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Abstract: This paper extends the findings of the prior research concerning n-balls,
regular n-simplices, and n-orthoplices in real dimensions using recurrence relations that
removed the indefiniteness present in known formulas. The main result of this paper is a
proof that these recurrence relations are continuous for complex 7, wherein the volume of
an n-simplex is a multivalued function for # <0, and thus the surfaces of n-simplices and
n-orthoplices are also multivalued functions for n < 1. Applications of these formulas to
n-simplices, n-orthoplices, and n-cubes inscribed in and circumscribed about n-balls
reveal previously unknown properties of these geometric objects in negative, real
dimensions. In particular, it is shown that the volume and surface of a regular n-simplex
inscribed in an n-ball are complex for —1 <n <0, imaginary for » <—1, and divergent
with decreasing n; the volume and surface of a regular n-simplex circumscribed about an
n-ball is complex for n < 0 and left-handedly respectively convergent to zero or divergent
towards infinity; and the volume and surface of an n-orthoplex circumscribed about an n-
ball is complex for n < 0 and oscillatory divergent towards infinity with decreasing ».

Keywords: regular basic convex polytopes; negative dimensions; fractal dimensions;
complex dimensions; circumscribed and inscribed polytopes

1. Introduction

The notion of dimension # of a set has various definitions [1, 2]. Natural dimensions define a
minimum number of independent parameters (coordinates) needed to specify a point within Euclidean
space R”, where n = —1 is the dimension of the empty set, the void, having zero volume and indefinite
surface. Negatively dimensional spaces can be defined by analytic continuations from positive
dimensions [3]. Negative dimensions [2, 4-6] refer to densities, rather than to sizes as the natural ones.
Fractional (or fractal) dimensions extend the notion of dimension to real, including negative [7],
numbers. Negative dimensions are considered in probabilistic fractal measures [8]. Fractal dimension
and lacunarity [9, 10] allow for an investigation of the fractal nature of prime sequences [11]. Fractal
dimensions have been shown to be consistent with experimental results and enable the examination of
transport parameters in multiphase fractal media, including permeability, thermal dispersion, and
conductivities (both thermal and electrical) [12]. The probability models for pore distribution and for
permeability of porous media can also be expressed as a function of fractal dimensions [13]. The
fractal dimension of the function is shown to be a linear function of the order of fractional integro-
differentiation [14]. Recently, there has been a surge of interest in applications of topology, and of
persistent homology in particular. Several authors have proposed estimators of fractal dimension
defined in terms of minimum spanning trees and higher dimensional persistent homology [15].
Complex [2] and complex fractal [16] dimensions can also be considered. Furthermore, geometric
concepts (such as lengths, volumes, and surfaces) can be related to negative, fractional, and complex
numbers. Complex geodesic paths emerge in the presence of black hole singularities [17] and when
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studying entropic dynamics on curved statistical manifolds [18]. Fractional derivatives of complex
functions could be able to describe different physical phenomena [19].

In R there is a countably infinite number of regular, convex polygons; in R’, there are five
regular, convex Platonic solids; in R*, there are six regular, convex polytopes. For n > 4, there are only
three: self-dual n-simplex and n-cube dual to n-orthoplex [20]. Furthermore, R” is also equipped with a
perfectly regular, convex n-ball. The properties of these three regular, convex polytopes in natural
dimensions are well known [21-23]. Fractal dimensions of hyperfractals based on these polytopes in
natural dimensions were disclosed in [24]. This study extends prior research [25] on recurrence
relations that removed the indefiniteness present in known formulas concerning n-balls, n-simplices,
and n-orthoplices in real dimensions, to complex, continuous dimensions.

The paper is structured as follows. Section 2 presents known non-recurrence formulas for
volumes and surfaces of n-balls, regular n-simplices, and n-orthoplices in natural dimensions.
Section 3 presents recurrence relations for these geometric objects in integer dimensions, while in
Section 4 they are extended to complex, continuous dimensions. Section 5 refers to regular n-
simplices, n-orthoplices, and n-cubes inscribed in and circumscribed about r-balls in real dimensions.
Section 6 presents complex volumes of n-balls in complex dimensions. Section 7 concludes the
findings of this paper and hints their possible applications.

