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Abstract: Many studies in the field of robot navigation have focused on environment representation
and localization. The goal of map representation is to summarize spatial information in topological
and geometrical abstracts. By providing strong priors, maps improve the performance and reliability
of automated robots. Due to the transition to fully automated driving in recent years, there has been
a constant effort to design methods and technologies to improve the precision of road participants
and the environment’s information. Among these efforts is the High Definition (HD) Map concept.
Making HD maps requires accuracy, completeness, verifiability, and extensibility. Because of the
complexity of HD mapping, it is currently expensive and difficult to implement, particularly in an
urban environment. In an urban traffic system, the road model is at least a map with sets of roads,
lanes, and lane markers. While more research is being dedicated to mapping and localization, a
comprehensive review of the various types of map representation is still required. This paper presents
a brief overview of map representation, followed by a detailed literature review of HD Map for
automated vehicles. The current state of AV mapping is encouraging, the field has matured to a
point where detailed maps of complex environments are built in real-time and have been proved
useful. Many existing techniques are robust to noise and can cope with a large range of environments.
Nevertheless, there are still open problems for future research. AV mapping will continue to be a
highly active research area essential to the goal of achieving full autonomy.

Keywords: Connected & Automated Vehicles, Navigation, High Definition (HD Map), Map Repre-
sentation

1. Introduction

The problem of mobile robot navigation has traditionally been approached by breaking
it down into three parts: environment mapping, localization, and trajectory planning.
For Autonomous Vehicles (AVs), accurate and reliable self-localization is critical [1]. In
order to operate safely, AVs must precisely predict the future actions and/or trajectories
of other road participants [2–4]. For instance, the ability to accurately predict pedestrian
behavior is crucial to ensure safe autonomous driving solutions. However, this task is
challenging due to the fact that in general, pedestrian’s trajectories can change rapidly and
they lack temporal smoothness [5]. Accessing to the environment information in the form
of a pre-built map can help with such challenging tasks. Furthermore, when combined
with a pre-built map, a high-precision self-localization solution can transform the difficult
problem of perception and scene interpretation into a less complex positioning problem
[6,7]. The criteria for achieving accurate self-localization on the map have been discussed
in [8].

The AVs intend to offer a safe and comfortable ride using the output of sensory units,
a map, and a high-level route [9–11]. Meanwhile, in safety-critical applications such as
self-driving cars, creating interpretable intermediate representations that explain why the
car performed a given maneuver is critical for decision-making [12,13]. The autonomy
problem can be partially handled in advance in an offline fashion, if the map is updated
regularly and reliably [14]. Also, map data can be shared and updated by multiple AVs,
allowing for real-time map updates and improving confidence in the accuracy of the map.
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The higher levels of autonomy requires the maps to be more refined in details with quality
standards. In this context, the solution for high-precision localization is to provide a unified
representation that combines the agent dynamics, collected by perception and tracking
systems, with the scene context, commonly provided as prior knowledge in the form of
High Definition (HD) maps [15–18].

Differently from the unified representation, other solutions uses an end-to-end ap-
proach that creates an internal learned map representation of the world [19–25]. End-to-end
approaches that learn such internal mapping could be beneficial to scale self-driving solu-
tions that can generalize and find optimal map representations for the driving task [26,27].
Towards this goal, the work in [28] is one of the earliest end-to-end systems and pioneered
this field by using a neural network to directly control the AV. Current end-to-end solutions
use simultaneous perception and prediction to provide outputs such as object tracking
and predicted trajectories, or learning an intermediate semantic mapping that is used to
control the AV, enabling end-to-end learning of the full autonomy system [23,26]. These
approaches focus on imitating human drivers and learning a hidden representation, but
are not interpretable.

End-to-end learnable neural network can perform joint perception, prediction, and
motion planning for AVs while producing interpretable intermediate representations. The
interpretable representations are used by the planner and help to explain the AV decisions
[19,21]. In [19], authors present an end-to-end approach for predicting intermediate rep-
resentations in the form of an online map as well as agents’ dynamics and their current
and future states. The solution produces probabilistic intermediate representations that
are interpretable and ready to use for the motion planner. Although directly outputting
driving commands is a general solution, it may have stability and robustness issues, and a
combination of HD map and internal latent representations (features map) can be advanta-
geous [20] and can be also learned end-to-end from human demonstrations [21]. This is
accomplished through the use of a novel differentiable semantic occupancy representation,
which is explicitly used as a cost in the motion planning process.

