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Abstract: We developed an artificial neural network as an air quality model and estimated the scope 

of the impact of climate change on future (until 2064) summertime trends of hourly Ozone (O3) 

concentrations at an urban air quality station in Tehran, Iran. Our developed scenarios assume that 

present-time emissions conditions of O3 precursors will remain constant in the future. Therefore, 

only the impact of climate change on future O3 concentrations is investigated in this study. GCM 

projections indicate more favorable climate conditions for O3 formation over the study area in the 

future: the surface temperature increases over all months of the year, solar radiation increases, and 

precipitation decreases in future summers, and summertime daily maximum temperature increases 

about 1.2 ∘C to 3 ∘C until 2064. In the scenario based on present-time O3 conditions in 2012 summer 

without any axceedances, the summertime exceedance days of 8-hr O3 standard are projected to 

increase in the future by about 4.2 days in the short term and about 12.3 days in the mid-term. Sim-

ilarly, in the scenario based on present-time O3 conditions in 2010 summer with 58 days of exceed-

ance from 8-hr O3 standard, exceedances are projected to increase about 4.5 days in the short term 

and about 14.1 days in the mid-term. Moreover, the number of Unhealthy and Very Unhealthy days 

in 8-hr AQI is also projected to increase based on pollution scenarios of both summers. 

Keywords: Ozone; climate change; air quality modeling; artificial neural networks; statistical 

downscaling; Tehran 

 

1. Introduction 

Intergovernmental Panel on Climate Change (IPCC) projections indicate that climate 

change may influence future air quality and the magnitude of the impact varies from one 

region to another (IPCC, 2007). One of the challenges associated with air quality studies 

is to quantify this influence on air pollutants such as Ozone (O3) and PM which are sen-

sitive to climate changes (Jacob and Winner, 2009). Surface O3, which is one of the most 

important air pollutants, degrades public health by damaging the respiratory system. It is 

a secondary pollutant which means it is not emitted from a particular source but is pro-

duced through complex photochemical reactions among its biogenic and anthropogenic 

precursors such as NOx, NMVOC, CO and CH4 in the presence of high temperature and 

abundant sunlight (Jacob and Winner, 2009; Seinfeld and Pandis, 2006; Steiner et al., 2006). 

NOx and CO come from combustion sources, but NMVOC and CH4 have several natural 

and anthropogenic sources (Guenther et al., 2000; Sillman, 1999). Therefore, due to its pho-

tochemical nature, O3 concentrations generally peak during the summer season when 

meteorological conditions are often favorable for its formation. O3 has an atmospheric 

lifetime of about few days in the boundary layer with global sinks of dry deposition and 
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photolysis in the presence of water vapor (Jacob and Winner, 2009). This oxidant pollutant 

irritates pulmonary system and decreases lung function. O3 is believed to be associated 

with premature mortality and exposure to its elevated concentrations irritates people who 

have respiratory diseases such as asthma and pneumonia (Bell et al., 2007; Ebi and 

McGregor, 2008; Gryparis et al., 2004). 

Meteorological parameters play an important role in O3 production. temperature, 

solar radiation, atmospheric moisture, wind, mixing height, precipitation and cloud cover 

are identified to be correlated with O3 (Camalier et al., 2007; Dawson et al., 2007; Leiben-

sperger et al., 2008; Mott et al., 2005; Ordóñez et al., 2005). Among these variables, O3 is 

highly sensitive to temperature (Cox and Chu, 1996; Dawson et al., 2007; Sillman and Sam-

son, 1995). The emission of biogenic VOCs which is a temperature dependent process can 

produce a considerable amount of O3 in high temperatures (Fuentes et al., 2000; Lee and 

Wang, 2006; Narumi et al., 2009). However, in addition to temperature, solar radiation is 

also necessary for the photochemical process of O3 formation in the atmosphere. The cor-

relation between these variables is significant especially in summers when high radiation 

and temperature result in summertime high O3 concentrations (Ordóñez et al., 2005). 

There are two major sources of uncertainty in projections of the impact of climate 

change on future O3 formation: estimating the future emissions of O3 precursors and pro-

jecting the meteorological factors that strongly influence air quality (Dawson et al., 2007; 

Ebi and McGregor, 2008; Steiner et al., 2006). Studies that have investigated the influence 

of projected changes in climate variables on future O3 concentrations by assuming no 

changes in the emissions of O3 precursors (Dawson et al., 2009; Liao et al., 2006; Murazaki 

and Hess, 2006; Racherla and Adams, 2006) indicate that the projected changes in climate 

variables are expected to increase future O3 concentration levels over and near polluted 

regions. The extent of this increase, although varying in different regions, highlights the 

role of future meteorological conditions in O3 production and suggests that future mete-

orological parameters will shift toward more favorable conditions for O3 formation (Mu-

razaki and Hess, 2006). We can perform sensitivity studies to evaluate how much changes 

in future emissions and climate can affect future O3 production (Dawson et al., 2007; Mill-

stein and Harley, 2009; Orru et al., 2013; Steiner et al., 2006). Steiner et al. (2006) found that 

combined climate perturbations (such as increases in temperature and water vapor to-

gether with temperature-induced increase in biogenic VOC emissions) yield to increased 

peak O3 concentrations. Their results indicate that sensitivity of O3 to climate change is 

regionally different and the sensitive regions may experience more exceedances despite 

the present emission reduction policies and therefore additional control on pollution 

emission reductions will be needed. 

To study the impact of climate change on future O3 air quality both statistical and 

dynamical approaches can be used (Wise, 2009). Dynamical models have distinct ad-

vantages over statistical approaches. However, some benefits of statistical models cannot 

be ignored. Statistical models are widely known for their computationally inexpensive 

cost and capability of rapid climate change impact assessment by employing various cli-

mate models and scenarios. For instance, Varotsos et al. (2013) developed a statistical 

model between daily maximum temperature and hourly O3 concentrations over Europe 

for the periods of 2021–2050 and 2071–2100 to investigate the impact of climate change on 

the number of days with O3 exceedances of 60 ppb. They observed that higher daily tem-

peratures due to climate change will result in considerable increases in O3 exceedance 

days in the future. Also, one can use a statistical technique to downscale the GCM data 

and to model the relationship between observed O3 concentrations and meteorological 

variables to project the potential impact of future meteorology on O3 exceedances of 84 

ppb (Holloway et al., 2008). Due to the coarse spatial resolution of GCM models, some of 

the small-scale but important processes are not captured in GCM simulations (Holloway 

et al., 2008). Also, dynamical models that are developed based on current physical param-

eterizations may not be able to perfectly simulate future changes in climate variables. For 

instance, Lynn et al. (Lynn et al., 2004) showed that in order for climate change simulations 
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to provide a realistic estimate of changes in temperature, models should correctly simulate 

the diurnal precipitation over the study region. 