2. Known non-Recurrence Formulas
The volume of an n-ball (B) is known to be
n/2

T
Ry =—— __R"
v (R), (n/2+1) M

where ['(C — C) is the Euler’s gamma function and R is the n-ball radius. This implies complex n-ball
volumes (cf. Section 6) and becomes

k p2k
"R

Vu (R)y == v

if nis even (n =2k, k € Ny) and

22k ﬂ_kflk! i
Var (R), = N ®
ifnisodd (n=2k—1,k € N).
It is also known [22] that the (n — 1)-dimensional surface of an n-ball can be expressed as
n

S, (R)B =EVn(R)B' )

The volume of a regular n-simplex (S) is known [21, 26] to be
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Jn+1

(), =4

n

A", )

where A is the edge length. A regular n-simplex has n + 1 (n — 1)-facets [22], so its surface is

S, (4)y =(n+1)V, (4. (6)

The volume of n-orthoplex (O) is known [22] to be

V,(4),= el A" (7)

! n!

As n-orthoplex has 2" facets [22], being regular (n — 1)-simplices, its surface is

S, (4), =27, (4),. ®)

n

Formulas (2), (3), (5), and (7) are indefinite in negative dimensions since the factorial is defined
only for non-negative integers.

3. Recurrence Relations in Integer Dimensions

It is known [22] to expresses the volume of an n-ball in terms of the volume of an (n — 2)-ball of
the same radius as a recurrence relation

27R°
Vn(R)B - 7; Vn—2 (R)B’ ©)

where V(R)z := 1 and V| (R)p := 2R. The relation (9) can be extended [25] into negative dimensions as

n+2
V,(R), =R (R), (10)

solving (9) for V,, and assigning new n € Z as the previous n — 2.

A radius recurrence relation [25]

1= , (11)

V,(R), = R, (12)

where “|x]|“ denotes the floor function giving the greatest integer less than or equal to its argument x.
The sequence (11) allows for presenting an n-ball’s volume recurrence relation (12) as a product of the
rational factor f,, the irrational factor 7\|n/2|, and the metric (radius) factor R". The relation (11) can
be analogously as (9) extended [25] into negative dimensions as
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n+2

Sz (13)

7=

which removes the indefiniteness of the factorial present in Formulas (2)-(3). It is also sufficient to
define -, := 1, f; := 1 (for the empty set and point dimension) to initiate (11) or (13).

In the case of regular n-simplices, (5) can be written [25], with Vy(4)s:=1, as a recurrence

relation
. ’n +1
Vn(A)S = l)s 21’13 ? (14)

which removes the indefiniteness of the factorial for n < 1 present in (5). Solving (14) for V,-; and
assigning new n € Z as the previous n — 1, yields [25]

V,(A4), = (15)

which also removes the singularity for n = 0.

In the case of n-orthoplices, Equation (7) can be written [25], with Vy(4)o := 1, as a recurrence
relation

V. (4), = 0),~— (16)

which removes the indefiniteness of the factorial for n < 1 present in (7). Solving (16) for V,-; and
assigning new n € Z as the previous n — 1, yields [25]

v n+l1

n A = I/n+ A N (17)
( )0 1 ( )0 A \/5
which also removes singularity for » = 0 and is zero for integer n < —1.

4. Continuous Relations in Complex Dimensions

Theorem 1.

Recurrence relations (9), (10), (12) (n-balls) are continuous for n € C, wherein for n=-2k—2, k € N,
their values are given in the sense of a limit of a function.

Proof 1.

