the 11 variables 218

(1 observed + 10 Climate models) were displayed into two-dimensional axes called principal 219

components (PCs). The original data points for each variable can be plotted into a two- 220

dimensional space called a score plot. This is done by projecting all data points into those 221

two PCs using the loading vectors obtained from the covariance matrix. Score plot shows 222

that points closer to origin are closer to average, points near to each other are similar, and 223

points further outwards are outliers. The correlation between each variable can be better 224

viewed using a loading plot. This plot is obtained by plotting the eigenvectors and indicates 225

the contribution of each loading to the PCs. The relative length of the vector indicates its 226

contribution to each PC and the angle between the vectors indicates the similarity between 227

the variables. That means if the angle between two adjacent loading vectors of variables is 228

smaller then they are more correlated, if orthogonal not related, and if in reverse direction 229

then they are negatively correlated. A combined plot of score plot and loading plot is 230

known as a Bi-Plot [47]. 231

2.2.2. Downscaling, Bias Correction and Future Scenarios 232

The outputs of GCMs have to be Downscaled and bias-corrected before applying them 233

to real-world situations. This is mainly because outputs of climate models have biases due 234

to imperfect conceptualization and parametrization, insufficient length of data records, 235

quality of reference data sets, and insufficient spatial resolution [48,49]. 236

Here both the precipitation and temperature stations are first downscaled to each 237

ground stations shown in Table 1 using the IDW technique and later bias corrected using 238

quantile matching (QM) approach. QM method which uses empirical CDF obtained from 239

the actual observations and requires no assumption of the underlying distribution which 240

makes it preferable and has been applied here to the climate model with a top rank [50]. All 241

the bias correction in this study is performed under R with the help of the qmap package 242
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[49] on the daily climate series. The theoretical assumption of QM to estimate the bias 243

correction So, is shown in Equation (12) as follows: 244

x f = F−1
f (Fo(x)) (12)

Where: x f is value of bias corrected future climate variable, Fo(x) is CDF of Observed 245

variable, F−1
f is inverse CDF of future GCM, and x is the value of the future GCM variable 246

before bias correction. 247

Two future scenarios (SSP5-8.5 and SSP2-4.5) and two time periods, mid-century (2040- 248

2069) and end of the century (2070-2099), are used to understand the future climate of the 249

Upper Awash Basin. The two scenarios each consider worst and middle future conditions. 250

The worst scenario is the upper boundary in terms of the range of scenarios available and 251

it can be considered an update of RCP8.5 of CMIP5. The second one, which is SSP2-4.5, 252

indicates the medium pathway for future increase in greenhouse gas emissions which is 253

similar to RCP4.5 of CMIP5. 254

3. Results 255

3.1. Selection of Climate Model 256

All the methods used are selected to highlight the very important characteristics of a 257

climate time series which could play a critical role in addressing future climate impact in 258

the study area. The evaluation criteria are distribution fitting, trend analysis, performance 259

measures, DTW based hierarchical clustering, and PCA analysis. A total of ten climate 260

models as shown in Table 2 were identified initially based on the common availability of 261

climate models for the three climatic variables (Precipitation, Maximum temperature, and 262

Minimum temperature). The models are evaluated for their statistical characteristics based 263

on five different evaluation criteria and on different time levels (monthly, monthly average, 264

seasonal and annual). 265

3.1.1. Identification of Distribution 266

For the observed and climate models series the best possible distributions have been 267

identified with the help of gamlss package in R [40]. For example for the precipitation data 268

of monthly average, JJAS, MAM, and annual series the observed data were found to have 269

Normal (NO), Logistic(LO), Gamble(GA) and Normal(NO) distributions respectively. The 270

PDF and CDF plots for only monthly average precipitation series of both observed and 271

climate models are shown in Figure 2 below. 272

Figure 2. Fitted distribution for the monthly average precipitation (black line) series of the observed
and 10 climate models (indicated with different colors).

