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Abstract: Computers have evolved over the years and as the evolution continues, we have been 1

ushered into an era where high-speed internet has made it possible for devices in our homes, hospital, 2

energy and industry to communicate with each other. This era is what is known as the Internet of 3

Things (IoT). IoT has several benefits in the health, energy, transportation and agriculture sectors of 4

a country’s economy. These enormous benefits coupled with the computational constraint of IoT 5

devices which makes it difficult to deploy enhanced security protocols on them make IoT devices a 6

target of cyber-attacks. One approach that has been used in traditional computing over the years to 7

fight cyber-attacks is Intrusion Detection System (IDS). However, it is practically impossible to deploy 8

IDS meant for traditional computers in IoT environments because of the computational constraint 9

of these devices. In this regard, this study proposes a lightweight IDS for IoT devices using an 10

incremental ensemble learning technique. We used Gaussian Naive Bayes and Hoeffding tree to 11

build our incremental ensemble model. The model was then evaluated on the TON IoT dataset. Our 12

proposed model was compared with other state-of-the-art methods proposed and evaluated using the 13

same dataset. The experimental results show that the proposed model achieved an average accuracy 14

of 99.98%. We also evaluated the memory consumption of our model which showed that our model 15

achieved a lightweight model status of 650.11KB as the highest memory consumption and 122.38KB 16

as the lowest memory consumption. 17

Keywords: Internet of Things;Incremental Machine Learning; Intrusion Detection System; Online 18

Machine Learning; Cyber-Security, Ensemble Learning 19

1. Introduction 20

As the evolution of computing technology continues, the ability of things such as 21

fridges, air-conditioners, medical equipment, and meters among others to communicate 22

has become a reality due to fast communication technologies. A paradigm popularly 23

known as the Internet of Things (IoT) has not only become a household term with smart 24

homes, but it also has numerous uses in energy, agriculture, manufacturing, healthcare, and 25

transportation. There is no doubt that the IoT has many benefits, which is why the number 26

of IoT devices is growing at an exponential rate. The number of IoT devices is estimated to 27

reach 30.9 billion by 2025, according to [1]. The numerous benefits of the IoT ecosystem 28

make it attractive to cyber-attacks. An attack statistic presented by SAM Seamless Network 29

shows that over 1 billion IoT-based attacks happened in 2021 [2]. Although methodologies 30

such as encryption and secured architecture are progressively being deployed to ensure that 31

IoT devices are secured, the computational constraint of these devices makes it difficult to 32

implement these security measures to their fullest potential. Another approach to securing 33

these devices from cyber-attacks is to detect these attacks before they are exploited by an 34
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attacker. Intrusion Detection Systems have been around for more than four decades with 35

the development of these IDSs focused on traditional computing systems [3]. They have 36

been among the primary methodologies used to protect computer networks. [4] defines 37

intrusion detection as the process of detecting activities perpetrated against computer 38

systems by intruders. Over the past forty years, a lot of breakthroughs have been made 39

in the area of intrusion detection. One of the biggest breakthroughs in this area is the use 40

of machine learning in detecting intrusions. However, with all these breakthroughs it is 41

practically impossible to deploy traditional computing-based IDS methods in the internet 42

of things. This situation has been created because of the computational constraints posed 43

by IoT devices. This has led to several studies being carried out to design IDSs that can 44

be deployed in IoT systems without significantly affecting the computational resources of 45

these devices. Several approaches have been proposed in designing lightweight IDSs for 46

IoT environments, but these studies fail to either report how these lightweight IDSs are 47

achieved or how much computational resource these proposed approaches consume. For 48

example, [5–9] proposed various techniques that are supposed to translate into lightweight 49

IDSs but these works either failed to report how these methods translate into lightweight 50

IDS or how much computational resources these proposed methods consume. In this study, 51

we propose a novel lightweight intrusion detection system using an incremental machine 52

learning approach. The main contributions of this study are as follows 53

• Using an incremental machine learning approach to design a lightweight IoT intrusion 54

detection system 55

• Measuring the memory consumption of our proposed model. 56

• The study uses an incremental ensemble approach to achieve improved accuracy. 57

• The study evaluates the proposed IDS model on an IoT dataset. 58

The remainder of the paper is structured as follows. Section 2 discusses the study’s 59

background. Section 3 focuses on works relevant to our study, whereas sections 4, 5, and 6 60

focus on the proposed model, experimental evaluation, and conclusion, respectively. 61