Comparing (1) with (10) and setting m = n + 2 and k = m/2, yields
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7["/2 n+2
V(R =% pn_ntZ, o p
n( )B r(n/2+1) 27Z_R2 n+2( )B
71."/227[2/2 , 7Z_m/22 ﬂ'k -
R) = n+ V (R) = "= R
n+2( )B (n+2)F(n/2+1) m( )B mr(m/2) kF(k) > (18)

2 2
7 ) il

V.(R), T2+ v.(D), ZWD

n

which recovers (1), as nl'(n/2)/2 =T'(n/2 + 1) for n >0, n € C. On the other hand, (10) corresponds to
(12)

n+2 n+2
(R), =

v, (R)B = Vi fn+27[W2JRn

2R : ) (19)
Vier (R)B =7 n+27z'Ln/2JRnJr2 Ve (R)B = fmﬂ'HL(m_z)/ZJRm = fmﬂL’”/ZJRm
for n € C, which completes the proof. O

Also

lim  #"?D"2™" _ =a-0=0, (20)
n—>-2k-2, keN F(n/fZ _|_1)

where a#0, a € C.

Using (4) and (18) the surface of an n-balls is given by

21—nn7z_n/2 »
S (D) =——D"". 21
() =T -

Theorem 2.

Recurrence relations (14), (15) (regular n-simplices) are continuous for n € C, wherein for n =—k — 1,
k € Ny their values are given in the sense of a limit of a function.

Proof 2.

Expressing the factorial in (5) by the gamma function, comparing (5) with (15), and setting m =n + 1,
yields
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— n+1 A" = n+1 n_I/VHl(A)S 2(n+1)3

ST D120 4 n+2

Nn+1n+2 4

v, (4)

Vi () = ’ (22)
l U(n+1)2""2[(n+1)
J 1 0
Vm(A)S: m\/Z m+1 4 Vn(A)S: n+1n/2A”{ n>
r(mﬂ)zm/z\/; T(n+1)2 +1 n<0
which recovers (5), as ['(n +1) = n! for n € N, and completes the proof. O
Also

lim 9*”/2A”\/n+1;=a-0=0, (23)

n—>—lk—1, keN 1"(” +1)

where a € C.

For n<-1 n-simplex volume formula (22) is imaginary and for » <0 it is a multivalued
function, as n\n/\n® = 1 only for n € R, n> 0. Thus, its general form is

Jn+1 mn«/;

V(A4). = A 24
n( )S l—*(n+1)2n/2 ,n3 ( )
Using (6) and (22) the surface of a regular n-simplex is given by
n(n+1)\/n LT n>l1
S (4). = A" . 25
n( )S I—w(n+1)2(n—l)/2 +1 n<l ( )

For n <0 n-simplex surface formula (25) is imaginary and for » <1 it is a multivalued function, as
(n— DN —1N@m -1 =1 only for n € R, n> 1. Thus, its general form is

n(n+1)\/; e (n—l) n—1 '

- 26
1—‘(n_|_1)2(n—1)/2 (n_1)3 ( )

S, (4); =

Theorem 3.

Recurrence relations (16), (17) (n-orthoplices) are continuous for n € C, wherein for n=—k—1,
k € Ny their values are given in the sense of a limit of a function.

Proof 3.

Expressing the factorial in (7) by the gamma function, comparing (7) with (17), and setting m =n + 1,
yields
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AT L A
n! ['(n+1) o 42
V (A) _ 2(n+l)/2 An+1 27
o = G () ’ @7)
NCX I 4
Vo= A VAo =

which recovers (7), as nI'(n)=T'(n+ 1) forn e C\{n € Z, n<-1} and I'(m + 1) = n! for n € N,, and
completes the proof. O

Using (8) and (27) the surface of an n-orthoplex is given by

nf“WJZAH{l n>1

. 28
I(n+1) +1 n<l %)

Sn (A)O =

For n<0, n ¢ Z n-orthoplex surface formula (28) is imaginary and for » <1 it is a multivalued
function, as (n — IN(n — DN — 1) =1 only for n € R, n> 1. Thus, its general form is

(n+1)/2 _ _
5, (4) <2 (1N L

"0 T (n+1) \/(n—l)3

(29)

Continuous recurrence relations (18)-(29) are shown in Figures 1-4.

Re(V)[

0.5

-4 -3 =2 -l 0 1 2 3 4 5 n

Figure 1. Graphs of the real part of volumes (7) of unit edge length regular n-simplices (red),
n-orthoplices (green), n-cubes (pink), and unit diameter n-balls (blue), along with the integer
recurrence relations (dashed lines) and the branch for n-simplices (dotted line) for n = [—4, 6].