The result of the distribution analysis for all three climatic variables and different time 273

steps of analysis of both observed and climate models series is summarized in Table 3. 274

For the precipitation series, it can be deduced that the MRI-ESM2-0 model was capable 275

to have similar distributions with the observed series at all time steps except at MAM 276

season. And TaiESM1 had similar distribution at Monthly and Annual time steps. Whereas 277
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ECEARTH3-CC and NorESM2-MM had similar distributions only at MAM and JJAS 278

seasons respectively. 279

In the case of the maximum temperature series, none of the climate models have 280

shown a consistent similarity across different time steps as shown in Table 3. Here more 281

than half of the models had similar distribution types at monthly average time step. Model 282

MPI-ESM1-2-HR and ECEARTH3-Veg were able to have the same distribution with the 283

observed series twice across those four time steps. And none of the models had similar 284

distributions at the annual level. Few models have shared a similar distribution type with 285

the observed series in the case of minimum temperature series. Here, only three models 286

which are ECEARTH3, ECEARTH3-CC and MRI-ESM2-0 have shown similar distributions 287

at JJAS, MAM, and Annual time steps respectively. There were no models which were 288

capable of having similar distribution at the monthly average time step as shown in Table 3 289

below. 290

Table 3. Fitted Distributions for all three climatic variables across the four time steps of both observed
and climate models series.

Monthly Average JJAS MAM Annual

Data Type AIC DT AIC DT AIC DT AIC DT
Precipitation

Observed 221.62 NO 359.84 LO 348.147 GA 370.72 NO
CMCC-ESM2 228.68 SN2 323.25 SEP1 356.37 SEP1 377.77 SN2
ECEARTH3 221.12 IGAMMA 355.27 WEI3 350.90 WEI 370.22 IGAMMA

