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Abstract: 3D object detection is crucial for autonomous driving to understand the driving environ-
ment. Since the pooling operation causes information loss in the standard CNN, we have designed
a wavelet multiresolution analysis-based 3D object detection network without a pooling operation.
Additionally, instead of using a single filter like the standard convolution, we use the lower-frequency
and higher-frequency coefficients as a filter. These filters capture more relevant parts than a single
filter, enlarging the receptive field. The model comprises a discrete wavelet transform (DWT) and an
inverse wavelet transform (IWT) with skip connections to encourage feature reuse for contrasting
and expanding layers. The IWT enriches the feature representation by fully recovering the lost details
during the downsampling operation. Element-wise summation is used for the skip connections to
decrease the computational burden. We train the model for the Haar and Daubechies (Db4) wavelets.
The two-level wavelet decomposition result shows that we can build a lightweight model without
losing significant performance. The experimental results on the KITTI’s BEV and 3D evaluation
benchmark show our model outperforms the Pointpillars base model by up to 14 % while reducing
the number of trainable parameters. Code will be released.

Keywords: Autonomous Driving, Deep Learning, LIDAR Data, Wavelets, 3D Object Detection.

1. Introduction

LiDAR 3D object detection in robotics applications, such as autonomous vehicles (AVs),
is essential for detecting other vehicles, pedestrians, and cyclists. Technology development
companies, such as Waymo [1] and car manufacturing companies, such as Bosch [2], have
tested vehicles equipped with different sensors, including LiDAR. Because of the rapid
growth of deep learning (DL) methods in computer vision, research on 3D object detection
has increased. Due to this growth, the performance of DL methods has improved. Among
these, CNNs have shown a significant performance improvement and state-of-the-art
performance in several computer vision tasks, such as image classification and 2D object
detection. Although the pooling operation reduces the size of the features at every layer for
strides more than one, it causes information loss, which can affect detection performance.

Another limitation of CNN is the lack of interpretability. A CNN is a universal function
approximator. However, it is considered a black-box model because of nonlinear mapping
and unclear working mechanisms [3]. This characteristic makes it difficult to understand
how CNN learns and interacts with other models. Thus, it is hard to understand the
soundness and weaknesses of the model and diagnose as well as correct potential problems
[3]. Because of these problems, model development often relies on trial and error [4].

The discrete wavelet transform (DWT) can also enlarge the receptive field by con-
sidering more spatial context and employing multilevel decomposition filters (using low-
frequency and high-frequency filters at each level). We can also enlarge the receptive field
by using filters of larger sizes, but it increases the computational cost. Dilated convolution
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is implemented to enlarge the receptive field [5]. However, dilated convolution suffers
from a gridding effect [6] because of the combination of pixels from different neighbors.

In the signal processing community, it is common to transform the spatial signal into a
frequency domain representation, such as using a Fourier transform to use the dual property
of convolution in the spatial domain and element-wise multiplication in the frequency
domain. Rippel et al. [7] proposed a Fourier transform-based convolutional neural network
to use the dual property and tested on the ImageNet [8] dataset. However, this is analogous
to the conventional CNN in the frequency domain. The wavelet transform helps to keep
both the spatial and frequency information. In this paper, we built a multiresolution
analysis in the neural network with skip connections, WCNN3D: Wavelet Convolutional
Neural Network Based 3D Object Detection to mitigate the information loss due to the
pooling operation. The standard 2D convolution operates in the spatial domain, which
drops the high-frequency component. Designing wavelet-based CNN helps use high-
frequency components, essential for learning and classifying images or other data. In a
DWT, only the low-frequency component is decomposed into low-frequency and high-
frequency components at each level of decomposition. But, we keep the high-frequency
component in each multilevel DWT decomposition by concatenating the lower-frequency
and higher-frequency components to enrich the features at each level of decomposition.

The point cloud data is encoded into point pillars to make the dataset suitable for
2D convolution and is an input to the backbone and detection modules. Pointpillars
use pointNets to learn a representation of point clouds in a vertical column (pillars) [9]
instead of using fixed encoders. We can apply 2D convolution to the encoded pointpillar
data, which reduces the computation burden of 3D convolutions. The rest of the paper is
structured as follows. Section 2 presents related work. The background information and
intuition of wavelets are summarized in section 3. Section 4 summarizes the proposed
model architecture and subnetworks, such as feature extraction and detection head, loss
functions, and data augmentation techniques. Results and analyses of the experiment are
presented in section 5. The last section 6 concludes the work.

2. Related Work

This section summarizes 3D object detection using camera images and LiDAR point
clouds.