-1
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n
Figure 2. Graphs of volumes (V) of unit edge length regular n-simplices (red), n-orthoplices (green),
and unit diameter n-balls (blue), along with the branch for n-simplices (dotted line) for n = [—4, 6].

Re®) S RS e e e

sl S

253 2 o 0 1 2 3 45 a
Figure 3. Graphs of the real part of surfaces (S) of unit edge length regular n-simplices (red),
n-orthoplices (green), n-cubes (pink), and unit diameter n-balls (blue), along with the integer

recurrence relations (dashed lines) and the branches for n-simplices and n-orthoplices (dotted lines)

for n=[—4, 6].
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Figure 4. Graphs of surfaces (S) of unit edge length regular n-simplices (red), n-orthoplices (green),
and unit diameter n-balls (blue), along with the branches for n-simplices and n-orthoplices
(dotted lines) for n = [—4, 6].

5. Basic Regular Polytopes Inscribed in and Circumscribed About n-Balls

Anyone of the three regular polytopes can be inscribed in and circumscribed about an n-ball,
and this is considered in this section on the basis of the continuous relations presented in the previous
one. The principal branches of their volumes and surfaces are summarized in the Table 1. n-balls are
defined in terms of their diameters, which concept is closer to the concept of the edge length of a

polytope.

Table 1. Volumes and surfaces of regular n-simplices, n-orthoplices, and n-cubes inscribed in and
circumscribed about an n-balls.

inscribed in n-ball (IB) circumscribed about n-ball (CB)
volume/D" surface/D"! volume/D" surface/D"!
—n/2 (n+1)/2 (4-n)/2 (n+1)/2 n/2 (n+1)/2 (2+n)/2 (n+1)/2
) n (n+1) o | 7 (n+1) o | " (n+1 ol " (n+1) P
[ (n+1)2" L(n+1)2"" [(n+1)2" [(n+1)2""
3/2 n/2 n/2+1
) by 2n? ) n M 2n" )
F(n+1) F(n+1) F(n+1) F(n+1)
(©) n"?w 21732 ) 1@ 2n®

(1) one branch, (2) two branches.
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5.1 Regular n-Simplices Inscribed in and Circumscribed About n-Balls

The diameter Dpcs an n-ball circumscribed about a regular n-simplex (BCS) is known [26] to be

S

where A is the edge length. Hence, the edge length Ay of a regular n-simplex inscribed (S/B) inside an
n-ball (B) with diameter D is

A, (30)

= , 31
SIB \/ﬂ (3D)

so that its volume (22) becomes

v, (ASIB )s =

n"? (n +1)(n+l)/2 D { 1 n>0 32)

[(n+1)2" 1 n<0’
as shown in in Figure 5. For n <—1 the inscribed n-simplex volume is imaginary and divergent with

decreasing n, for n <0 it branches, and is complex for —1 <n <0, where in this case for both branches
it is right-handed towards negative infinity or the branch point.

-Re(I:’S,B).- o

Im(V,,)

0.5- |
0- |
2
—0.5+
-1 : Im(V)

n
Figure 5. Graphs of volumes (V) of regular n-simplices (red) inscribed in unit diameter n-balls
and volumes of unit diameter n-balls (blue) for n = [—4, 6] (inset for n = [—1, 0]).
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Re(S)
s
oY /i TN

2
=57 v _ Im(S)
B3 2 0 1 2 3y U2

n
Figure 6. Graphs of surfaces (S) of regular n-simplices (red) inscribed in unit diameter n-balls
and surfaces of unit diameter n-balls (blue) for n = [—4, 6] (inset for n = [—1, 0]).

Similarly, the surface (25) of a regular inscribed n-simplex with edge length A given by (31)
becomes

a2 (1)

Sn (ASIB )S = D”_] {

F(n + 1)2”—1

1 n>1
+1 n<l’

(33)

as shown in in Figure 6. For n <—1 the inscribed n-simplex surface is imaginary and divergent with
decreasing n, for n <1 it branches, and is complex for —1 < n <0, where in this case for both branches
it is right-handed towards negative infinity or the branch point.