Climate change projections (IPCC, 2021) indicate that projected changes in climate 

variables such as precipitation and temperature (Mosadegh and Babaeian, 2022a) will im-

pact different components of the climate system with different magnitude and confidence 

and in all regions of the world (Mejia et al., 2018; Mosadegh et al., 2018; Mosadegh and 

Nolin, 2020). Several studies have addressed the issue of air quality in Tehran (Arhami et 

al., 2013; Ashrafi, 2012; Atash, 2007; Hosseinpoor et al., 2005; Hoveidi et al., 2013). How-

ever, a few studies have investigated uncertainty of those climate projections over the 21st 

century (Mosadegh and Babaeian, 2022b), and the extent that the projected climate varia-

bles can affect air pollution of Tehran region (Mosadegh, 2013). The present study is the 

first attempt to evaluate the regional impact of climate change on air quality in Iran. The 

aim of this study is to develop and apply a statistical approach to investigate the impact 

of climate change on future O3 air quality on a local scale in an urban environment. In this 

study, an artificial neural network was used as a predictive tool which is capable of cap-

turing nonlinearities in atmospheric processes such as O3 formations (Comrie, 1997; Gard-

ner and Dorling, 1998). The projected O3 concentrations were analyzed based on exceed-

ances of O3 air quality standards and health-related air quality indices. To simplify the 

impact assessment process, only climate variables of solar radiation and temperature to-

gether with pollutants of NO and NO2 were considered in the simulation process. In this 

study, the relationship between O3 and local meteorology was partially accounted by con-

sidering hourly temperature and solar radiation values in the development process of the 

Artificial Neural Network as the air quality forecast model (AQFM). Emissions of O3 pre-

cursors were also taken into account but were considered constant based on current con-

ditions. Therefore, only the impact of climate change was investigated on future O3 con-

centrations in Tehran. 

2. Methodology 

This study is comprised of a few major steps: in the first step, we downscaled GCM 

data under different emission scenarios. In the second step, we downscaled the daily cli-

mate variables from previous step from daily scale to sub-daily (hourly) scale. In the third 

step, we developed input scenarios and developed an artificial neural network as the 

AQFM, and in the final step we assessed the impact of climate change on future O3 air 

quality. These steps are described in detail in next sections. 

2.1. Case study and data 

Tehran, the capital of Iran, is the largest city in Iran with the population of more than 

10 million people and with the area of approximately 570 square kilometers. Tehran is 

surrounded by mountains to the north and the east, and the wind directions are from the 

west and the south. Tehran suffers from serious air pollution problems. Motor vehicles 

are considered as one of the major sources of air pollution in Tehran metropolitan area 

due to their high emission of major pollutants such as CO, PM10 and NO2 (Halek et al., 

2004). In Tehran, air pollution concentrations are monitored by Air Quality Control Com-

pany (AQCC) and Department of Environment (DOE) in several air quality stations. In 

this study, the air quality data were obtained from the AQCC Golbarg air quality moni-

toring station east of Tehran at 35∘ 43′ N and 51∘ 30′ E. In order to develop and evaluate 

our AQFM (ANN), hourly monitored Nitrogen Monoxide (NO), Nitrogen Dioxide (NO2), 

O3, Solar Radiation (SR) and Temperature (T) collected at this station during 2009–2012 

were used. Meteorological data were obtained from the Dushan Tappeh station, the near-

est synoptic station located at 35∘ 42′ N and 51∘ 20′ E with the height of 1209 m above 

sea level. From this station daily minimum temperature, daily maximum temperature, 

total precipitation and total sunshine hours during 1972–2009 (baseline period) were used 

to calibrate the LARS-WG statistical downscaling model. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 September 2022                   doi:10.20944/preprints202209.0072.v1

https://doi.org/10.20944/preprints202209.0072.v1


 4 of 20 
 

 

2.2. Statistical downscaling with LARS-WG 

Different dynamic and statistical models have been developed to downscale the 

GCM outputs (Wilby et al., 2004). Stochastic weather generators (WG) are one of the sta-

tistical downscaling tools which generate daily time series of climate variables (Semenov, 

2007; Wilks and Wilby, 1999). In this study, Long Ashton Research Stochastic Weather 

Generator (LARS-WG) is employed to downscale the GCM projections and to estimate 

future changes in temperatures, solar radiation and precipitation over the study area. 

LARS-WG (Semenov and Barrow, 2002) is a stochastic weather generator (WG). The 

model takes observed daily minimum temperature, maximum temperature, total precip-

itation and total sunshine hours as its inputs and generates synthetic daily time series at 

any local scale. LARS-WG generates local-scale climate change scenarios for a given site 

by adjusting baseline parameters, calculated from baseline observed weather at the site, 

with projected GCM 𝛥-changes, calculated based on an SRES emission scenario and a fu-

ture climate period, for each climatic variable (Semenov and Stratonovitch, 2010). More 

details about the application of LARS-WG model can be found in Mosadegh and Babaeian 

(2022a, 2022b). The ability of the LARS-WG to simulate the baseline climate variables at 

the given site was evaluated by calculating the Pierson correlation coefficient (R) and error 

indices such as mean bias error (MBE), mean absolute error (MAE) and root mean square 

error (RMSE). 

2.3. The AQFM 

With recent advances in deep learning for pattern recognition, performance of these 

networks for the task of prediction in different fields of environmental science has pro-

gressed even with small amount of training data (Alibak et al., 2022; Nejatishahidin et al., 

2022). Application of artificial neural networks (ANN), especially multilayer perceptions 

(MLP) in the field of air quality has been evaluated in many studies (Chaloulakou et al., 

2003; Comrie, 1997; Niska et al., 2004; Schlink et al., 2003; Sousa et al., 2007). Application 

of the neural networks in forecasting O3 concentrations has been compared with other 

statistical tools such as multivariate linear regression models, and the results indicate that 

the ANNs especially the MLP neural network has a better performance over other tech-

niques in modeling the O3 nonlinear associations (Gardner and Dorling, 1998). Further-

more, it can model highly nonlinear processes by its activation and transfer functions in 

the hidden layers (Rahnama and Noury, 2008). These features make MLP a suitable tool 

for modeling complex, nonlinear phenomena such as O3 formation in the atmosphere. 