2.1. 3D Object Detection using Camera Images

Camera sensors are rich in texture and color information but lack depth information.
So, 3D object detection using the camera is challenging. Different methods have been
proposed to solve the lack of depth and minimize the performance drop. Some methods
use Pseudo-LiDAR techniques, whereas others use stereo images and geometric constraints
to solve the lack of depth in images [10]. The Pseudo-LiDAR methods predict the depth
of each image pixel and generate Pseudo-LiDAR representation, such as [11,12]. The
stereo image-based methods use stereo images to predict depth information and further
generate 3D bounding box information, such as [13,14]. On the other hand, geometric-
based methods use different geometric constraints such as ground planes and object shape
[15,16] to estimate depth information.

Although different techniques have been proposed to solve the camera’s lack of depth
information, the performance of the proposed models is lower than 3D sensors such as
LiDAR. For example, the Pseudo-LiDAR data does not perform similarly to LiDAR data
because of the image-to-LiDAR generation error [10] .

2.2. 3D Object Detection Using LiDAR Point Clouds

Over the last few years, many LiDAR-based 3D object detection methods have been
developed. The unstructured and sparse point cloud data is encoded into different repre-
sentations to learn features: voxels, projections, and raw point cloud methods. VoxelNet
[17] transforms point clouds into volumetric (voxel) representations and stacks the vol-
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umetric representations to form LiDAR point clouds. SECOND [18] improved voxelNet
by introducing sparse convolution [19]. Voxel-FPN [20] also used voxel representation to
do 3D object detection on point clouds. Pointpillars [9] encoded the point cloud data into
pillar representation to solve the computational burden of voxel representation due to 3D
convolution. Some works, such as PointNet [21] and PointNet++ [22] directly process the
raw point cloud for 3D object detection. The raw point cloud implementation has a high
computational burden because of the 3D convolutions, besides the sparse and unstructured
nature of the point cloud. On the one hand, works such as BirdNet+ [23] projected the
LiDAR point cloud into bird’s-eye view (BEV) and applied 2D standard convolution on
the projected data. Some methods use more than one sensor to solve the limitation of
individual sensors and use the best out of each sensor. MV3D [24] and AVOD [25] fuse the
projected BEV data with image data to enhance 3D object detection performance. Another
technique is integrating more than one LiDAR data representation, such as voxel and raw
point cloud. PV-RCNN [26] integrated the voxel representation and the raw point cloud
to get the best of the two representations. Although the model showed a large margin
performance improvement over the Pointpillars [9] network, the model’s parameter is
larger due to the 3D convolutions.

Many works adopt the pillar representation, such as [27–29] because of its ability to
learn feature representation instead of extracting features using fixed encoders like VoxelNet
[17]. Additionally, pillar representation is fast because we can apply 2D convolutions to the
extracted features instead of 3D convolutions. Caine et al. [27] proposed a pseudo-labeling
domain adaptation method for 3D object detection student-teacher network. Zhou et al.
[29] presented a multiview fusion 3D object detection network from vertical column pillars
and perspective view. In this work, besides using pillar encoding of point pillars to reduce
the computational burden, we design a new wavelet-based convolutional neural network
for 3D object detection to minimize the information loss because of the pooling operation
in the standard 2D convolution and enlarge the receptive field.

Wavelet decomposition is well known and widely used in signal processing, but
its usage in the computer vision community is limited. Works, such as [30], [31], [32]
embed wavelets into the neural network to do 2D classification, image segmentation, and
image restoration. Fujieda and Takayama [30] presented a multi-resolution analysis and
CNNs combination for texture classification and image annotation. The authors achieved
significant performance improvement over the CNN models with fewer parameters. Shen
proposed WaveSNet [31] a wavelet integrated deep network for image segmentation
applications. The author integrated discrete wavelet transform into U-Net [33], SegNet [34],
and DeepLabv3+ [35] models for effective image segmentation. Liu et al. [32] proposed
multi-level wavelet convolutional neural network (MWCNN) for image denoising, single
image super-resolution, JPEG image artifacts removal, and classification. Even though the
wavelet has shown significant performance in the above works and other signal processing
tasks, it is not common in object detection, especially in 3D object detection. 3D object
detection networks need to fulfill criteria such as being lightweight to run on real-time
speed and accurate to give error-free information [36]. We introduce the first wavelet-based
lightweight 3D object detection model for autonomous driving. This paper uses the term
wavelet and discrete wavelet transforms interchangeably. We focus only on discrete wavelet
transform in this work, so both terms refer to the discrete wavelet transform.