ECEARTH3-CC 232.20 RG 346.75 NO 356.18 GA 381.30 RG
ECEARTH3-Veg 238.40 RG 343.27 NO 347.62 RG 387.50 RG

GFDL-CM4 230.72 SHASH 374.20 SEP1 366.36 WEI2 379.82 SHASH
GFDL-ESM4 241.38 RG 354.21 NO 349.64 WEI 390.47 RG

MPI-ESM1-2-HR 214.08 LO 348.57 WEI 335.65 RG 363.17 LO
MRI-ESM2-0 262.87 NO 375.29 LO 369.01 LOGNO2 411.96 NO

NorESM2-MM 253.75 LO 385.86 LO 387.26 WEI 402.84 LO
TaiESM1 223.07 NO 330.57 RG 351.91 LO 372.16 NO

Maximum Temperature
Observed 45.97 SN2 28.93 RG 51.31 WEI 13.19 PE2

CMCC-ESM2 50.21 SN2 37.20 GT 59.44 SEP2 36.72 NO
ECEARTH3 52.76 SN2 41.46 NO 76.62 IGAMMA 39.00 IGAMMA

ECEARTH3-CC 51.94 SN2 44.98 SN2 64.69 GU 39.80 SN2
ECEARTH3-Veg 52.75 SN2 47.76 WEI3 65.84 WEI 38.94 IGAMMA

GFDL-CM4 48.37 IGAMMA 33.43 IGAMMA 57.72 RG 14.37 SN2
GFDL-ESM4 43.64 SEP2 40.69 NO 62.79 LO 31.29 SEP3

MPI-ESM1-2-HR 54.71 SN2 47.47 RG 67.22 WEI3 30.95 NO
MRI-ESM2-0 47.85 SEP2 40.41 LO 68.49 NET 23.92 RG

NorESM2-MM 44.26 RG 43.46 SN2 59.60 NO 31.55 SHASH
TaiESM1 56.18 SN2 20.05 WEI 56.78 NET 16.55 LO

Minimum Temperature
Observed 42.35 SEP1 30.9 NO 34.09 NO 16.98 IGAMMA

CMCC-ESM2 47.79 SHASH 30.51 SEP1 55.5 IG 39.24 GT
ECEARTH3 38.80 SN2 29.41 NO 53.62 WEI 26.45 SN2

ECEARTH3-CC 35.67 SN2 34.40 LO 58.22 NO 31.58 WEI3
ECEARTH3-Veg 40.44 SN2 34.56 LO 58.99 SEP3 39.56 LO

GFDL-CM4 37.93 BCPEo 12.85 RG 43.25 RG 19.89 RG
GFDL-ESM4 49.12 GG 33.38 LO 55.99 IGAMMA 44.06 NO

MPI-ESM1-2-HR 51.99 SN2 22.69 RG 46.13 WEI3 29.87 SN2
MRI-ESM2-0 44.59 SN2 14.56 SN2 29.93 SEP2 36.91 IGAMMA

NorESM2-MM 44.07 SN2 23.15 GT 56.08 LO 49.61 SHASH
TaiESM1 48.96 BCPEo 25.77 NET 55.85 SN2 39.38 NET

NB: Those highlighted in grey are models that have shared the same distribution as observed time series across
each time period of analysis. And DT means Distribution Type.

3.1.2. Trend Analysis 291

Trend analysis has also been performed similarly at four different levels same as in 292

distribution analysis. For the precipitation series almost all of the models had similar 293

trends as of observed series across all time steps except for three models at JJAS and one at 294

MAM seasons which are not similar as shown in Table 4. These were models ECEARTH3, 295

ECEARTH3-CC, and GFDL-ESM4 for the JJAS season and CMCC-ESM2 for MAM season. 296

For the maximum temperature series, ECEARTH3 does not have a similar trend to the 297

observed series at any of the time steps. Three models (ECEarth3-CC, NorESM2-MM, and 298

TaiESM1) were able to have a similar trend at three-time steps out of four. And EC-Earth3- 299

Veg, GFDL-CM4, and MPI-ESM1-2-HR had similarities only at JJAS season as shown in 300
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Table 4. Out of the ten models, MRI-ESM2-0 has shown similar trends across all four-time 301

steps. Furthermore, among the ten models, GFDL-ESM4, MPI-ESM1-2-HR, NorESM2-MM, 302

and TaiESM1 have similar trends to the observed minimum temperature series across all 303

time steps whereas models CMCC-ESM2, ECEARTH3, GFDL-CM4, and MRI-ESM2-0 were 304

the least. Two models ECEARTH3-CC and ECEARTH-Veg were able to have similarity at 305

all time steps except for JJAS season as shown in Table 4. 306

Table 4. Results of Trend Analysis for all three climatic variables across the four time steps for both
observed and climate models series.

Data Type Annual Monthly Ave. JJAS MAM

TTR Direc TTR Direc TTR Direc TTR Direc
Precipitation

Observed NS - NS - NS - NS -
CMCC-ESM2 NS - NS - NS - S I
ECEARTH3 NS - NS - S I NS -

ECEARTH3-CC NS - NS - S I NS -
ECEARTH3-Veg NS - NS - NS - NS -

GFDL-CM4 NS - NS - NS - NS -
GFDL-ESM4 NS - NS - S D NS -

MPI-ESM1-2-HR NS - NS - NS - NS -
MRI-ESM2-0 NS - NS - NS - NS -

NorESM2-MM NS - NS - NS - NS -
TaiESM1 NS - NS - NS - NS -

Maximum Temperature
Observed S I S I NS - S I

CMCC-ESM2 S I S I S I NS -
ECEARTH3 NS - NS - S I NS -

ECEARTH3-CC S I S I NS - NS -
ECEARTH3-Veg NS - NS - NS - NS -

GFDL-CM4 NS - NS - NS - NS -
GFDL-ESM4 S I S I S I NS -

MPI-ESM1-2-HR NS - NS - NS - NS -
MRI-ESM2-0 S I S I NS - S I

NorESM2-MM S I S I NS - NS -
TaiESM1 S I S I NS - NS -

Minimum Temperature
Observed NS - NS - S I NS -

CMCC-ESM2 S I S I S I S I
ECEARTH3 S I S I NS - NS -

ECEARTH3-CC NS - NS - NS - NS -
ECEARTH3-Veg NS - NS - NS - NS -

GFDL-CM4 S I S I S I S I
GFDL-ESM4 NS - NS - S I NS -

MPI-ESM1-2-HR NS - NS - S I NS -
MRI-ESM2-0 S I S I S I S I

NorESM2-MM NS - NS - S I NS -
TaiESM1 NS - NS - S I NS -

NB: NS(Not Significant),S(significant),I(Increasing),D(Decreasing),TTR(Trend Test Result),
Direc (Direction)