In this study, a four-layer MLP with a 4-10-10-1 (4 inputs with 1 output) network 

structure was used. Tangent sigmoid transfer functions (tansig) were used in the hidden 

layers, but a linear transfer function (purlin) was used in the output layer. For training the 

network, the Levenberg-Marquardt back-propagation learning rule (trainlm) was used 

due to its fast speed and accuracy in training the system (Beale et al., 2012). 

To determine the model inputs, we considered effective variables in O3 production 

(Ordóñez et al., 2005) and the limited number of available monitored variables at the 

Golbarg air quality control station. Finally, we selected Nitrogen Oxide (NO), Nitrogen 

Dioxide (NO2) and O3 as the air quality variables and temperature (T) and Solar Radiation 

(SR) as climate variables to develop the AQFM. It is noteworthy that the selected variables 

were monitored at 𝐺𝑜𝑙𝑏𝑎𝑟𝑔 air quality monitoring stations during the summers (June, 

July and August, hereafter JJA) of 2009–2012. 

To develop the AQFM, data samples were initially investigated, and defective data 

samples were excluded from the training data set. The selection of the datasets for devel-

oping the forecast model was limited to the 8 am to 7 pm interval which is the most effec-

tive period of O3 production during the day. Finally, about 4000 hourly data samples were 

obtained for the summers (JJA) of 2009 to 2012 to develop the forecast model. The training 

data set was shuffled randomly to scatter maximum and minimum values evenly over the 

entire training data set. Then, data samples were divided to three subsets of training, test 
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and validation sets with 60-20-20 percent of the data set, respectively. Since the input and 

target variables did not have a uniform range of values, a normalization method was used 

to scale the input variables to have a certain range. In this study, normalization of the 

variables was performed by the 𝑚𝑎𝑝𝑚𝑖𝑛𝑚𝑎𝑥 function in MATLAB to scale the data to 

the range [-1, 1] before fitting data to the main network. In order to achieve the best rela-

tionship between input variables and output target (O3), different network architectures 

were examined. Finally, the network structure with the smaller error and the higher cor-

relation was selected as the optimal predictive model. 

In order to evaluate the performance of the AQFM, we calculated the correlation co-

efficient (R) and statistical parameters such as mean bias error (MBE), mean absolute error 

(MAE) and root mean square error (RMSE). After ensuring the accuracy of the simulations 

of the developed model to reproduce hourly O3 concentrations with regard to high cor-

relation coefficient and low error indices compared to similar studies (Arhami et al., 2013; 

Comrie, 1997; Sousa et al., 2007), performance of the forecast model was assessed based 

on two performance indices. In this study, the prediction of exceedances of desired O3 air 

quality concentration thresholds were more important than predicting the exact O3 con-

centration values. Therefore, we developed 2 metrics to define capturing the occasions in 

which the O3 concentrations exceed a desired O3 air quality threshold. The 2 performance 

indices of PI1 and PI2 are described bellow: 

PI1: The percentage of correctly identified occasions in which O3 concentrations ex-

ceeded a desired threshold. 

PI2: The percentage of incorrectly identified occasions. 

PI1 indicates the forecasting accuracy of the predicting model at each concentration 

threshold. This index represents the percentage of the cases that both monitored values 

and corresponding simulated values exceed a desired concentration threshold and conse-

quently the model is successful in predicting the exceedance. PI2 indicates the overesti-

mation error of the model at each concentration threshold. This index represents the per-

centage of cases that observations do not exceed the desired concentration threshold, but 

the model incorrectly indicates that the corresponding simulated values exceed the de-

sired threshold. 

In order to assess the accuracy of the AQFM in simulating the exceedances, several 

important O3 concentration thresholds were considered from various EPA ozone air qual-

ity standards and indices. The test data set of the model was examined to assess the accu-

racy of the model in predicting the exceedances. The investigated EPA thresholds are sig-

nificant levels of O3 concentrations in 1-hr O3 air quality standard and air quality index 

(AQI). Exceeding these threshold concentrations results in occurrence of an Unhealthy day 

(O3 concentration above 125 ppb) and a Very Unhealthy day (O3 concentrations above 205 

ppb) from AQI perspective, and occurrence of a polluted day (O3 concentrations above 

120 ppb) from 1-hr O3 standard perspective. In addition to mentioned thresholds, accu-

racy of the forecast model in predicting exceedances of other concentration thresholds (25 

ppb and 45 ppb) were also evaluated to enable us to compare the performance of the de-

veloped model with similar studies. 

2.4. Temporal (sub-daily) downscaling  

LARS-WG generates minimum and maximum temperature values for each single 

day. Solar radiation is also generated in 𝑀𝑗/𝑚2. 𝑑𝑎𝑦 and represents the total solar radia-

tion reaching the earth surface in a single day. However, the AQFM was developed based 

on hourly (sub-daily) variables and received hourly temperature and radiation values as 

its inputs. For the LARS-WG output to match the AQFM inputs in hourly (sub-daily) scale, 

we developed the diurnal distribution equations of the temperature and solar radiation at 

the given site to calculate diurnal distribution of these variables. 

2.4.1. Diurnal patterns of future temperature 
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Accurately estimating the diurnal patterns of temperature in the future is important 

in assessing the impact of climate change on peak O3 concentration levels (Millstein and 

Harley, 2009). To obtain future hourly temperatures, the diurnal pattern of future temper-

ature was anticipated by developing a sinusoidal equation as a function of time of day 

(Ephrath et al., 1996)  

𝑇𝑎 = 𝑇𝑚𝑖𝑛 + (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛) ∗ 𝑆𝑡    (1) 

where 𝑇𝑎 is the air temperature during daytime, 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥  are the minimum 

and maximum air temperature respectively and 𝑆𝑡 is a function of time 𝑡, ranging be-

tween 0 and 1, which is defined as 

𝑆𝑡 = 𝑠𝑖𝑛(𝜋
𝑡−𝐿𝑆𝐻+

𝐷𝐿

2

𝐷𝐿+2𝑃
)     (2) 

where 𝐷𝐿 is the day length, 𝐿𝑆𝐻 is the local time of maximum solar height during 

the day and 𝑃 is the delay in the maximum air temperature with respect to the time of 

maximum solar height at the site. 