2.3. Contributions

We design a neural network by adding a high-frequency component to the standard
spatial domain of CNN to enrich the feature representation. Additionally, we use the DWT
as a downsampling operator to avoid information loss because of the pooling operation
and enlarge the receptive field using the multiresolution filters. The proposed architecture
is shown in Fig. 2. The main contributions of the paper can be summarized as follows.
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1. To the best of our knowledge, our wavelet-based convolutional neural network model
that incorporates the high-frequency component into the spatial domain to enhance
performance is the first work in 3D object detection.

2. The model has high-frequency and low-frequency filters covering a large spatial
domain to enlarge the receptive field, which improves the performance of the models.

3. We remove the standard pooling operation of CNN to avoid information loss and
design wavelet-based CNN without pooling using the subsampling operation. The
biorthogonal property of wavelets helps to perform subsampling without information
loss. We apply IWT to enrich the feature maps for the detection head and fully recover
the lost detail information.

We show the performance of the model on the KITTI dataset. The model significantly
improves performance over the standard convolutional neural network models.

3. Wavelet based Convolutional Neural Network

Spectral approaches have been studied well in the signal and image processing com-
munity and achieved significant results, such as [37], [38], [31]. To use the advantage
of wavelets, we design multiresolution [39] wavelet analysis based CNN for 3D object
detection. The multiresolution analysis property of wavelets is advantageous in detecting
objects of different scales.

The 2D wavelet decomposition on images has approximate (lower-frequency) and
detailed (higher-frequency) coefficients. Then, at every stage of decomposition, the lower-
frequency component convolves with the image and decomposes further into lower-
frequency and higher-frequency coefficients. In a single-stage decomposition, there are
four convolutional filters: fLL, fLH , fHL, and fHH as shown in Fig. 1. The high frequen-
cies fLH , fHL, and fHH represent the horizontal, vertical, and diagonal components of
the decomposition, respectively. The subscripts L stands for low-pass filtered and H for
high-pass filtered. The approximation information is represented by fLL, which contains
the maximum information of the decomposition. For example, convolving an image x
with the four convolutional filters decomposes the image into subband images of xLL, xLH ,
xHL, and xHH . The convolutional filters differ based on the wavelet, such as a Haar or a
Daubechies wavelet. For example, for the Haar wavelet, the filter coefficients are defined as:

fLL =1/2
[

1 1
1 1

]
, fLH =1/2

[
−1 −1
1 1

]
, fHL =1/2

[
−1 1
−1 1

]
, fHH =1/2

[
1 −1
−1 1

]
,

The operation of DWT for subband images can be expressed as xLL =( fLL * x)↓2, XLH
= ( fLH * x)↓2, xHL = ( fHL * x)↓2, and xHH = ( fHH * x) ↓2, where * is the convolution operator
and ↓2 is the downsampling/subsampling operator with a factor of two. Although there is
a downsampling operation in the DWT, the original image/data x is fully recovered using
the IWT without information loss due to the biorthogonal property of wavelets. In the
standard convolution, deconvolution and maxunpooling operations are commonly used
to increase the resolution of the feature map, but these operations cannot recover the lost
data details. The IWT increases the resolution of the feature maps and helps recover the
lost data details. Generally, we use the DWT as a downsampling operator and the IWT as
an upsampling operator.

The multiresolution analysis of convolution followed by downsampling operation is
equivalent to the standard convolution followed by pooling operation. For a convolution
layer of a standard CNN, for a training set x = (x0, x1, ..., xn−1) ∈ Rn, we can get predicted
labels y = (y0, y1, ..., yn−1) ∈ Rn.

yn = ∑
i∈Nn

wixi + bias, (1)
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Figure 1. Two-stage 2D Wavelet Decomposition. The lower-frequency filter coefficient (approxima-
tion coefficient) decomposes into lower and higher filter coefficients at each stage of the wavelet
decomposition. The decomposition starts with rows downsampling by a factor of two, followed by
the same operation along with the columns (The operation can be done vice versa, starting with a
column and then a row). Where c is the low-frequency coefficient (coarse coefficient), d is the high-
frequency coefficient (detailed coefficient), g is the high-frequency filter, and h is the low-frequency
filter. The ↓2 operator is the downsampling/subsampling operator with a factor of two. At every
stage of wavelet decomposition, the low-frequency coefficient decomposed into high-frequency and
low-frequency coefficients.