3.1.3. Performance Measures 307

Four different performance indicators were implemented to identify models having 308

good prediction capabilities across all time steps. Table 5 shows the summarized results of 309

each model across those four time steps against four performance measures. The ranking 310
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shown in the summary table for each performance measure was obtained by ranking the 311

sum of ranks across time steps. 312

In the precipitation series, NorESM2-MM is the model which had a relatively poor over- 313

all performance in predicting the observed series. And it can be concluded that ECEARTH3 314

family are top performing ones since all are ranked in top half. For case of maximum 315

temperature series, the GFDL-CM4 model has performed poorly and MPI-ESM1-2-HR is 316

the top ranked model in terms of simulating the observed series as shown in the summary 317

Table 5 below. From Table 5 it can also be observed that TaiESM1 and NorESM2-MM 318

are models which has performed good and poorly in simulating the observed minimum 319

temperature series respectively. 320

Table 5. Summary of model performances for all three climatic variables across four performance
measures for both observed and climate models series.

Ranks

Data Type R2 RMSE MAE BIAS Sum of Rank
Precipitation

ECEARTH3-CC 1 3 3 3 10
ECEARTH3 6 1 2 2 11

MPI-ESM1-2-HR 7 2 1 1 11
ECEARTH3-Veg 10 4 4 5 23

GFDL-ESM4 9 5 5 4 23
TaiESM1 5 6 6 6 23

GFDL-CM4 3 7 7 7 24
CMCC-ESM2 2 8 8 8 26
MRI-ESM2-0 4 10 10 10 34

NorESM2-MM 8 9 9 9 35
Maximum Temperature

MPI-ESM1-2-HR 6 1 1 1 9
ECEARTH3-CC 2 3 3 3 11

ECEARTH3 1 4 4 4 13
CMCC-ESM2 10 2 2 2 16

ECEARTH3-Veg 7 5 6 6 24
MRI-ESM2-0 8 6 5 5 24

TaiESM1 5 8 8 8 29
GFDL-ESM4 3 9 9 9 30

NorESM2-MM 9 7 7 7 30
GFDL-CM4 4 10 10 10 34

Minimum Temperature
TaiESM1 3 2 2 2 9

ECEARTH3-Veg 2 4 4 1 11
GFDL-CM4 5 1 1 8 15
GFDL-ESM4 6 3 3 3 15
ECEARTH3 8 5 5 5 23

ECEARTH3-CC 9 6 6 4 25
MPI-ESM1-2-HR 1 8 8 9 26

CMCC-ESM2 4 10 10 6 30
MRI-ESM2-0 10 7 7 7 31

NorESM2-MM 7 9 9 10 35

3.1.4. Time Series Clustering 321

A time-series clustering technique is used in order to identify which climate model is 322

better capable of simulating the observed series in terms of capturing the seasonal variation. 323

This technique uses a distance measure calculated from the cumulative periodograms of 324

the observed and climate models. Using the distance matrix calculated from the integrated 325

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 September 2022                   doi:10.20944/preprints202209.0108.v1

https://doi.org/10.20944/preprints202209.0108.v1


12 of 21

periodograms a complete link agglomerative hierarchical clustering was performed on the 326

monthly precipitation, maximum and minimum temperature series. 327

From Figure 3 it can be observed that for the precipitation series those eleven models 328

were clustered into four groups. And as expected models which come from the same 329

modeling institution such as ECEARTH3 and GFDL families are clustered together. There 330

is a clear separation in the dendrogram for the group which holds GFDL-ESM4, GFDL-CM4, 331

and MRI-ESM2-0. This indicates these groups of models have less potential in simulating 332

the seasonal behavior of the observed series. It can also be seen that the MPI-ESM1-2-HR 333

model was able to be in the same cluster as the observed series. And the next in line in 334

terms of having closer seasonal characteristics to the observed series is the ECEARTH3 335

families. 336

Figure 3. Clusters for monthly precipitation series for both observed and climate models series (
Left figure: shows the cluster separation with blue color contrast, Right figure: grouping of climate
models and observed data in terms of time series similarity based on seasonal pattern).