To estimate the air temperature at night, a declining exponential equation was used 

(Ephrath et al., 1996) 

𝑇𝑎 = 𝐴 + 𝐵𝑒𝑥𝑝(−
𝑡

𝜏
)     (3) 

which was developed to 

𝑇𝑎 =
𝑇𝑚𝑖𝑛(𝐽+1)−𝑇𝑠𝑒𝑥𝑝(−

𝛼

𝜏
+(𝑇𝑠−𝑇𝑚𝑖𝑛(𝐽+1)))𝑒𝑥𝑝(

𝑡𝑎−𝑡𝑠
𝜏

)

1−𝑒𝑥𝑝(−
𝛼

𝜏
)

  (4) 

where 𝜏 is a time coefficient which was considered 4; 𝑡𝑠 and 𝑡𝑎 are the time of sun-

set and the current time, respectively, and 𝛼 is the night length (𝛼 = 24 - DL). Values of 

𝐷𝐿, 𝐿𝑆𝐻 and 𝑃 were extracted from temperature and solar radiation graphs which were 

obtained by studying the variability of parameters during the observation period in the 

station under study. After inserting these parameters in the equations and by using the 

daily minimum and maximum temperature from LARS-WG outputs, hourly temperature 

values were calculated. 

2.4.2. Diurnal patterns of future radiation 

LARS-WG generates its solar radiation output in 𝑀𝑗/𝑚2. 𝑑𝑎𝑦 as the total daily radi-

ation received by the earth surface in a single day. However, the AQFM accepts hourly 

values in 𝑊/𝑚2 as its radiation input. To match the scale of LARS-WG radiation output 

to the scale of the inputs to the air quality model, some equations were developed to esti-

mate the diurnal patterns of solar radiation. The diurnal radiation curve was calculated 

by obtaining parameters such as daily total radiation (𝑅𝑔), day length (𝐷𝐿) and solar ele-

vation (𝑠𝑖𝑛𝛽), computed from the latitude of the site (𝐿, radians), the solar declination 

angle (𝛿, radians) and time of the day (𝑡𝑎). To compute the sine of the solar elevation (𝑠𝑖𝑛𝛽) 

some intermediate parameters were needed: 𝑆𝐷, the seasonal offset of the sine of the solar 

height 

𝑆𝐷 = 𝑠𝑖𝑛(𝐿) ∗ 𝑠𝑖𝑛(𝛿)    (5) 

and 𝐶𝐷, the amplitude of the sine of the solar height 

𝐶𝐷 = 𝑐𝑜𝑠(𝐿) ∗ 𝑐𝑜𝑠(𝛿)    (6) 

The sine of the solar elevation, 𝑠𝑖𝑛𝛽, is calculated as 

𝑠𝑖𝑛𝛽 = 𝑆𝐷 + 𝐶𝐷 ∗ 𝑐𝑜𝑠(𝜋
𝑡𝑎−𝐿𝑆𝐻

12
)  (7) 

where 𝑡𝑎 is the current time and 𝐿𝑆𝐻 is the time of maximum solar height. Instan-

taneous radiation (𝑅𝑔) is computed as 

𝑅𝑔 = 𝑅𝑔(𝑡𝑜𝑡) ∗ 𝑠𝑖𝑛𝛽 ∗
1+𝐶∗𝑠𝑖𝑛𝛽

𝐷𝑆𝐵𝐸∗3600
  (8) 

where 𝐷𝑆𝐵𝐸 is the daily integral of 𝑠𝑖𝑛𝛽(1 + 𝑠𝑖𝑛𝛽) from sunrise to sunset, calcu-

lated as 

𝐷𝑆𝐵𝐸 =  𝑎𝑟𝑐𝑐𝑜𝑠(−
𝑆𝐷

𝐶𝐷
)

24

𝜋
(𝑆𝐷 + 𝐶 ∗ 𝑆𝐷2 +

𝐶∗𝐶𝐷2

2
)   + 12 ∗ 𝐶𝐷 ∗ (2 + 3𝐶 ∗ 𝑆𝐷) ∗

√1−
𝑆𝐷

𝐶𝐷

2

𝜋
 (9) 
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The parameter 𝐶 (Eqs. (8) and (9)) is a constant meteorological variable, and is con-

sidered equal to 0.4 (Spitters et al., 1986). In order to calculate 𝑆𝐷 and 𝐶𝐷, a parameter 

called 𝛿 is used to represent the solar declination angle. For obtaining hourly values of 

solar declination angle, proposed equations by Jacobson (Jacobson, 2005) were used 

𝛿 = 𝑎𝑟𝑐𝑠𝑖𝑛(𝑠𝑖𝑛𝜀𝑜𝑏 ∗ 𝑠𝑖𝑛𝜆𝑒𝑐)   (10) 

where 𝜆𝑒𝑐  represents the ecliptic longitude of the Sun and 𝜀𝑜𝑏 represents the obliq-

uity of the ecliptic. The ecliptic is the mean plane of the orbit of the Earth when it moves 

around the Sun. The obliquity of the ecliptic represents the angle between the plane of the 

Earth’s Equator and the plane of the ecliptic, which is approximated as 

𝜀𝑜𝑏 = 23∘. 439 − 0∘. 0000004𝑁𝐽𝐷  (11) 

where 

𝑁𝐽𝐷 = 364.5 + (𝑌 − 2001) ∗ 365 + 𝐷𝐿 + 𝐷𝐽 (12) 

𝐷𝐿 = {|
(𝑌−2001)

4
|   𝑌 ≥ 2001  𝑜𝑟 |

(𝑌−2000)

4
− 1|   𝑌 < 2001}   (13) 

where 𝑁𝐽𝐷 represents the number of days from the beginning of Julian year 2000. In 

Eqs. (12) and (13), 𝑌 is the current year, 𝐷𝐿  is the number of leap days since or before the 

year 2000 and 𝐷𝐽 is the Julian day of the year, which varies from 1 on 1𝑠𝑡 of January to 

365 (for non-leap years) or 366 (for leap years) on 31𝑠𝑡 of December. Leap years occur 

every year evenly divisible by 4. The ecliptic longitude of the Sun is approximately 

𝜆𝑒𝑐 = 𝐿𝑀 + 1∘. 915𝑠𝑖𝑛(𝑔𝑀) + 0∘. 020𝑠𝑖𝑛(2𝑔𝑀) (14) 

where 

𝐿𝑀 = 280∘. 460 + 0∘. 9856474𝑁𝐽𝐷   (15) 

𝑔𝑀 = 357∘. 528 + 0∘. 9856003𝑁𝐽𝐷   (16) 

𝐿𝑀 and 𝑔𝑀 are the mean longitude of the Sun and the mean anomaly of the Sun, 

respectively. The mean anomaly of the Sun is the angular distance, as seen by the Sun, of 

the Earth from its perihelion, which is the point in the Earth’s orbit at which the Earth is 

closest to the Sun by assuming that the Earth’s orbit is perfectly circular, and the Earth is 

moving at a constant speed. 