where n is the number of samples, Nn is the set of indices of neighbors of xi and wi is the
weight. The label y can be written using a cross-correlation (i.e., convolution operator in
most machine learning usage) * as :

y = x ∗ w + bias, (2)

where x and w are vectors.
The convolution operation of the input x with weight w is analogous to the DWT

subband image x convolving with the filters. The subsampling layer (pooling layer) is
applied immediately to the convolution layer to simplify the information in the standard
CNN. For example, average pooling with a stride of two reduces the number of outputs
by half to the corresponding number of inputs. We omit biases for the next operations to
simplify the notation. We can express the generalized form of convolution followed by
pooling operation as :

y = (x ∗ w) ↓ p, (3)
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where ↓ p is downsampling by a factor of p and p > 1. When p = 2, this operation is
analogous to the multiresolution analysis of wavelets with lower-frequency and higher-
frequency kernels. This operation can be written as :

xl = (x ∗ fl) ↓ 2

xh = (x ∗ fh) ↓ 2,
(4)

where fl is the lower-frequency kernel ( fLL) and fh is the high-frequency kernel, which
consists of fLH , fHL, and fHH . Equation (4) can be expressed as:

xLL = (x ∗ fLL) ↓ 2

xLH = (x ∗ fLH) ↓ 2

xHL = (x ∗ fHL) ↓ 2

xHH = (x ∗ fHH) ↓ 2,

(5)

The lower-frequency component is decomposed into hierarchical decomposition repeatedly
for several decomposition levels. However, we use high-frequency and low-frequency
kernels at each decomposition level to get richer information. At a decomposition level m,
we can generalize the multiresolution analysis as:

xl , m + 1 = (x ∗ fl , m) ↓ 2

xh, m + 1 = (x ∗ fh, m) ↓ 2,
(6)

The standard CNN discards xh, m and uses only the lower-frequency kernel.

xl , m + 1 = (x ∗ fl , m) ↓ 2, (7)

A single kernel is used in the standard CNN, but we used both low and high-frequency
filters as a kernel. Using low and high-frequency filters increases the chance of taking into
account more input pixels during the operation, which increases the field of view (receptive
field). The receptive field is the size of a region in the input space that a particular feature
looks at, which can be described by its central location and size. When the receptive field
size increases, more relevant input parts are considered for detection [5]. The receptive field
size of single path networks for each layer can be calculated using the following arithmetic
[40]:

ri = ri−1 + ( f − 1)ji−1, (8)

where ri is the receptive field size for layer i, f is filter size of layer i, and ji−1 is the
cumulative stride. The cumulative strides can be updated using jout = jin ∗ s, where s
is stride. To understand the intuition of how the DWT increases the receptive field, let’s
compare the Pointpillars [9] backbone and our backbone. All the filers are 3 × 3 in the
pointpillars network; however, we used a combination of low and high-frequency filters. In
the DWT, a low-frequency filter only is decomposed in each decomposition layer, but we use
a combination of low and high-frequency filters to increase the receptive field size. Each low
and high-frequency filter has a size of 2 × 2. When four of the filters, fLL, fLH , fHL, and fHH ,
are combined, we can get 8 × 8 filters, which is larger than pointpillars filter size.

Equation (8) works only for single-path networks (i.e., a single input to each layer).
When multiple inputs to layer/layers exist, the receptive field size should be calculated
for each input to the layer. Our network has multiple inputs from previous layers, both
the downsampling and upsampling layers. The receptive field size increases when there
are multiple inputs [41]. However, the detection /classification accuracy has a logarithmic
relationship with the receptive field size [41]. Let’s consider only filter size by keeping all
other parameters, such as stride and padding, the same for both Pointpillars [9] and our
network. From (8), we can see that the receptive field size of our network is greater than the
Pointoillars network due to the larger filter size (i.e., 8 × 8 is greater than 3 × 3). However,
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Figure 2. The architecture of the proposed WCNN3D object detection pedestrians and cyclists model
for two levels of the wavelet decomposition. Each convolutional block comprises three convolutional
layers at each level of decomposition. We also use 1x1 convolutions to reduce the channel dimension
of feature maps. The raw LiDAR data is encoded through the Pillar Feature Network into a pillar
representation. Then, the base network learns features using an expanding and contrasting wavelet
convolutional network. The upsampling subnetwork recovers the lost details and increases the
feature map of the downsampled features before detection. We do not apply the activation function
for the last convolution layer. The upsampled features feed the detection head to predict 3D bounding
boxes and classifications of objects. The convolution of down and up layers represent the convolutions
of the contrasting and expanding layers, respectively.

due to the feature reuse design in the downsampling and upsampling layers, our proposed
network has multiple inputs, potentially increasing the receptive field size further. Note
that the receptive field is not the only contributing factor to the performance improvement
of DL networks. Other factors, such as the number of layers, number of filters per layer,
and batch normalization, contribute to the performance of a DL model. Therefore, using
a set of kernels with lower-frequency and higher-frequency filters increases the receptive
field. Integrating the higher frequency into the standard CNN outperforms the existing 3D
object detection models, as shown in the experiment section 5.