It is also common to rasterize HD maps into a top-down view or Bird’s-Eye-View
(BEV) map, which can be referred to as a 3D top-view map that respects the nature of the
data, making the learning process easier as it can leverage priors about objects’ geometry
[21,22,29–33]. Because height localization information is less valuable for AVs, the relevant
information that an AV requires for decision-making could be suitably encoded using a
BEV map representation. Using BEW as an output of the perception module will result in
interpretable and easy-to-use representation for prediction and motion planning modules
[22,30,33].

Despite significant progress in this area, it still presents significant challenges due to
the nature of sensor noise and practical constraints during map creation. Existing mapping
algorithms are commonly surprisingly complex, both from a mathematical and from an
implementation point of view. As a result, novel map representations are required for
the full adoption of AV. This review provides a general review of the most common map
representation approaches, with a focus on AV mapping. It describes and compares various
approaches and their applications, in contrast to the current literature that frequently
focuses on HD maps.

2. Real-Time (Online) Mapping

Robotics applications frequently necessitate real-time processing. This means that the input
data must be processed at a rate that is faster than or equal to the input data’s rate. Real-Time
mappings allow the robot to map out unknown environments and perform localization
in that map at the same time. However, as the action of driving gradually transfers
from humans to machines, the role and scope of maps extends beyond navigation. As a
result, offline map-based approaches have received more attention in most AV applications
during the last decade. The computational problem of constructing or updating a map of
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an unknown environment while simultaneously tracking an agent’s location within it is
known as simultaneous localization and mapping (SLAM).

2.1. Simultaneous Localization And Mapping (SLAM)

In many applications, such as indoor robot navigation, offline maps are not available [34,35].
The agent can utilize SLAM to construct a map on the fly from raw sensory data (Mapping)
while also using that constructed map to maintain track of its location (localization) [36–42].
SLAM techniques perform well over short distances, but they suffer from accumulative
inaccuracy over longer distances due to their dependent nature, meanwhile, loop closure
modules in SLAM systems (and pose graph optimization) will compensate for the errors
and correct the accumulated drift. The map representations employed in SLAM techniques
can vary widely, but the most major distinction is whether they are 2D or 3D orientated,
or a combination of both. It’s reasonable to suppose that when the SLAM is paired with
a combination of sensors (GPS, IMU, LIDAR, and radar), it will perform better. Figure 1
shows a result of SLAM using Cartographer package [43]. ORB-SLAM is among the most

Figure 1. Map of ECE department at University of Central Florida using Cartographer package [43] and hokuyo
2D LiDAR.

well-known mapping and localization system that it operates in real-time while keeping
localization and tracking accuracy at a desirable level [44–47]. In [48], authors showed that
a multilayer perceptron (MLP) can be used as the only scene representation in a real-time
SLAM system using a hand-held RGB-D camera. For SLAM algorithms implemantation
refer to [49].

3. Highly/Moderately Simplified Map Representations

This category of maps is mainly utilized in the robotics domain and can be classified into
three sub-categories: topological maps, metric maps, and Geometric Maps.

3.1. Topological Maps

The topological maps are mainly graph-based representations, exclusively deal with places
and their interactions [50–52], describes the environment as a collection of nodes (locations)
connected by edges [53]. An edge between two nodes is labeled with a probability distribu-
tion over the relative locations of the two poses, conditioned to their mutual measurements
[54]. A world representation based on this simplification makes map extension easier and
provide the required information for path planning and motion prediction [55–59]. Despite
the world model’s reduction, topological representations lose the sense of proximity, lack
explicit information regarding the space’s occupancy. Many authors have approached this
problem by storing additional data or combining it with metric maps [53,60].
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3.2. Metric Maps

Contrary to topological maps, in metric maps, the objects are represented with precise
coordinates. Such maps contain all the required information for a mapping or navigation
algorithm to function [61]. In these methods, the map size is directly proportionate to the
region of interest’s area. Therefore, mapping of vast areas, especially in 3D representation,
is computationally expensive. Landmark-based maps, occupancy grid maps, and geometric maps
are the most popular metric mapping methods.

3.2.1. Landmark-based Maps

Landmark-based representations, also known as feature-based representations, are used
to identify and maintain the postures of specific distinguishing Landmarks [62]. The
landmarks must be unique and identifiable by the robot perception system, which is a pre-
requisite in these representations. Landmarks can be defined as sophisticated descriptors,
rather than raw sensor data. Points, lines, and corners can be used to create a minimalist
description of the landscape.