2.5. Development of input scenarios to the AQFM 

Estimating the future O3 concentrations under climate change required estimating 

the future pollution emissions together with climate conditions for the desired periods. 

These combinations served as inputs to our AQFM (ANN). Therefore, a combination of 

some pollution and climate conditions were developed as input scenarios to the AQFM to 

represent some probable future conditions. 

2.5.1. Air quality scenarios  

Estimating future O3 air quality conditions involve several assumptions and uncer-

tainties (Ebi and McGregor, 2008). Future O3 production is dependent on emissions of its 

future biogenic and anthropogenic precursors such as NOx and VOCs. Estimating future 

emissions of these precursors depend on key factors such as population growth, energy 

consumption, technology advancement and socio-economic developments which further 

involves considering limitations and uncertainties for the distant future (Webster et al., 

2002). Furthermore, in this study, the AQFM (ANN) was trained by hourly resolution. 

Due to present limitations and uncertainties, we decided to limit our study to only the 

impact of climate change alone on future O3 air quality. Therefore, current pollution con-

ditions were assumed to remain constant in the future based on hourly monitored NO 

and NO2 concentrations in the summers of 2010 and 2012, which were considered as rep-

resentations of highly polluted and unpolluted summertime conditions, respectively. 

2.5.2. Climate change scenarios  

Based on considered assumptions and limitations in the previous section we limited 

our study to only the effect of climate change on current pollution conditions. In this 

study, we used three IPCC greenhouse gas emission scenarios to simulate future climate: 
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A1B, A2, and B1, which their emissions are equivalent to RCP4.5, RCP8.5, and RCP2.6, 

respectively. In this study, climate projections from HadCM3 AOGCM were used. This 

GCM is a coupled atmospheric-oceanic model which has been used and suggested in sev-

eral previous studies (Hessami et al., 2008; Holloway et al., 2008; Lioubimtseva and 

Henebry, 2009; Zarghami et al., 2011). This model simulates the global climate with 19 

levels in its atmospheric component with a horizontal resolution of 2.5∘ by 3.75∘ degrees 

(latitude by longitude) and 20 levels in its oceanic component with a horizontal resolution 

of 1.25∘ by 1.25∘ degrees. 

3. Results and discussion  

3.1. Verification of LARS-WG  

To verify the downscaled results, the ability of LARS-WG to simulate the baseline 

climate (1972–2009) was evaluated by coefficient of determination (R2), statistical tests 

such as t-test and K-S test, and statistical parameters such as RMSE, MAE and MBE. Table 

1 indicates the calculated statistical parameters for the simulated monthly means of the 

climatic variables by LARS-WG in the baseline period. Except for precipitation that has 

the highest simulation error, other error indices are relatively low for all variables which 

demonstrate the acceptable agreement between the observed and simulated monthly 

means in the baseline period in the study area. 

Table 1. Calculated statistical parameters for the simulated monthly means of the variables by 

LARS-WG in the baseline period at the Dushan Tappeh station (1972–2009). 

Climatic variables  Error Indices  

 MBE MAE RMSE 

Minimum Temperature -0.03 0.12 0.15 

Maximum 

Temperature 
0.08 0.19 0.23 

Solar Radiation 0.12 0.28 0.33 

Precipitation 2.9 -20.2 -24.5 

3.2. Regional changes in climate  

Figure 1 illustrates the HadCM3 projected absolute changes in surface minimum and 

maximum temperature for Dushan Tappeh station under A2, A1B and B1 emission sce-

narios. Projections were obtained for the future periods of 2015–2039 (short term) and 

2040–2064 (mid-term) relative to the baseline period (1972–2009). Long term monthly 

means of observed minimum and maximum temperatures in the baseline period are also 

illustrated on this Figure to provide an estimate of the future annual temperature patterns 

in the study area under climate change. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 September 2022                   doi:10.20944/preprints202209.0072.v1

https://doi.org/10.20944/preprints202209.0072.v1


 9 of 20 
 

 

Figure 1. The HadCM3 projected changes in T-min and T-max for Tehran for the short term (2015–2039) and mid-term (2040–2064) 

periods with respect to the baseline (1972–2009). 

HadCM3 projections indicate that the monthly mean surface temperatures are ex-

pected to increase under climate change in the study area. Projections show higher aver-

age surface temperatures for all months of the year, but the increase is not uniform 

throughout the year. Temperature rise is projected to be higher in the warm months (JJA), 

which is an indication of hotter summers in the future. The average surface temperature 

of the study area is projected to increase by approximately 0.75 ∘C in short-term and about 

2.5 ∘C in the middle of this century. This temperature rise is expected to exceed 1 ∘C and 

3 ∘C in the warm month of the year in the short term and mid-term periods, respectively. 

This trend is noticeable in both short term and mid-term climate periods. In the mid-term 

period changes in the projections become more distinctive among emission scenarios. Pro-

jected changes under A2 and then A1B emission scenarios are expected to be greater than 

changes under B1 scenario especially in summers where the difference is about 0.5 ∘C.  

Figure 2 shows the projected relative changes in precipitation and radiation for the 

2015–2039 and 2040–2064 climate periods with respect to the baseline period under the 

three emission scenarios at Dushan Tappeh station. Projections illustrate explicit reverse 

variations in annual patterns of precipitation and radiation under climate change in the 

future. Projections show that precipitation will decrease in springs and summers, while it 

will increase in falls and winters with respect to its baseline values. Radiation, in contrast 

to the precipitation, is projected to increase in springs and summers, and decrease in falls 

and winters with respect to its baseline values. The results suggest that maximum de-

crease in precipitation is expected in summers, about 15% and 30% with respect to the 

baseline period in short term and mid-term respectively. Unlike the precipitation, the 

greatest increase in solar radiation is projected in summers, about 1% and 2% in short term 

and mid-term respectively. These reverse patterns suggest that the decrease in precipita-

tion and cloud cover in summers affects the amount of solar radiation received by the 

earth surface in the study area. Climate simulations for future periods over the study area 

exhibit behaviors favorable to surface O3 formation. In general, HadCM3 GCM model 

projections show an increase in temperature with the greatest changes in summers under 

all three emission scenarios. Moreover, solar radiation is projected to increase in summers 

in all simulations, due to the decreases in precipitation and cloud cover over the study 

area. These patterns expect to influence O3 production over the study area in the future. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 2. The projected relative changes in precipitation (a and b) and solar radiation (c and d) at Dushan Tappeh station for the 

short term (2015–2039) (left panel) and mid-term (2040–2064) (right panel). 