4. WCNN3D Network Architecture and Implementation Details

The WCNN3D network comprises three major components: the feature network, the
base network, and the detection head, as shown in Fig. 2. We use the pillar FeatureNet
from Pointpillars [9] network to convert the raw point cloud into vertical columns’ pseudo
image representation. The base network, our main network, transforms the pillar features
into high-level representation. Finally, the detection head predicts classes of objects and
regresses 3D bounding boxes for objects.

4.1. Pillar FeatureNet

The point cloud data is converted into a pillar representation to avoid the computa-
tional burden of 3D convolutions. We use the pointpillar representation from Pointpillars
[9] network because it reduces computational complexity by using 2D convolutions instead
of 3D convolutions like VoxelNet [17] while maintaining high detection performance. The
raw point cloud with x, y, z and reflectance is discretized into a set of pillars on an evenly
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spaced x-y grid. A pillar is a voxel that has unlimited spatial extent in the z-direction
[9]. Then, the points in each pillar are decorated with reflectance (r), xc, yc, zc, xp, and yp.
The subscript c denotes the distance to the mean of all points in the pillar, whereas the
subscript p denotes the offset from the pillar x and y centers. The LiDAR point at this stage
is nine-dimensional (i.e., x, y, z, r, xc, yc, zc, xp, and yp). Most of the pillars are empty due
to the sparsity of LiDAR points, so a dense tensor of size (D, P, N) is created to reduce
the sparsity of the decoded LiDAR point, where D denotes the dimension, P the number
of nonempty pillars per sample, and N is the number of points per pillar. This operation
reduces the memory complexity by focusing on the nonempty pillars only. Applying linear
layer followed by BatchNorm [42] and ReLU [43], generates a tensor of size (C, P, N), where
C denotes number of channels. The encoded feature scattered back to pseudo-image of size
(C, H, W) where H and W denote the height and width, respectively. This representation
avoids the computational burden because of 3D convolutions.

4.2. Base Network

We design a simple backbone network based on the DWT and IWT as shown in Fig. 2.
The network comprises the downsampling and upsampling layers. The downsampling
layer performs a 2D DWT, convolution, and ReLU activation. The layer also comprises skip-
connections of features from previous layers. The upsampling network is designed using
the IWT to increase the feature map resolution and fully recover lost details. The wavelet’s
lossless property helps fully recover the lost information during downsampling, which is
essential for the detection head network. We also design skip-connections between consec-
utive layers of the downsampling and upsampling layers to enrich feature representation
by encouraging feature reuse (knowledge preservation) and mitigating gradient problems
for deep networks. An element-wise summation is applied for skip-connections instead
of concatenation to decrease the computation burden. We also apply 1× 1 convolution to
reduce the channel dimensions and maintain the number of trainable parameters as small
as possible while maintaining high detection performance. The batch normalization did
not improve the performance, so we opted not to use it for the experiment. This condition
might be due to the small number of batch sizes (two in this case because our machine
cannot handle more than two batches). All weights are initialized randomly using the
uniform distribution as in [44] and Pointpillars [9].

4.3. Detection Head

We use the Single Shot Detector (SSD) [45] as a detection head followed by regression
for 3D bounding box generation. The SSD detection head comprises fully convolutional
layers to predict four object predictions for each location (cell). Multiple predictions contain
boundary box and confidence scores, essential to detect objects of different scales and
aspect ratios. Due to these properties of the SSD, we choose to use the SSD detection head
as our object detection head. Then, regression is done to get the 3D bounding box of objects.
During the prediction level, non-maximum suppression (NMS) is also applied to suppress
duplicate predictions.

4.4. Loss

The same loss function as of VoxelNet [17], SECOND [18], and Pointpillars [9] are
used. The seven-point bounding box encoding technique (x, y, z, w, h, l, θ) is adopted. The x,
y, and z are the center of coordinates; w, l, h are the width, length, and height, respectively
and θ is the yaw rotation around the z-axis. The regression operation between ground truth
and anchors can be defined as:

∆x = xgt−xa

da , ∆y = ygt−ya

da ,∆z = zgt−za

da

∆w = log wgt

wa , ∆h = log hgt

ha , ∆l = log lgt

la

∆θ = sin(wgt − wa), where the superscripts
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gt and a represent the ground truth and the anchor boxes, respectively. da =
√
(wa)2 + (la)2

is the diagonal of the anchor box. The SmoothL1 loss and focal loss[46] are used as the
localization loss and classification loss, respectively. We use a direction classifier loss,
which uses the Softmax loss function, used for angle localization as in SECOND [18] and
Pointpillars [9]. The SmoothL1 loss can be expressed as:

Lloc = ∑
b∈(x,y,z,w,l,h,θ)

SmoothL1(∆b),

where ∆b can be ∆x when b is x, ∆y when b is y, ∆θ when b is θ, etc.
Similarly, the focal loss can be expressed as follows.