Similarly, for the monthly maximum temperature series, a clear clustering between 337

models can be observed. Here the same models which are seen in the precipitation series 338

are the ones that have similar seasonal characteristics as shown in Figure 4. 339
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Figure 4. Clusters for monthly maximum temperature series for both observed and climate models
series (Left figure: shows the cluster separation with blue color contrast, Right figure: grouping of
climate models and observed data in terms of time series similarity based on seasonal pattern).

The clustering for the monthly minimum temperature series is different than the two 340

previous cases as shown in Figure 5. Here the MRI-ESM2-0,CMCC-ESM2 and GFDL family 341

has performed well in capturing the seasonal variation. Additionally, the dissimilarity 342

between observed series and ECEARTH3 family and NorESM2-MM is relatively higher as 343

compared to the rest of climate models. 344

Figure 5. Clusters for monthly minimum temperature series for both observed and climate models
series (Left figure: shows the cluster separation with blue color contrast, Right figure: grouping of
climate models and observed data in terms of time series similarity based on seasonal pattern).

3.1.5. Principal Component Analysis (PCA) 345

From the PCA analysis of monthly precipitation data, most of the climate models are 346

aligned along the PC1 with the exceptions of TaiESM1, CMCC-ESM2 and NorESM2-MM. 347

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 September 2022                   doi:10.20944/preprints202209.0108.v1

https://doi.org/10.20944/preprints202209.0108.v1


14 of 21

Nearly all of the variance of models ECEARTH3-Veg and ECAERTH3-CC is explained by 348

PC1. Models MPI-ESM1-2-HR, ECEARTH3 and GFDL-ESM4 are one group that are closely 349

correlated. As shown in Figure 6 the observed series is strongly correlated to GFDL-CM4. 350

Figure 6. PCA Bi-plot for monthly precipitation series of both observed and climate model series.
The Figure on the left is a zoomed out part of the main Bi-plot on the right.

All the ECEARTH3 families and GFDL-CM4 have shown a good correlation with 351

observed maximum temperature series as shown in Figure 7. Where as the MRI-ESM2-0 352

and CMCC-ESM2 are the least correlated ones. 353

Figure 7. PCA Bi-plot for monthly maximum temperature series of both observed and climate model
series. The Figure on the left is a zoomed out part of the main Bi-plot on the right.

On the contrary to the monthly maximum series, in the monthly minimum series 354

the ECEARTH3 families have shown poor correlation. The most highly correlated model 355

is GFDL-ESM4 and the second next best are groups of models which include CMCC- 356

ESM2,GFDL-CM4 and MRI-ESM2-0 as shown in Figure 8. 357
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Figure 8. PCA Bi-plot for monthly minimum temperature series of both observed and climate model
series. The Figure on the left is a zoomed out part of the main Bi-plot on the right.

3.2. Model Ranking and Interpretation 358

In the interpretation and summarization of all results, a simple rank-based system is 359

used. Always a higher rank (lowest in terms of magnitude) would be given to a specific 360

climate model for the desired effect. As an example in the interpretation of the result of 361

distribution fitting if a specific model has been fitted with the same model as the observed 362

series then a value of one(unit) would be assigned and if otherwise zero. Then these values 363

would be summed across the four analysis periods for each model and given a rank. The 364

ranking is from one to ten similar to the total number of climate models used in the study. 365

A model would have a higher rank in this case if the sum of the value of the ranks is higher. 366