3.2.2. Occupancy Grid Maps

Occupancy grid maps [63] divide the environment into so-called grid cells. Each cell
contains data about the area it covers [64]. Figure 2 shows an example of a simple grid
map. It’s typical to save a single value in each cell that represents the likelihood of being an
obstacle there. Traditional probability-based techniques, such as particle or Kalman filters,
are most typically used to combine input from several sensors and localizing to a known
prior map [65–68].

Figure 2. Top: Real-world objects in the map. Down: Grid Map representation with grid cells occupied by the
real-world objects.

Occupancy grid maps can be either 2D or 3D [69]. A version known as 2.5D contains
height information in an extended 2D grid cell map rather than being a pure 3D grid map
[70]. Regular grids or sparse grids can be used to create grid maps. Regular grids discretize
continuous space into cells with the same dimensions for the entire region, whereas sparse
grids extend the concept of the regular grid by grouping regions with the same values in a
tree-like fashion. This map can be used to predict multi-pedestrian movements [71] as well
as obstacle crossing. In general, the occupancy grid maps can be categorized as follows:

• Octree: The Octree Encoding [72] is a 3D hierarchical octal tree structure capable of
representing objects with any morphology at any resolution. Because the memory
required for representation and manipulation is on the order of the area of the object,
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it is commonly employed in systems that require 3D data storage due to its great
efficiency [73–81].

• Costmap: The costmap represents the difficulty of traversing different areas of the
map. The cost is calculated by integrating the static map, local obstacle information,
and the inflation layer, and it takes the shape of an occupancy grid with abstract values
that do not represent any measurement of the environment. It’s mostly utilized in path
planning [82,83].

3.3. Geometric Maps

The geometric maps attempt to represent the sensory data with discrete simplified geomet-
ric shapes such as circles or polygons [84]. The geometric maps represent the surroundings
efficiently without sacrificing too much information, however, it impedes trajectory calcula-
tion and data management in general. As a result, this method is rarely used in practice,
and the occupancy grid map alternative is preferred [85,86].

4. High Accuracy Map Representations

Currently, academics and manufacturers are working to develop Advanced Driver Assis-
tance Systems (ADAS) to attain high level autonomy in vehicles. Maps can be used for a
variety of purposes, including lowering computation cost by providing the offline maps
as a prior, implementing safety measures, avoiding sensor range constraints, and sharing
maps data among different AVs, all of which can improve ADAS accuracy and reliability.
According to [87,88], High Accuracy map representations can be loosely categorized based
on their level of information into one of three categories: Digital Maps, Enhanced Digital
Maps, and HD Maps. Traditional street maps, such as Google Map, are digital maps. Road
geometry, signage, lane design, and speed limits are all included in enhanced digital maps.
Finally, HD maps incorporate all of the features found in the preceding categories, as well
as a semantically segmented 3D representation of the agent’s surrounding.

If the map is kept accurate and used intelligently, with an understanding of its own lim-
itations, a HD map can be thought of as an extra sensor that is unaffected by environmental
occlusions with a nearly perfect detection system.

4.1. Digital Maps

A conventional digital map is a traditional electronic street map and is given by a variety of
map providers, such as Google Map. These are topometric (topological and metric) maps
that encode street layout, names, and distances. It’s worth noting that an automated car
can still benefit from these prior maps, but they’re unlikely to be a crucial facilitator of fully
autonomous operation on their own (as opposed to HD maps). Even with an up-to-date
digital map, the lack of positionally accurate and identifiable environment data (such as
the location of a stop sign) limits the extent to which it can assist an automated vehicle.
However, such level of information is still sufficient for high-level navigation tasks, such as
finding the shortest path from point A to point B.

4.2. Enhanced Digital Maps

An enhanced digital map is a conventional digital map that has had certain augmented
data, making it useful for both ADAS and AVs. Road speed restrictions, road curvature,
lane structure, and road signage have all been added to a basic digital map. The list below
goes through each of these additions based on TomTom’s ADAS map [89].

• Road Curvature
• Gradient (slope) of the roads
• Curvature (sharpness) at junctions
• Lane markings at junctions
• Traffic signs
• Speed restrictions (necessary for adaptive cruise control)
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Due to the lack of a clear distinction between an enhanced digital map and a HD map,
researchers classify any map that stores a 3D world representation as an HD map, while
the rest are classified as enhanced digital maps.