Lcls = -αa(1 − pa)γ log(pa),

where γ is an anchor class probability and pa is anchor class prediction. For fair comparison,
we use the same values as [46] for α = 0.25 and γ = 2. The total loss, which includes the
localization loss, classification loss, and directional loss, can be expressed as:

L = 1
Npos

(βlocLloc + βclsLcls + βdirLdir),

where Npos is the number of positive anchors. We use βloc = 2, βcls = 1, and βdir = 0.2 same
as [46] and [9]. Adam optimization with a learning rate of 3 ∗ 10−4 with a decay factor of
0.8 for every 15 epochs is used. We train the model for 160 and 320 epochs with a batch size
of two. The model converges faster with fewer epochs too.

4.5. Dataset and Data Augmentation
4.5.1. Dataset

We use the KITTI dataset [47], which comprises 7,481 training and 7,518 testing
samples. The model is trained with the LiDAR point clouds that comprise car, pedestrian,
and cyclist categories. Each class is evaluated on three difficulty levels: easy, moderate, and
hard, based on object size, occlusion, and truncation levels (truncation level refers to what
portion of an object is outside the camera view). We divide the original training set into
3,712 training samples and 3,769 validation samples like [13] and Pointpillars [9]. Training
the cars with one network and pedestrians and cyclists with another network has become
common for 3D object detection [9,17,18,25]. Therefore, we follow the same practice to train
cars for one network and pedestrians and cyclists for another network.

We use a maximum number of pillars of 12,000, a maximum number of points per
pillar of 100, and a xy resolution of 0.16 m. We also train the model for a maximum of 15,000
pillars and a maximum number of points per pillar of 120. But, increasing the number
of points adds a computational burden, so the above values are optimal for performance
and computation. At inference time, NMS is applied to suppress detection of less than a
given IOU value. For the KITTI dataset, cars are evaluated with an IOU of 0.7, whereas
pedestrians and cyclists are evaluated with an IOU of 0.5. The x, y, and z range of [(0, 70.4),
(-40, 40), (-3, 1)] meters, respectively are used for cars. The width of 1.6 m, length of 3.9
m, the height of 1.5 m, and a z-center of -1 m are used for the car's anchor box. Similarly,
the x, y, z range for pedestrians and cyclists used are [(0, 48), (-20, 20), (-2.5, 0.5)] meters,
respectively. The width of 0.6 m, length of 0.8 m, the height of 1.73 m, and a z-center of
-0.6 m are used for the pedestrian anchor box, whereas width, length, and height of (0.6,
1.76, 1.73) meters, respectively with a z-center of -0.6 m are used for cyclist anchors. These
values are commonly used on the KITTI dataset [48] for different works, such as [9,17,18].

4.5.2. 3D data augmentation

Data augmentation has been well studied in image classification problems than object
detection models. An appropriate data augmentation, such as color transformation and
geometric transformation, improves the generalization of a model. We followed SECOND
[18] and Pointpillars [9] augmentation techniques. Pointpillars created a lookup table for
all ground truth 3D bounding box classes. Then, randomly select 15 cars, zero pedestrians,
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and eight cyclists’ ground truth samples for each sample. However, SECOND [18] used 8,
8, and 15 ground truth samples for pedestrians, cyclists, and cars, respectively. We use the
Pintpillars [9] setting for this experiment because of its better performance compared to
SECOND [18]. Then, each bounding box is rotated using a uniformly generated rotation
angle in the range of [- π/2, π/2].
Table 1. 3D object detection result for Haar wavelet and Daubechies (Db4) on the KITTI test BEV
detection benchmark. Note that ’2L’ refers to 2-level wavelet decomposition, ’3L’ refers to 3-level
wavelet decomposition, and ’4L’ refers to 4-level wavelet decomposition. The best results are in
boldface.