2. Background 62

2.1. Intrusion Detection System 63

An intrusion detection system (IDS) is a security device that detects illegal access to 64

data within a networked or computer-based environment in order to threaten the integrity, 65

availability, or confidentiality of the computing device [10,11]. The objective of an IDS 66

continuously monitors network traffic and flag any activity that violates the normal usage 67

of the system [12]. According to [13], typically, an IDS consists of sensors, an analysis 68

engine and some reporting system. Intrusion detection systems can be classified either on 69

how they are deployed or how they detect illegal activities. From a deployment perspective, 70

an IDS can either be classified as distributed, centralized or a hybrid. on the other hand, an 71

IDS can be classified as a signature-based, anomaly-based, specification-based or hybrid. 72

[14] signature-based detection is the set of pre-defined rules such as the sequence of bytes in 73

network traffic that are pre-loaded to trigger an alert when a matched sequence is detected. 74

On the other hand, anomaly detection records the normal behaviour of a network and 75

then compares them with the current behaviour of the system. The authors also explained 76

the specification-based detection method as an approach that uses input specifications 77

that are designed manually. Finally, hybrid detection methods deploy a combination of 78

signature-based, anomaly-based and specification-based detection methods with the aim 79

of improving accuracy and reducing false positive rates. 80

2.2. Ensemble Learning 81

According to [15], ensemble learning is a machine learning technique that focuses on 82

combining the strengths of different machine learning algorithms into a single algorithm. 83

The primary goal of ensemble learning is to improve accuracy by leveraging the strengths 84

of the ensemble learners [16]. 85
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There are instances where traditional machine learning models do not achieve high 86

accuracy, [17] Several ensemble-based techniques have been developed over time, but the 87

most popular are bagging, boosting, stacking generalization, and expert mixture [16]. 88

In the preceding paragraphs, we briefly explain the three categories of ensemble 89

learning. 90

2.2.1. Bagging-based Learning 91

Bagging, short for bootstrap aggregation, is an algorithm that is best suited for prob- 92

lems with a small training dataset. Given a training set S with a cardinality n, the bagging 93

algorithm trains several independent classifiers T. Each of these classifiers are trained using 94

a percentage of N [16] sampling. Linear classifiers such as linear SVM, decision stumps, and 95

single-layer perceptrons are excellent candidates for bagging [16]. Classifiers are trained 96

and then combined using simple majority voting in bagging. 97

Bagging, an abbreviation for bootstrap aggregation, is a method that works well with 98

issues that have a limited training dataset. The bagging algorithm learns several indepen- 99

dent classifiers T given a training set S with a cardinality of n. Each of these classifiers is 100

trained using a proportion of N citezhang2012ensemble sampling. Linear classifiers like 101

linear SVM, decision stumps, and single-layer perceptrons are great candidates for bagging 102

[16].. In bagging, classifiers are trained and then concatenated using simple majority voting. 103

2.2.2. Boosting-based Learning 104

An iterative approach can be used to generate a strong classifier from a set of weak 105

classifiers. Although boosting also combines a large number of weak learners through 106

simple majority voting, there is one significant difference between boosting and bagging. 107

Every instance in bagging has an equal chance of being in each dataset used in training. In 108

boosting, on the other hand, the dataset used to train each subsequent model focuses on 109

instances misclassified by the previous model. At any given time, a boosting designed for a 110

binary class problem generates a set of three weak classifiers. The first learning classifier is 111

trained on a random subset of the training data available. A different subset of the original 112

training dataset is used to train the second learning classifier [18]. 113

2.2.3. Stack Generalization 114

Non-trainable combiners are used in both bagging and boosting methods. The combi- 115

nation weights in non-trainable combiners are determined after the classifiers have been 116

trained. The combination rule used in non-trainable combiners does not allow determining 117

which member classifier learned from which partition of the feature space [16]. Train- 118

able combiners can be used to solve this problem. Individual ensemble members can be 119

combined using a separate classifier in stacked generalization. 120

2.2.4. Mixture of Experts 121

A sampling technique is used to train an ensemble of classifiers in a mixture of experts. 122

The classifiers are then combined using a weighted combination rule [19]. Furthermore, a 123

mixture of experts can encompass the selection of algorithms, with each classifier trained to 124

become an expert in a different aspect of the feature space. Individual classifiers are usually 125

not weak classifiers since they are trained to become experts. 126

2.3. Online/Incremental Machine Learning 127

Online machine learning is also known as incremental machine learning is increasingly 128

becoming popular in the area of real-time data streams. [20] online algorithms instanta- 129

neously build machine learning models after seeing a small portion of the data. This leads 130

to the inability to undo less optimal decisions that were earlier made because the data used 131

will no longer be available for the algorithm. The concept of machine learning models being 132

able to acquire knowledge from continuous data without accessing the original data has 133

been applied to domains like intelligent robots, auto-driving and unmanned aerial vehicles 134
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[21–23]. According to [24] as reported by [20], in data stream models infinite stream of data 135

arrives continuously and these streams of data are to be processed by systems that have 136

resource constraints. The main restriction of data stream models is that memory of these 137

systems are usually small and can only hold a minimal portion of the data stream. When it 138

comes to data stream models, only a minimal subset of the data can be kept for instant data 139

analysis [25]. Figure 1 shows an online machine learning model using an offline dataset 140

whiles figure 2 shows the same model using streams of network traffic. 141

Figure 1. Online machine learning using Offline dataset.