4.3. High Definition (HD) Maps

A High Definition (HD) map is a 3D representation of the world that supplements an
enhanced digital map [90,91]. A combination of sensors, including LiDAR, radar, and
cameras, can be used to create this representation. High positional accuracy, on the order
of 10cm, is a common feature of all HD maps [92]. Although technology constraints limit
the highest possible accuracy of map features, higher precision is always desirable.

A HD map can be as simple as a collection of accurate positioning of road signs, lane
markings, and guardrails in the surroundings, or be as complex as a dense semantically
segmented LiDAR point clouds that stores the distance to every obstacle around the agent
as shown in Figure 3. For more information refer to [93].

Figure 3. The complexity of data collected by a Velodyne LiDAR is demonstrated by a point cloud image of a
vehicle approaching an intersection [94].

A high-definition map is usually divided into numerous layers, each of which contains
different sorts of data. Figure 4 illustrates a HD map along with its layer, originally
published in [95]. Also, Figure 5 illustrates the layers of HD map defined by HERE [96].

Dynamic Map.png

Figure 4. The features and layers of HD map [95]

In Lyft’s HD map, the five core layers are described as follows[97,98]:

• Base map layer: The entire HD map is layered on-top of a standard street map.
• Geometric map layer: The geometric layer in Lyft’s maps contains a 3D representation

of the surrounding road network. This 3D representation is provided by a voxel map
with voxels of 5cm × 5cm × 5cm and was built using sensory data of LiDAR and
cameras. Voxels are a cheaper alternative to point clouds in terms of required storage.
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Figure 5. HD map structure defined by HERE: HD road (Down) consists of topology, the direction of travel,
intersections, slope, ramps, rules, boundaries, and tunnels. HD lanes (Middle) consist of lane level features, such
as boundaries, types, lines, and widths. HD localization (Top) consists of road furniture, such as traffic lights and
traffic signs [96].

• Semantic map layer: The semantic map layer contains all semantic data, such as lane
marker placements, travel directions, and traffic sign locations [21,99,100]. Within the
semantic layer, there are three major sub-layers:

– Road graph layer
– Lane geometry layer
– Semantic features include all objects relevant to the driving task, such as traffic

lights, pedestrian crossings, and road signs.

• Map priors layer: This layer adds to the semantic layer by integrating data that has
been learned via experience (crowd sourced data). For example, the average time it
takes for a traffic light to turn green or the likelihood of coming across parked vehicles
on the side of a narrow route, allows the AV to raise its "caution" while driving.

• Real-time knowledge layer: Which is the only layer designed to be updated in real-time, to
reflect changing conditions like traffic congestion, accidents and road work.

Based on a combination of the open-source Apollo software [101] and DeepMap’s U.S.
patent [102], another core layers description of the HD map is offered below.

• Lane positions and widths: Position of lane markings in 2D along with the type of
lane (solid line, dashed line, etc). Lane markings may also indicate intersections, road
edges, and off-ramps.

• Road Sign Positions: 3D position of road signage includes stop signs, traffic lights,
give way signs, one-way road signs, traffic signs. This task is especially challenging
when signage conventions and road rules varies by country.

• Special road features: Such as pedestrian crossings, school zones, speed bumps,bicycle
lanes and bus lanes.

• Occupancy map: A spatial 3D representation of the road and all physical objects
around the road. This representation can be stored as mesh geometry, point cloud or
voxels. The 3D model is essential to centimeter-level accuracy in the AV’s location on
the map.

5. Localization in HD Maps

Road DNA, proposed by TomTom [103], is one of possible solutions for localization problem
in HD maps. In this method, the detailed 3D representation of the road environment with all
features and depth information is compressed into a collection of 2D raster images, where
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the image intensity corresponds to the depth of certain area of the environment. A 2D depth
image was also created utilizing the agent’s sensor data. The Road DNA solution allows for
precise localization with substantially fewer data storage requirements, compared to using
dense LiDAR point clouds. For accurate localization, pattern matching algorithms were
applied. Since significant structural changes occur less frequently in a road environment
than appearance changes, depth photos can be more resistant to environmental changes
than raw camera images.

In [104], a robust ego-motion estimation technique using sensors and a map matching
technique with HD maps was presented. The authors proposed a new line segmentation
matching model and a geometric correction approach of road making obtained by inverse
perspective mapping (IPM) methodology for the map matching technique with HD map.
Combining these two technologies increases robustness and accuracy, according to the
author’s experiments.