The diameter Dy of an n-ball inscribed inside a regular n-simplex (BI1S) is known [26] to be

2,
Jnn+1""

where A4 is the edge length. Hence, the edge length Agcp of a regular n-simplex circumscribed (SCB)
about an n-ball (B) with diameter D is

Dy = (34)

ASCB :%D,

(35)

so that its volume (22) becomes
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v, (ASCB )S =

w2 (n + 1)(n+1)/2 . { 1 n>0 36)

['(n+1)2" +1 n<0’

as shown in in Figure 7. For n <0 the circumscribed n-simplex volume branches, is complex and
convergent to zero with decreasing n, where for both branches it is left-handed towards negative
infinity or the branch point, and for 0 <z <1 it is smaller [sic] than the volume of the inscribed n-ball.
Also it is real for n=-k/2, k € N, as shown in the drawing, and as follows from numerical
calculations. An analytic solution requires further research.

Similarly, the surface (25) of a regular circumscribed n-simplex with edge length Agcz (35) becomes

(37)

a2 (g )2 (1 n>1
S, (ASCB)S = ( ) ! 1{

I'(n+1)2"" +1 n<l’

as shown in in Figure 8. For n <1 the circumscribed n-simplex surface formula (37) branches, for
n <0 is complex and divergent with decreasing n, where for both branches it is left-handed towards
negative infinity or the branch point, and for 0 <n <1 it is smaller than the surface of the inscribed n-
ball. Also it is real for n=—k/2, k € Ny, as shown in the drawing, and as follows from numerical
calculations. An analytic solution requires further research.

: Re(V,)

1m(Vie,)

-4 3 5 _ | _
Figure 7. Graphs of volumes (V) of regular n-simplices (red) circumscribed about unit diameter 7-
balls and volumes of unit diameter n-balls (blue) for n = [—4, 6] (inset for n =[-30, 0]).
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B3 2 0 1 2 3y U2

n
Figure 8. Graphs of surfaces (S) of regular n-simplices (red) circumscribed about unit diameter n-balls
and surfaces of unit diameter n-balls (blue) for n = [—4, 6] (inset for n = [-30, 0]).

5.2 n-Orthoplices Inscribed in and Circumscribed About n-Balls
The diameter Dy of an n-ball circumscribed about an n-orthoplex (BCO) is known [27] to be

Dyeo = \/EA > (38)
where A is the edge length. Hence, the edge length 4¢3 of an n-orthoplex inscribed inside an n-ball
(OIB) with diameter D is

1

AOIB = ﬁD 5 (39)

so that its volume (27) becomes
1 "
I/11(14013)0 zr(l’l—l-l)D s (40)

as shown in in Figure 9. The inscribed n-orthoplex volume formula (40) is real for » € R, and for
0 <n <1 it is intriguingly larger than the volume of the circumscribing n-ball.

- 13/22 -


https://doi.org/10.20944/preprints202209.0089.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 September 2022

d0i:10.20944/preprints202209.0089.v1

| 0 1 2 3 4 5
Figure 9. Graphs of volumes (V) of n-orthoplices (green) inscribed in unit diameter

n
n-balls and volumes of unit diameter n-balls (blue) for n = [—4, 6].

4 3

- // A/‘// e RG(S()'IB)-

n 0 1 2 .3 4 5 6 2
Figure 10. Graphs of surfaces (S) of n-orthoplices (gree

n) inscribed in unit diameter n-balls
and surfaces of unit diameter n-balls (blue) for n =[—4, 6].

Similarly, the surface (28) of the inscribed n-orthoplex with edge length 4 given by (39)
becomes
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2n? L1 n>1
S (4 =———D" , 41
o (Aous ) C(n+1) {il n<l @1

as shown in in Figure 10. For n <1 inscribed n-orthoplex surface branches, and for n <-1 is
imaginary and divergent with decreasing ».