Methods mAP Car Pedestrian Cyclist
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

MV3D [24] - 86.62 78.93 69.80 - - - - - -
F-pointNet [49] 65.20 91.17 84.67 74.77 57.13 49.57 45.48 77.26 61.37 53.78
PIXOR++ [50] - 89.38 83.70 77.97 - - - - - -
VoxelNet [17] 58.25 89.35 79.26 77.39 46.13 40.74 38.11 66.70 54.76 50.55
SECOND [18] 60.56 88.07 79.37 77.95 55.10 46.27 44.76 73.67 56.04 48.78
Pointpillars [9] 66.19 88.35 86.10 79.83 58.66 50.23 47.19 79.19 62.25 56.00
PV-RCNN [26] 70.04 94.98 90.65 86.14 59.86 50.57 46.74 82.49 68.89 62.41

WCNN3D (Haar-2L)(ours) 70.99 89.77 87.76 86.32 67.12 62.71 59.04 80.74 62.49 59.28
WCNN3D (Haar-3L)(ours) 71.02 90.05 87.51 86.11 69.20 63.29 59.26 81.54 62.26 58.32
WCNN3D (Haar-4L)(ours) - 90.02 87.90 86.35 - - - - - -
WCNN3D (Db4-2L)(ours) 71.66 90.11 87.83 86.27 69.48 64.52 60.07 83.69 62.63 59.45
WCNN3D (Db4-3L)(ours) 71.84 90.12 87.97 86.46 68.40 63.20 59.36 82.78 64.34 60.29
WCNN3D (Db4-4L)(ours) - 90.20 88.04 86.31 - - - - -

Table 2. 3D object detection result for Haar wavelet and Daubechies (Db4) wavelet on the KITTI
test 3D detection benchmark. Note that ’2L’ refers to 2-level wavelet decomposition, ’3L’ refers to
3-level wavelet decomposition, and ’4L’ refers to 4-level wavelet decomposition. The best results are
in boldface.

Methods mAP Car Pedestrian Cyclist
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

MV3D [24] - 74.97 63.63 54.0 - - - - - -
F-pointNet [49] 56.04 82.19 69.79 60.59 50.53 42.15 38.08 72.27 56.17 49.01
VoxelNet [17] 49.05 77.47 65.11 57.73 39.48 33.69 31.5 61.22 48.36 44.37
SECOND [18] 56.69 83.13 73.66 66.20 41.07 42.56 37.29 70.51 53.85 46.90
Pointpillars [9] 59.20 79.05 74.99 68.30 52.08 43.53 41.49 75.78 59.07 52.92
PV-RCNN [26] 62.81 90.25 81.43 76.82 52.17 43.29 40.29 78.60 63.71 57.65

WCNN3D (Haar-2L)(ours) 64.36 87.09 77.39 75.49 58.62 54.57 50.02 79.56 61.13 57.37
WCNN3D (Haar-3L)(ours) 63.16 87.80 77.61 75.71 58.86 53.41 48.94 79.74 58.47 54.71
WCNN3D (Haar-4L)(ours) - 87.84 77.67 76.00 - - - - - -
WCNN3D (Db4-2L)(ours) 65.41 87.75 77.56 75.40 61.93 57.67 52.06 82.74 61.01 57.66
WCNN3D (Db4-3L)(ours) 64.16 88.57 78.04 76.16 57.88 53.75 49.82 80.14 60.70 56.70
WCNN3D (Db4-4L)(ours) - 87.83 77.75 75.74 - - - - - -

The local translation is also done with samples generated from a normal distribution
of zero mean and standard deviation of [0.25, 0.25, 0.25] for x, y, and z. Finally, global
augmentation is done to enrich the dataset further. Random mirror flip along the x-axis
[9,51] is applied, and then a global rotation and scaling [9,17,18]. The global translation
is applied that is drawn from a normal distribution with a mean of zero and standard
deviation of [0.2, 0.2, 0.2] for x, y, and z. All experiments are done using NVIDIA GeForce
RTX 2080 SUPER GPU running on Ubuntu 20.04.
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5. Results and Discussions