Authors in [18] compare sensory scans to an HD map using a particle filter. Their
study integrates data from an IMU and a GPS receiver to determine location. The Root
Mean Squared Error (RMSE) of localization accuracy was 2.8m without an HD map prior,
1.5m with an HD map and odometry (IMU), and 1.2m with an HD map, odometry, and GPS.
While the obtained accuracy is not as good as commercial methods, the results confirm the
significant effect of having prior HD maps on AV’s localization.

For LiDAR-enabled self-driving cars, the Iterative Closest Point (ICP) algorithm is
commonly used to match a 3D LiDAR point cloud to a previously collected set of points
in the map. The ICP algorithm is a least-squares optimizer that tries to determine the
best rotation, scale, and translation to transform a set of incoming LiDAR points into a
database set of points iteratively [105]. The strategies for aligning LiDAR points using ICP
are discussed in [106]. They also utilize a Kalman Filter to fuse sensor data.

Finally, RTK (Real-Time Kinematic) GPS can be used to obtain highly accurate local-
ization. However, because RTK GPS relies on a network of ground stations to function
properly, extra infrastructure will be required to have AVs locate themselves accurately
using this technique. In densely built urban environments, GPS is also vulnerable to
dropouts, interference, and multipath reflection, which, although acceptable for long-range
navigation planning, is insufficient for second by second local positioning-based control of
AVs.

6. Limitations and Challenges

The broad range of traffic laws between countries, such as restrictions for turning left and
right, is one of the challenges in generating HD maps [107,108]. The required data storage
for HD maps caused another challenge. Google’s Waymo AV, for example, collects about
1GB of data every 20 seconds [109]. Since each AV has limited storage space, the vehicle
must perform a dynamic map download and cache refresh routine as it travels across the
surroundings. DeepMaps’ map tiling technique [102] separates the whole HD map into
map tiles and downloads the necessary map tiles based on the vehicle position to decrease
the memory requirement. The third issue is exact vehicle localization inside the HD map,
which is accomplished by comparing incoming sensor data with the current map and
updating the map. Processing of incoming sensory data required onboard high performing
processing resources and real-time execution of the commands need latency time of less
than 10 ms [110].

The HD map update and maintenance is also a major challenge [107,111]. There are
millions of kilometers of roads in the world, and many HD map modeling algorithms are
proposed for highway scenarios and neglect input anomaly (such as bad lane marking paint,
flatten curb, tree occlusion), and uncertainties of non-road objects (such as construction
zones, nearby vehicles, trees). However, in reality, such uncertainties and anomalies are
present in many urban and rural roads. Therefore, more efforts are needed to mitigate the
effect of these problems.
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7. Conclusion and Future Work

Both specialist mapping businesses, as well as automated vehicle companies, have started
to generate HD maps for AVs. There exists a wide range of HD map solutions available
or in development, ranging from lightweight HD map solutions that primarily store lane
markings and lane logic (Atlatec, Apollo), to maps that include full 3D point cloud repre-
sentations (Waymo). While the most comprehensive maps with full 3D representations
provide the best assurance of safety, they are costly to generate and maintain and neces-
sitate massive amounts of data. A layered strategy, in which precise 3D data is updated
less frequently and a lower-memory 2D representation of the road network is updated
considerably more frequently, could be the optimal answer.

In order to implement real-time safety-critical HD maps for AVs, some fundamental
challenges must be overcome. This include providing a consistent communication system
between agents and HD map providers to transfer agent’s location and corresponding
semantic information in real-time, a mechanism for informing HD map provider about
changes to static road features (such as road signs) or anomalies and consequently rectifying
such anomalies, and finally policy considerations on whether HD maps should be privately
or publicly owned and operated.

In this paper we reviewed the major map representations and important open prob-
lems in the field of AV mapping. The current state of AV mapping is encouraging, the field
has matured to a point where detailed maps of complex environments are built in real-time
and have been proved useful. Many existing techniques are robust to noise and can cope
with a large range of environments. Nevertheless, there are still open problems for future
research. It is heartwarming to see new applications and innovations in map representation
that can generalize to previously unseen scenarios, are scalable for real-time applications,
and are applicable to unstructured, disaster, and extreme weather environments where
many of the techniques described are ineffective. AV mapping will remain a highly active
research area critical to achieving full autonomy.
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