A similar approach is also used in the interpretation of trend analysis. That means if 367

a similar trend is obtained for a specific model then a value of one is assigned and zero 368

if on the contrary. The rest of the ranking procedure is the same as the one used in the 369

interpretation of distribution analysis. For the case of the performance measure, a higher 370

rank is given to a specific model that has scored well according to the criteria of each 371

measure. Since four performance measures are used for each model the final was based on 372

ranking the sum of ranks. 373

To interpret the cluster analysis the result of the distance (dissimilarity) matrix is used. 374

A model with a minimum distance from the observed series is ranked higher than the one 375

with a large distance. And finally, for the PCA analysis, the angle between the loading 376

vectors of the observed and climate models is used as ranking criteria. Here similarly 377

among those ten models, a model with less angle is much closer to the observed series so a 378

higher-ranked would be assigned to it. 379

From the result of the precipitation time-series analysis across each method model 380

CMCC-ESM2 has performed poorly as shown in Table 6. The top three models which have 381

shown an overall good performance are MPI-ESM1-2-HR,MRI-ESM2, and ECEARTH3-CC. 382

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 September 2022                   doi:10.20944/preprints202209.0108.v1

https://doi.org/10.20944/preprints202209.0108.v1


16 of 21

Table 6. Summary rank based on five criteria used for evaluating the three climate model time series

Data Type PDFR TrendR PMR ClusterR PCAR SRank FRank

Precipitation
MPI-ESM1.2.HR 5 1 3 1 5 15 1

MRI-ESM2-0 1 1 9 5 3 19 2
ECEARTH3.CC 3 7 1 2 6 19 2

ECEARTH3 5 7 2 3 4 21 4
GFDL-CM4 5 1 7 10 1 24 5

ECEARTH3-Veg 5 1 4 8 7 25 6
TaiESM1 2 1 6 7 10 26 7

NorESM2-MM 3 1 10 4 8 26 7
GFDL-ESM4 5 7 5 9 2 28 9
CMCC-ESM2 5 7 8 6 9 35 10

Maximum Temperature
ECEARTH3-CC 3 2 2 6 2 15 1
MPI-ESM1-2-HR 3 7 1 1 5 17 2
ECEARTH3-Veg 1 7 5 4 1 18 3

TaiESM1 3 2 7 2 7 21 4
ECEARTH3 7 10 3 3 3 26 5

NorESM2-MM 1 2 9 7 8 27 6
MRI-ESM2-0 3 1 6 8 10 28 7
CMCC-ESM2 7 5 4 5 9 30 8
GFDL-ESM4 7 5 8 9 6 35 9
GFDL-CM4 7 7 10 10 4 38 10

Minimum Temperature
GFDL-ESM4 4 1 4 2 1 12 1

TaiESM1 4 1 1 6 6 18 2
MPI-ESM1-2-HR 4 1 7 3 7 22 3

GFDL-CM4 4 7 3 5 4 23 4
MRI-ESM2-0 1 7 9 1 5 23 4
CMCC-ESM2 4 7 8 4 3 26 6

ECEARTH3-Veg 4 5 2 7 8 26 6
NorESM2-MM 4 1 10 10 2 27 8

ECEARTH3 1 7 5 8 9 30 9
ECEARTH3-CC 1 5 6 9 10 31 10

NB: PDFR (PDF Rank), TrendR (Trend Rank),PMR (Performance Measure Rank), ClusterR
(Custer Rank), PCAR (PCA Rank),SRank (Sum of Rank), FRank (Final Rank).

With the exception of the ECEARTH3-CC model the same two models had an overall 383

good performance for the maximum temperature similar to the precipitation series as seen 384

in Table 6. The least performance was observed for the GFDL family the same as before. In 385

the case of the minimum temperature series the ECEARTH3 family has performed poorly 386

and in contrary, the GFDL family are among the top performing as shown in Table 6. 387

Finally the same ranking methodology was applied to come into identification of 388

possible models with an overall good performance for all three climatic variables of concern 389

as shown in Table 7. It can be observed that the MPI-ESM1-2-HR model is one of the models 390

with highest overall ranking when compared across the three climatic variables. 391
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Table 7. Summary result for all three climatic variables