We use the BEV and 3D KITTI datasets as official evaluation metrics for all experiments.
Each class’s detection is evaluated based on the three difficulty levels: easy, moderate, and
hard. The KITTI dataset’s mean average precision (mAP) is calculated based on the
moderate difficulty level evaluation. Table 1 and Table 2 show the experimental results
of our model compared with the base model Pointpillars [9] and other related state-of-
the-art models. Our model outperforms other networks in mAP for both BEV and 3D
KITTI dataset evaluation benchmarks. We train the car’s network for two, three, and four
levels of decomposition, but we do not train the pedestrians and cyclists’ network for
four levels of decomposition because of the small size of the objects to decompose after
three levels of decomposition. The three difficult performance levels for cars, pedestrians,
and cyclists show that our model’s performance is much higher than other models for
both Haar wavelet and Daubechies (Db4) wavelets, except for PV-RCNN for car networks.
Although the cars’ performance of the PV-RCNN model, which integrates the voxel form
of LiDAR and the raw point cloud, is higher than our model, the pedestrians and cyclists’
network performance is much lower than our model. Additionally, the mAP of our model
is higher than PV-RCNN for both BEV and 3D KITTI evaluation metrics. For both Haar
wavelet and Db4 wavelet, the four levels wavelets decomposition gives higher performance
than the three levels and two levels wavelets decomposition, but the two levels of wavelet
decomposition performance drop are insignificant compared to the decrease in training
parameters. The Db4 performance is higher than the Haar wavelet performance, especially
for pedestrians and cyclists.

Embedding the higher frequency into the spatial domain, which contains only the
low-frequency, enriches the features and helps the detection head for classification and
regression tasks. Additionally, the network’s IWT part helps recover the lost details during
downsampling. This recovery of lost details helps to increase the performance of the model.
The performance improvement ratio of the model on smaller objects, such as pedestrians
and cyclists, is greater than the cars’ performance improvement, as shown in Table 1 and
Table 2. Therefore, recovering the lost details using IWT is helpful, especially for small
objects. Note that most DL models struggle to detect small objects. The moderate and
hard difficulty levels of the KITTI dataset decrease the performance of all the models.
However, the detection result of our model even increases at a higher rate for moderate
and hard difficulty levels, which proves to add the higher frequency component helps
the model generalize detection for such conditions. Even though PV-RCNN improves the
performance of the Pointpillars by a large margin, the 3D convolution is still the bottleneck
and is not a lightweight model for real-time processing. The major challenge of autonomous
driving is increasing the performance while keeping the model lightweight. Our car model
has 2.64 million, 3.33 million, and 5.6 million trainable parameters for two, three, and
four decomposition levels. The pedestrians and cyclists model has two million and 2.97
million trainable parameters for two and three decomposition levels, respectively. The
only lightweight model is the PointPillars network, with 5.9 million trainable parameters.
The PV-RCNN model is not lightweight because of the 3D convolutions used for voxel
processing. Therefore, our model is a lightweight model for even real-time processing. Our
work will open the door to other researchers in the area to see the object detection network
from the other direction to make 3D object detection interpretable, lightweight, and robust
for real-time processing.

Our model produces an excellent result for cars, pedestrians, and cyclists, as shown
in Fig. 3. The network can detect strongly overlapped and occluded objects but struggles
with a few overlapped, occluded, and faraway objects. Generally, the performance of our
network, especially for small objects such as pedestrians and cyclists, is promising.

6. Conclusions

In this work, we introduce WCNN3D, a new wavelet-based 3D object detection model
for autonomous driving. The experimental results show that removing the pooling opera-
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Figure 3. (a) cars, (b) pedestrians, (c) cyclists (from left to right). Qualitative Analysis of our LiDAR-
based 3D object detection model on the KITTI dataset (zoomed view). For better visualization, we
use the bird’s eye view (top) and image perspective (bottom). The ground truth boxes are shown in
blue, whereas the predicted boxes are in green. Even though the cars (a) are overlapped, and some
are occluded, the network can detect them.

tion of CNN and replace with wavelet-based CNN increases the detection performance.
Design wavelet-based CNN helps use the high-frequency component of the data that
is throwaway by the standard convolution to enrich features and increase the detection
performance of the model. We also use the lower-frequency and high-frequency coefficients
of the wavelet as a kernel for convolution operation, which enlarges the receptive field. The
detection result for two levels of wavelet decomposition shows that we can get lightweight
models without losing much performance while decreasing the number of parameters.
The model’s overall performance on the BEV and 3D KITTI evaluation metrics shows
that our model outperforms the pillar-based LiDAR 3D object detection models and gives
competitive results to sensor fusion-based state-of-the-art models. Therefore, the advantage
of wavelet-based CNN is multi-fold. Table 1 and Table 2 results show that our model is
more suitable for small object detection than other models.
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Abbreviations

The following abbreviations are used in this manuscript:
CNN Convolutional Neural Network
DL Deep Learning
DWT Discrete Wavelet Transform
IOU Intersection Over Union
IWT Inverse Wavelet Transform
mAP Mean Average Precision
MWCNN Multi-level Wavelet Convolutional Neural Network
NMS Non-maximal Suppression
ReLU Rectified Linear Unit
RCNN Region-based Convolutional Neural Network
SSD Single Shot MultiBox Detector
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