3.3. Statistics of air quality levels in the study area  

Figure 3 illustrates the observed monthly means of the air quality variables used in 

this study that are averaged over the 2009–2012 period. The mean monthly variations of 

temperature (T) and solar radiation (SR) indicate that the solar radiation in June, and after 

a month delay, the temperature in July reach their highest values. Therefore, having the 

highest temperatures and relatively the highest radiation, June, July and August were 

considered as the warm months of the study area. 

 

Figure 3. Mean annual cycles of NO, NO2, O3, SR and T at the Golbarg air quality monitoring station for the period 2009–2012. 

Moreover, Figure 3 indicates that the observed monthly mean O3 concentrations at 

the Golbarg air quality station have their highest values in the warm months of JJA. O3 

production in the atmosphere is highly dependent on high temperature which usually 

occur in the warm months with abundant solar radiation. Also, considering the climate 

projections over the study area indicate that temperature and radiation will be higher in 

the warm months in the future, we decided to limit the evaluation of climate change im-

pacts on future O3 concentrations to only the warm months in the study area, i.e., JJA. 

Figure 4 clearly shows the difference between the pollution conditions in the two 

summers of 2010 (a) and 2012 (b) in the context of the mean diurnal variations of the var-

iables in the JJA of at the Golbarg air quality station. Among the four summers of 2009 to 

2012, summers of 2010 and 2012 had the most and the least number of days with exceed-

ance of O3 air quality standards, respectively. The number of exceedance days was much 

higher in 2010 than in 2012 due to the more favorable meteorological conditions in the 

summer of 2010. In the summer of 2010 and in terms of one-hour (1-hr) O3 standard, total 

of 22 days and in terms of eight-hour (8-hr) O3 standard, total of 58 days exceeded the 120 
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and 75 ppb concentration threshold respectively. However, in the summer of 2012 no pol-

luted day was occurred in terms of any O3 air quality standard. Table 2 also shows the 

statistical characteristics of the variables for the two summers. Summer of 2010 experi-

enced higher O3 concentrations in JJAs compared to the summer of 2012 in terms of both 

seasonal means and mean diurnal concentrations.  

 

(a) 

 

(b) 

Figure 4. Mean diurnal cycles of NO, NO2, O3, SR and T at the Golbarg air quality monitoring station for the summers of 2010 (a) 

and 2012 (b). 

Table 2. Statistical review of the pollution and meteorological variables for the summers of 2010 and 

2012. 

Summer 2010 Variables Minimum Maximum Average 
Standard 

deviation 

 NO (ppb) 3.5 106 9.3 13.9 

 NO2 (ppb) 4 149 26.6 17 

 O3 (ppb) 4 280.4 71.2 51.8 

 T (C) 23.58 42.67 32.6 3.1 

 SR (w/m2) 0 939 506.1 270.3 

Summer 2012 Variables Minimum Maximum Average Standard deviation 

 NO (ppb) 6.5 82.14 11.7 9.8 

 NO2 (ppb) 7.2 50.17 17.5 7.26 

 O3 (ppb) 6.5 96.53 33.45 17.56 

 T (C) 20.54 43.1 35 3.66 

 SR (w/m2) 0 902 493 272.3 

3.4. Development and validation of the AQFM  

To find the optimal architecture for the AQFM, several structures with different num-

bers of hidden layers and nodes were evaluated. Two out of several various examined 

architectures with the calculated statistical parameters from the test data sets are shown 

in Table 3. Statistical parameters indicate that the network with two hidden layers, which 

has higher correlation coefficient (R) and lower MBE, MAE and RMSE, can better capture 

the complex and nonlinear relationships among variables of the model. Consequently, the 

architecture with two hidden layers was selected for the AQFM. 

Table 3. Calculated statistical parameters for the two developed models. 
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No. of 

neurons 
R MBE MAE RMSE 

1 hidden layer 10 0.82 -1.77 14.5 21.38 

2 hidden layers 10 0.84 -0.9 13.8 20.43 

The correlation between the simulated (horizontal axis) and observed O3 concentra-

tions (vertical axis) for the test data sets of the model are shown in Figure 5. The correlation 

coefficient is about 0.84 which indicates an acceptable agreement between observed and 

simulated O3 concentrations at the Golbarg air quality monitoring station. The MBE index 

is about −0.9 ppb. The negative value indicates that the forecast model underestimates 

the hourly O3 concentrations about 0.9 ppb under the actual observed values. This can be 

due to the absence of VOC concentrations in the simulation process (Liu et al., 1987). The 

evaluation criteria of the forecast model are in the acceptable range compared to other 

similar studies (Arhami et al., 2013; Comrie, 1997; Sousa et al., 2007). In comparison with 

similar studies, the MAE and RMSE, about 13.8 and 20.43 ppb respectively, are also in the 

acceptable range which indicate the acceptable performance of the AQFM in predicting 

hourly O3 concentrations with the least number of input variables. 

 

Figure 5. Simulated vs. observed O3 concentrations. 

Table 4 shows the ability of the AQFM to capture the exceedances of selected concen-

tration thresholds with their corresponding references. As this table indicates, the devel-

oped model gives an acceptable prediction performance compared to the similar study 

(Nunnari et al., 1998). In detecting exceedances of 25 ppb and 45 ppb thresholds, the model 

can identify 95.7% and 85.9% of exceedances with the overestimation error of 19% and 

15.7% respectively. Moreover, in higher concentrations (exceedances of 120 ppb) the de-

veloped model can detect about 40% of exceedances with the overestimation error of 

about 1%. Therefore, regarding the high concentration thresholds and also the number of 

the model inputs, the AQFM represents a relatively acceptable performance in predicting 

the violations. 