The diameter Dy, of an n-ball inscribed inside an n-orthoplex (BIO) is known [27] to be

2
- . o

where A is the edge length. Hence, the edge length Aocp of an n-orthoplex circumscribed about an n-

ball (OCB) with diameter D is
n
Aocy = \/;D ) (43)

n/2

so that its volume (27) becomes

n

_2 pr
F(n+1) ’ 9

v, (AOCB )0 =

as shown in Figure 11. Circumscribed n-orthoplex volume is a singlevalued function, is complex for
n <0, oscillatory divergent with decreasing n, where it is left-handed towards negative infinity or the
branch point, and crossing the quadrants of the complex plane in the order {Re(Vocp) >0,
Im(Vocp) <0}, {Re(Vocp) >0, Im(Vocs) >0}, {Re(Voc) <0, Im(Vocp) >0}, and {Re(Vocs) <0,
Im(Vocp) <0}. For 0 <n <1 it is smaller than the volume of the inscribed n-ball.

Re(")[
Re(V) 1k
1.5
19 05F
0.5 A
(i
| | v
2 [
0.5 050 1
i
—11; - Im(V) | |
“12-11-10-9 -8 -7 —6-5 -4 3 _ — [i 1 P T T T T S S N S T N S S
n fPHE2 0123456 11109 8 76543210123 45n

- 15/22 -


https://doi.org/10.20944/preprints202209.0089.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 September 2022 d0i:10.20944/preprints202209.0089.v1

Im(¥) [ Re(") [
15F
l,
] |-
| 05¢
0.5F |
| |
0 0 e
! s
-0.50 I
| | —0.5
—1H
‘
|| 71 |-
-15F |
-2 L i i i i i i i i i i i i i i i i i -15 i i /[ i i i
S12-11-10-9 8 -7 6 -5 4 3-2-1 0 1 2 3 4 5 a A5 -1 -0.5 0 0.5 1 Im(»)

Figure 11. Graphs of volumes (V) of n-orthoplices (green) circumscribed about unit diameter n-balls
and volumes of unit diameter n-balls (blue) for n =[—12, 6].

Similarly, the surface (28) of the circumscribed n-orthoplex with edge length 4 given by (43)
becomes

2nn/2+1 1 n>1

n—1
R L N “)
as shown in Figure 12. Circumscribed n-orthoplex surface branches for n < 1, is complex for n <0 and
oscillatory divergent with decreasing n, where for both branches it is left-handed towards negative
infinity or the branch point, and the principal branch crosses the quadrants of the complex plane in the
order {Re(Vocp) <0, Im(Vocp) > 0}, {Re(Vocs) <0, Im(Vocs) <0}, {Re(Vocs) > 0, Im(Vocp) < 0}, and
{Re(Vocg) > 0, Im(Vocp) > 0}. Also it is zero for negative, integer n.
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Figure 12. Graphs of surfaces (S) of n-orthoplices (green) circumscribed about unit diameter n-balls
and surfaces of unit diameter n-balls (blue) for n =[—12, 6].

5.3 n-Cubes Inscribed in and Circumscribed About n-Balls

The edge length Accp of an n-cube circumscribed about an n-ball (CCB) corresponds to the
diameter D of this n-ball. Thus, the volume of this cube is simply V,(D)ccs = D", and the surface is
Su(D)ces = 2nD"".

The edge length A of an n-cube inscribed inside an n-ball (CIB) of diameter D is A¢jz = DN,

which is singular for n = 0 and complex for n < 0, rendering [25] the following volume and the surface
of an n-cube inscribed in an n-ball

V,(D),, =n""D", (46)

S,(D),, =2n"""D"". 47)

The reflection relation can be obtained setting m = —n in (46), yielding [25] the volume and the
surface

V, (D), =i"D"m">, (48)

S, (D)., ==2i""'m>" D, (49)

which are complex for m € R. Volumes (46) and (48) correspond to each other [25] for n <0, n € R
and for n = 2k, k € Z, as shown in Figure 13 (left column). Surfaces (47) and (49) correspond to each
other [25] forn € R, n <0, and for n =2k — 1, k € Z, as shown in Figure 13 (right column).