Data Type Precip Rank Tmax Rank Tmin Rank Sum of Rank Final Rank

MPI-ESM1-2-HR 1 2 3 6 1
ECEARTH3-CC 2 1 10 13 2

TaiESM1 8 4 2 14 3
MRI-ESM2-0 3 7 4 14 3

ECEARTH3-Veg 6 3 6 15 5
ECEARTH3 4 5 9 18 6
GFDL-ESM4 9 9 1 19 7
GFDL-CM4 5 10 4 19 7

NorESM2-MM 7 6 8 21 9
CMCC-ESM2 10 8 6 24 10

3.3. Future Climate Projections 392

In order to say something about the future climate conditions in the study area QM 393

technique was applied as a tool to bias correct the top-scoring climate model (MPI-ESM1- 394

2-HR) for all three climate variables. In terms of the precipitation variable, for both time 395

periods of analysis (mid and end of the century), a general increase in precipitation amount 396

is observed. An increase of 6.5% and 4.7% in mean annual areal precipitation for the mid 397

and end of a century respectively are observed for the middle scenario in the basin. Also 398

for the worst-case scenario, an increment of 10.3% and 17.5% is seen for the mid and end of 399

a century respectively. 400

The mean annual maximum temperature shows an increment of 1.5◦C and 2.2◦C for 401

the mid and end of a century respectively in the middle scenario. With the same pattern, a 402

rise of 2.6◦C and 3.5◦C for the mid and end of a century respectively is seen for the worst 403

case. Similarly, for the minimum temperature series in the middle scenario an increase 404

of 2.6◦C and 3.1◦C is observed for mid and end of a century respectively. The worst-case 405

scenario showed an increment of 3.1◦C and 4.7◦C for mid and end of a century respectively. 406

4. Discussion 407

Models that are incorporated in the new CMIP6 archive have shown comparable or 408

improved capability in terms of simulating the climate of the globe as compared to CMIP5 409

[51]. This is due to models in the CMIP6 archive are having improved model resolution, 410

setup, scenarios, and parametrization than all previous CMIP versions [18]. This study 411

has mainly focused on the application of statistical and data mining techniques to identify 412

possible climate models from the new CMIP6 archive which can simulate the climate 413

system of UASB. This was made possible after evaluating all those models against the 414

observed historical climate series using those evaluation criteria. All comparison were 415

performed on spatial averaged data for 1980 - 2009 period of analysis. 416

No specific model have shown consistent performance across each evaluation criteria 417

and climatic variable as shown in Table 6. Model MRI-ESM2-0 was able to represent the 418

distributional property for the precipitation and minimum temperature series. Where as 419

EC-EARTH3-Veg for the maximum temperature series. In terms of capturing the trend 420

behavior MRI-ESM2-0 was good for precipitation and maximum temperature series and 421

models GFDL-ESM4, TaiESM1, MPI-ESM1-2-HR, and NorESM2-MM had equal potential 422

for the minimum temperature series. Three different models represented each climate 423

variable for their performance. These were EC-EARTH3 for precipitation, MPI-ESM1-2-HR 424

for maximum temperature and TaiESM1 for minimum temperature. The seasonal pattern 425

of precipitation and maximum temperature were better captured by MPI-ESM1-HR and for 426

minimum temperature by MRI-ESM2-0. Not all three climate variables were correlated to 427

the same climate model. GFDL-CM4,EC-EARTH3-Veg, and GFDL-ESM4 are models which 428

had better correlation for precipitation, maximum temperature, and minimum temperature 429

series respectively. 430

According to a recent study by [52] the summer rainfall over Ethiopia is influenced 431

by SST condition over gulf of Guinea and southern Pacific ocean. Where as the spring 432

rainfall is influenced by SST over north Atlantic ocean. Another work by [53] indicated 433

that the rainfall season (JAS) climate system over the UASB is highly influenced by the 434
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equatorial pacific ocean temperature. ENSO and ITCZ that arise from the ocean temperature 435

variations over equatorial pacific and low pressure zone near the equator are also another 436

two important climate conditions that shapes the climate over UASB. 437

Most of the climate models evaluated in this study have different performance in 438

terms of simulating this global climate processes. A recent work presented by [51] have 439

shown that models EC-EARTH3, MPI-ESM1-2-HR and TaiESM1 do have good capabilities 440

interms of capturing ENSO teleconnections. The model MPI-ESM1-2-Hr is also capable of 441

producing the teleconnections over Indian and North Atlantic ocean reasonably well [54]. 442