Table 4. Performance of the forecast model at selected concentration thresholds with their corre-

sponding references (Results from a similar study are shown in parentheses). 

Reference Time period 
O3 threshold 

(ppb) 
PI 1 (%) PI 2 (%) 

O3 Standard 1 hr 125 13.8 0.48 

O3 AQI 1 hr 120 39.4 0.9 

O3 Information 

Level (EPA) 
1 hr 90 54.5 5.4 

Nunnari et al. 

(1998) 
1 hr 45 85.9 (64.57) 15.7 (4.25) 
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  25 95.7 (97.75) 19 (18.03) 

3.5. Extracting necessary parameters for future diurnal patterns of temperature and radiation 

In methodology section some equations were developed to estimate the diurnal dis-

tribution of temperature in the study area. In order to develop these sets of equations, 𝐷𝐿, 

𝐿𝑆𝐻 and 𝑃 parameters were needed. We extracted these parameters from Figure 4 at the 

Golbarg air quality station. 𝐿𝑆𝐻, the maximum solar height, was set to 12 according to 

Figure 4. The time lag between the occurrence of maximum temperature and maximum 

solar height in a day, P, was set to 3.5 hours according to Figure 4. The day length, DL, 

was obtained from US Navy website (http://www.us.navy.com) according to the location 

of the station and the study period. To obtain hourly temperature values during a day, 

the parameters were replaced in the developed temperature equations. Then, the 

downscaled minimum and maximum temperatures from LARS-WG for each day were 

replaced in the equations and hourly temperatures were obtained for each day. Solar ra-

diation output from LARS-WG represents daily total radiation received by the earth sur-

face in 𝑀𝑗/𝑚2. 𝑑𝑎𝑦. Downscaled radiation values were distributed during the day accord-

ing to discussed approach in methodology to obtain hourly values in 𝑤/𝑚2. In these sets 

of equations, 𝐿𝑆𝐻 was considered 12 for the Golbarg air quality station in the study area. 

3.6. Climate change impacts on Ozone air quality 

In this study, we investigated the impact of climate change on future O3 concentra-

tions. We investigated A1B (moderate), A2 (warm) and B1 (cool) SRES emission scenarios, 

and summers of 2010 and 2012 as two pollution scenarios. The pollution scenarios were 

considered constant based on current conditions and therefore only the impact of climate 

change on future O3 air quality was investigated by assuming that NO and NO2 levels 

stay constant based on hourly monitored concentrations in the summers of 2010 and 2012. 

Finally, six different input scenarios to the AQFM were obtained and analyzed for the 

climate periods of 2015–2039 (short term) and 2040–2064 (mid-term). 

3.6.1. Projected trends in future ozone exceedance days  

The USEPA considers the 120 and 75 ppb O3 concentrations as the thresholds for 

violating 1-hr and 8-hr O3 air quality standards, respectively. In this study, we used the 

number of days that hourly O3 concentrations exceeded each of these thresholds, so mul-

tiple exceedances within a single day were not counted for the study area. 

Figure 6a compares the changes in the number of days that exceed 1-hr O3 standard 

in on both present pollution conditions (2010 and 2012). In the summer of 2010, 22 days 

exceeded 1-hr O3 standard and no exceedances were occurred in the summer of 2012. The 

projections indicate that the number of polluted days will increase under future climate 

in both emission scenarios. The number of polluted days in terms of the number of ex-

ceedances from 1-hr standard is projected to grow even based on violation-free summer 

of 2012. Figure 6b compares the changes in the number of days that exceed 8-hr O3 stand-

ard in both emission scenarios as a result of changes in future climate. Similar to 1-hr ex-

ceedances (Figure 6a), the projections show an increase in the number of 8-hr exceedances 

under the future climate by assuming no changes in the present pollution conditions. Alt-

hough the summer of 2010 was a highly polluted summer, climate change still has an 

increasing influence on the number of projected polluted days. In the mid-term, due to 

projected higher O3 concentrations, exceedances of 8-hr standard will increase and the 

controlling standard will shift from 1-hr to 8-hr standard. 
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(a) 

 

(b) 

Figure 6. Projected days per summer (JJA) with exceedances of 1-hr (a) and 8-hr (b) O3 standard based on summers of 2010 and 

2012 scenarios. 

 

Regardless of existing uncertainties in different parts of the climate change impact 

assessment such as uncertainties in climate sensitivity and future greenhouse gasses emis-

sion pathways, projections indicate that because of occurring more favorable O3 for-

mation conditions in the future due to climate change, the number of O3 polluted days 

will increase over all emission scenarios and climate periods, even based on the violation-

free pollution scenario of the summer of 2012. Summer of 2010 was a year with the highest 

monitored O3 concentrations in the observations probably due to meteorological condi-

tions favorable to O3 formation. About 58 out of 92 days of the 2010 summer violated 8-

hr O3 standard while 2012 experienced a violation-free summer. These 2 scenarios can 

serve as a suitable example for analyzing the sensitivity of O3 air quality under future 

climate changes while emissions are held constant over future decades. 

Furthermore, comparing changes in the projected O3 exceedances in the two climate 

periods, short term changes based on each pollution scenarios are almost overlapped, and 

no noticeable distinction exists between different emission scenarios. However, due to the 

inertia in the climate system, inter-scenario differences among SRES emission scenarios 

will emerge after 2030 and the differences between projections are more pronounced in 

mid-term and long-term projections (Stott and Kettleborough, 2002). 

3.6.2. Projected average number of ozone polluted days in each climate period  

Due to the stochastic nature of the downscaling techniques, it is more reasonable to 

consider only the changes in the number of exceedances in each climate period instead of 

a specific year in the future. Figure 7 illustrates the projected average number of exceed-

ances of 8-hr O3 standard in each climate period for each emission scenario. The number 

of polluted days in both emission scenarios rises in the future. In the short term, the largest 

increase in the number of polluted days is anticipated for the B1 emission scenario and in 

the mid-term the largest increase is projected for the A2 simulations. In the short term and 

based on summer of 2010 scenario, the largest increase is expected to be about 8.3% for 

the B1 scenario from 58 exceedance days in 2010 to 62.8 exceedance days in the short term. 