Furthermore, the following holds [25] for (46) and (48) with m =n

V(D)o V(D) = D' "D =i (50)

CIB m

For n > 0 (by convention 0° := 1) the inscribed n-cube volume (46) is real, complex if n <0,
becoming real if n is negative and even and imaginary if # is negative and odd, and divergent with
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decreasing n. For 0 <n <1 it is larger than the volume of the circumscribing n-ball. For n > 0 the
inscribed n-cube surface (47) is real, complex if n <0, becoming real if n is negative and odd and
imaginary if n is negative and even, and divergent with decreasing n. For 0 <n <1 it is smaller than
the surface of the circumscribing x-ball.

Re(N[ Re(S) [ e
/// /
1t ; 2t v
0.5¢ N 1r
0 of
0.5 -1
71 72 L.
715 L I L I - L J 73 L L L L J
“15 -1 0.5 0 0.5 1 Im(») 33 -2 -1 0 1 2 Im(S)

Figure 13. Graphs of volumes of n-cubes (pink) inscribed in unit diameter #-balls with the reflection
relation (cyan) and volumes of unit diameter n-balls (blue) for n = [-6, 6].

6. The volume of an n-Ball in Complex Dimensions

The gamma function is defined for all complex numbers except the non-positive integers. Thus
[28], for n=a+ ib, where if n € Z, a>—1

7" = g2 a2 {cos (gln(ﬂ)J +isin (gln(ﬁ)ﬂ : (51)

R"=R“" =R* [cos (bln(R)) +isin (bln(R))] , (52)

the volume (1) and surface (4) become
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(53)

(54)

+ sin(a)cos(b)

where we have used cos(a)cos(b) — sin(a)sin(b) = cos(a + b) and cos(a)sin(b)

sin(a + b), as shown in Figure 14 for unit radius n-balls.
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Im(n) -2 -0 Re(n) Im(m) 2 -0 Re(n)

Figure 14. Graphs of complex volumes (}) and surfaces (S) of unit radius #-balls in complex
dimensions n = a + ib for a =[-10, 15], b =[-2, 2].

In particular for n =3 + ib, b € R (spacetime dimensionality) equation (53) becomes

 oos| bin(RV) | +isin] bin( RV ||

V(R)B:ﬁER3 ; >
F[3zlb+1j

which reduces to familiar V3(R)z = 4nR*/3 for n =3+ 0i, i.e. at the present moment. Note that the
imaginary part of the volume (53), in a way, establishes the arrow of time.

(55)

7. Conclusion

It was shown that the recurrence relations (9), (10), (12), and (14)-(17) are continuous for n € C
and can be expressed by the gamma function (18), (22), (27), wherein for n =2k — 2, k € Ny in the
case of n-balls, and for n =—k — 1, k € Nj in the case of n-simplices and n-orthoplices their values are
given in the sense of a limit of a function. It was further shown that the volume of an n-simplex is a
multivalued function for n <0, and thus the surfaces of n-simplices and n-orthoplices are also
multivalued functions for n < 1.

Applications of these formulas to basic regular polytopes inscribed in and circumscribed about
an n-balls reveals the properties of these geometric objects in negative, real dimensions. In particular it
is shown that the volume and surface of a regular n-simplex inscribed in an r-ball is complex for
—1 <n <0, imaginary for n <—1, and divergent with decreasing »; the volume and surface of a regular
n-simplex circumscribed about an n-ball is complex for n <0 and left-handedly respectively
convergent to zero or divergent towards infinity; and the volume and surface of an n-orthoplex
circumscribed about an x-ball is complex for # <0 and oscillatory divergent towards infinity with
decreasing n.

The results of this study could perhaps be applied in linguistic statistics, where the dimension in
the distribution for frequency dictionaries is chosen to be negative [4], in fog computing, where n-
simplex is related to a full mesh pattern, n-orthoplex is linked to a quasi-full mesh structure, and »n-
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cube is referred to as a certain type of partial mesh layout [29], and in molecular physics and
crystallography.
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