As shown in the result section this models are among the top ranked models in this study. 443

Another important reason why the top ranked model MPI-ESM1-2-HR has performed 444

good may be due to the fact that it has higher atmospheric and ocean model resolution 445

relative to those ten models. This model has 0.94◦ atmospheric resolution with 95 verticals 446

and model top at 0.01hPa. And the ocean model is having 0.4◦ horizontal resolution with 447

40 levels [54,55]. Where as the least performed model which was CMCC-ESM2 has an 448

atmospheric resolution of 0.9◦ × 1.25◦ with 30 verticals and model top at 2hPa. And the 449

ocean model is having a resolution of 0.33◦[56]. Since topography of the study area is 450

complex it is expected that model resolution plays a vital role in capturing all important 451

climate characteristics of the study area. 452

Almost all of the climate modeling studies done so far on the basin have reported 453

an expected increase in future temperature but a decrease in total precipitation especially 454

for the end of the century [32–34,57]. However, both the previous AR5 and now the new 455

AR6 IPCC reports predict that there will be an increase in annual mean precipitation and 456

maximum temperature values for both mid and end of the century over East Africa [58,59]. 457

So, it can be seen that the findings from these previous studies is in disagreement with the 458

IPCC report. These fallacies may be due to the poor performance of these previous climate 459

models in simulating the climate condition over East Africa or improper model selection. 460

It can be observed that all of the findings of this study on future climate projections align 461

with the new AR6 IPCC report of future climate condition over North-East Africa [59]. 462

5. Conclusions 463

The outputs of the selection process have indicated that it is difficult to conclude on 464

the performance of a single model since the performance of each model is different for 465

each evaluation criteria. However, model MPI-ESM1-2-HR has shown an overall good 466

performance when evaluated for all time steps and evaluation criteria. 467

When observing the outputs of each evaluation criteria across the three climatic vari- 468

ables, MRI-ESM2-0 model seems to be the best model with a more similar distribution 469

(PDF) to the observed series. The second evaluation criteria for trend behavior shows that 470

NorESM2-MM model was able to capture the trend well. The outputs of the performance 471

measures (R2,RMSE,MAE and BIAS) indicate that ECEARTH3-CC outperforms others. 472

Also, MPI-ESM1-2-HR is best model in terms of capturing the stochastic behavior (underly- 473

ing periodic patterns) of the observed series. And finally, the GFDL family was the model 474

with highest correlation to the observed series. 475

Downscaling and bias correction for the top scoring MPI-ESM1-2-HR model for all 476

three climate variables (Precipitation, Maximum temperature and Minimum temperature) 477

were performed using IDW technique and QM approach. Based on the result of the 478

downscaling and bias correction a prediction of future climate condition for two scenarios 479

(middle and worst) and two centuries (mid and end) was done. The result of the future 480

climate prediction for all three climate variables showed a positive relative increase as 481

compared to the base period (1980-2009). And also the magnitude of increment is relatively 482

higher for the end of century than mid century. All the outputs of this study are in 483

agreement with new AR6 IPCC report about expected future climate changes on north east 484

Africa. 485
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The intensifying agricultural activity and urbanization in the study area [7] together 486

with the projected increase in precipitation amount could increase the risk of flooding in 487

the UASB in the future. 488

One of the limitation of these study is that only 10 climate models which are members 489

of r1i1p1f1 ensemble are used in the identification of possible climate models. These were 490

selected based on the commonality of the model outputs for all three climate variables 491

under interest. 492
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