In the mid-term, the largest increase is expected to be about 26% for the A2 scenario from 

58 exceedance days in 2010 to 73 exceedance days in the mid-term. Likewise, based on 

summer of 2012 scenario, all scenarios show an increase in the number of exceedance 

days. In the short term, the largest increase in the number of exceedance days is antici-

pated for the B1 scenario and this number grows from zero in 2012 to 4.4 days in the short 
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term. In the mid-term, the largest increase in the number of exceedance days is projected 

for the A2 scenario and this number grows from zero in 2012 to 13.8 days in the mid-term. 

 

(a) 

 

(b) 

Figure 7. Projected average number of summer days (JJA) with exceedance of 8-hr O3 standard based on summers of 2010 (a) and 

2012 (b). 

3.6.3. Projected trends in future ozone Air Quality Index exceedances (AQI)  

The projected O3 concentrations were also analyzed from health-related metrics such 

as 1-hr and 8-hr O3 Air Quality Indices (AQI). In this section only the 8-hr projections for 

the A1B emission scenario are presented. Figure 8 shows the change in the number of days 

with exceedance of the 8-hr O3 AQI concentration thresholds under the A1B emission 

scenario for summers of 2010 (a) and 2012 (b). Projections indicate an increase in the num-

ber of O3 Unhealthy and Very Unhealthy days under the impact of climate change which 

reflects the degradation of O3 air quality in the future. 

 

(a) 

 

(b) 

Figure 8. Projected days per summer (JJA) with exceedances of 8-hr O3 AQI based on summers of 2010 (a) and 2012 (b). 

Figure 8a shows that based on summer of 2010 scenario, the number of Unhealthy 

days increases over both climate periods, while the number of Very Unhealthy days de-

creases over the first period and then increases in the second period. Figure 8b shows that 

based on the summer of 2010 scenario, the number of Unhealthy days grows over the two 

future climate periods. Occurrence of the Very Unhealthy days are not expected over the 

first climate period, but due to the projected higher temperature and radiation, the num-

ber of the Very Unhealthy days starts to grow over the second climate period. 
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The average number of polluted days was calculated for each climate period. In this 

section only the projections for the 8-hr O3 AQI under A1B emission scenario are demon-

strated. Figure 9 shows the average number of polluted days in the 8-hr O3 AQI for the 

pollution conditions in the summers of 2010 (a) and 2012 (b). As the Figure 9a shows, the 

average number of Unhealthy days is expected to grow over the two future climate peri-

ods. The number of Unhealthy days was 38 days in the summer of 2010, which is projected 

to increase about 55% over the first period, averaging about 59 days in the short term, and 

about 80% over the second period, averaging about 68.5 days in the mid-term. The num-

ber of Very Unhealthy days is projected to fall about 65% from 18 days in the summer of 

2010 to 6.2 days in the first period, but is projected to double in the second period by 

increasing from 6.2 days to 12.8 days in the mid-term period. 

Figure 9b shows an increase in the average number of polluted days based on the 

summer of 2012 scenario. No Unhealthy day was observed in the summer of 2012. How-

ever, projections estimate about 4 Unhealthy days without any Very Unhealthy days in the 

short-term period. In the mid-term period, the average number of Unhealthy days is ex-

pected to increase to 12 days with one Very Unhealthy day. 

 

(a) 

 

(b) 

Figure 9. Projected average number of summer days (JJA) with exceedance of 8-hr O3 AQI based on summers of 2010 (a) and 2012 

(b). 

4. Summary and conclusion 

In this study, we investigated the impact of climate change on future summertime 

O3 concentrations in Tehran, Iran. We used three IPCC greenhouse gas emission scenarios 

to simulate future climate: A1B, A2, and B1, which their emissions are equivalent to 

RCP4.5, RCP8.5, and RCP2.6, respectively. These climate projections were obtained from 

HACM3 GCM and were downscaled by the LARS-WG5 model over the periods of 2015–

2039 and 2040–2064. 

Climate change projections indicate that our study area becomes warmer over the 

next 50 years. The projected increases in temperature and solar radiation along with the 

decreases in precipitation and cloud cover for the future summers over the study area are 

indications of more favorable conditions for photochemical pollution formation which 

could consequently result in degraded air quality conditions in future summers. To quan-

tify the impact of projected climate change on future O3 levels, we developed a neural 

network as our AQFM. We used temperature, solar radiation, NO and NO2 as inputs to 

our AQFM. The projections were performed by assuming that current emission conditions 

of O3 precursors remain constant in the future. Therefore, pollution conditions of the sum-

mers of 2010 and 2012 were considered as two different pollution scenarios and only the 

impact of climate change alone were accounted in the projections. The simulations project 

that the number of O3 polluted days would increase based on both summer emission sce-
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narios. The increase based on the exceedance-free summer of 2012 would be more notice-

able compared to the highly polluted summer of 2010. Moreover, the growing number of 

polluted days in terms of 8-hr indices compared to 1-hr indices could be an indication of 

more exposure to higher O3 concentrations in the future. 

Since this study is considered as one of the first studies in Iran which addresses the 

influence of future climate on air quality, it was subject to various limitations. One of the 

major limitations was that NMVOC concentrations were not included in the simulations 

due to unavailability of this data. O3 simulations without considering NMVOCs in the 

calculation process tend to underestimate O3 concentrations (Liu et al., 1987). O3 produc-

tion is sensitive to other climate variables such as wind speed, water vapor, cloud cover 

or precipitation (Dawson et al., 2007). However, due to simplification in the modeling 

process, only temperature and solar radiation were selected in this study. Another limita-

tion in this study is the assumption that emissions of O3 precursors and their relationship 

with O3 formation remain constant in the future and therefore the role of future emission 

reductions cannot be considered in the simulations. To reduce the scope of this limitation 

in our simulations, two different summertime pollution conditions with the highest and 

the lowest number of monitored polluted days were considered in this modeling en-

deavor to demonstrate the probable range of future changes in O3 pollution. 

Future research should therefore consider the limitations in this study. Since the ab-

sence of NMVOC concentrations as one of the main precursors of O3 production reduces 

the accuracy in the simulations, future studies could benefit from including NMVOC con-

centrations in simulations. Moreover, regarding existing uncertainties in GCM projec-

tions, future studies should also consider ensemble projection approaches by incorporat-

ing several GCMs in climate change impact assessments to improve the level of confidence 

in air quality projections. Furthermore, using dynamical downscaling results from Re-

gional Climate Models, including other climate variables in projections, and comparing 

projections of statistical approaches with projections of Chemistry Transport Models 

could be other useful measures to consider for improving the accuracy and confidence in 

the climate change impact assessments.  
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