Figure 2. Online machine learning using data stream.

3. Related Work 142

Throughout this section, we will look at some studies that are relevant to our work. 143

Yang et al [26] proposed an ensemble framework for intrusion detection systems (IDSs) 144

in IoT environments, with a primary focus on idea drift adaptability. To manage concept 145

drift in IoT anomaly detection, the suggested framework employs a technique known as 146

performance-weighted probability averaging ensemble. When compared to other cutting- 147

edge approaches, the suggested framework performed better. Even though the author’s 148

proposed method took less time to run than the other methods they looked at for their 149

study, they did not look into how the proposed model affected other computing parameters, 150

such as memory. 151

Jan et al [5] used a supervised Support Vector Machine (SVM) to detect IoT adversarial 152

attacks. The authors utilized only the packet arrival rate to the sensor node to design the 153

proposed IDS. The accuracy of the proposed IDS showed better performance compared 154

to other models like neural networks, KNN and decision trees. One of the drawbacks 155
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of this study is that it only considered DDoS attacks Additionally, the authors failed to 156

report how the proposed approach leads to a lightweight IDS. Parameters such as memory 157

consumption and model running time were not reported. 158

In a similar study, [27] proposed a lightweight IDS for IoT ecosystems using a Deep 159

Belief Network and Genetic Algorithm. According to the study, the proposed system was 160

more accurate than other methods that were looked at for the study. However, the study 161

failed to report how the proposed approach translates to a lightweight model. Moreover, 162

the dataset used for the experimental validation is not an IoT-based dataset. Like in other 163

studies, parameters that are supposed to prove the lightweight status of the proposed 164

method were not considered in the study. 165

Roy et al [7] also designed a lightweight IDS for IoT systems by using a set of optimiza- 166

tion techniques. They used multicollinearity, sampling, and dimensionality reduction to 167

reduce the training data, which resulted in a shorter training time. Like other earlier related 168

works considered in this section, although their proposed approach reduces the training 169

time of the model, the study did not report how much memory the model consumes. 170

Zhao et al. also [8], which suggested a network intrusion detection method for IoT 171

devices utilising a lightweight neural network. To minimise the dimensionality of features, 172

the authors employed a principal component analysis approach. The proposed method 173

was tested using the UNSW-NB15 and Bot-IoT datasets. Despite the fact that the authors 174

determined that both the ultralight feature extraction network and principal component 175

analysis contributed to the suggested model’s lightweight performance, they did not report 176

on the computational complexity of their proposed method. 177

In order to make a lightweight IDS for IoT systems, [9] said that they used a mix of 178

feature selection techniques on different datasets to make a lightweight IDS algorithm for 179

IoT traffic. However, two of the datasets used to evaluate their proposed lightweight IDS 180

were non-IoT related. Also, the authors didn’t talk about how their proposed model would 181

affect the computing power in their experimental environment. 182

Latif et al [6] reported using a Dense Random Neural Network to develop a lightweight 183

intrusion detection system for IoT environments. The proposed model was evaluated on 184

the ToN-IoT dataset, and the results show a detection accuracy of 99.14% for binary class 185

classification and 99.05% for multiclass classifications. However, Latif et al. did not report 186

on the computational complexity of their proposed model. A parameter is required to 187

measure the lightness of the proposed model. Pan et al [28] also suggested a lightweight 188

intelligent intrusion detection system (IDS) architecture for wireless sensor networks. To 189

create their model, the authors used KNN and the sine cosine technique. The authors 190

reported that combining the above techniques improves classification accuracy and also 191

reduces false alarms. However, the authors failed to report how the lightweight model was 192

achieved or what parameters were used to determine the lightweight status of the model. 193

Reis et al. [29] created an IDS for cyber-physical systems using incremental support 194

vector machines. In their study, a one-class support vector machine was applied to each 195

sensor to retrieve abnormal behaviors. As an output of the proposed incremental machine 196

learning model, these anomalies are orchestrated. Although the model proposed by Reis et 197

al. achieved an accuracy higher than 95%, the study didn’t go into detail about how the 198

proposed method would affect the computational resources of cyber-physical systems. 199

To reduce the computation overhead [30], introduced a privacy-preserving pipeline- 200

based intrusion detection for distributed incremental learning that selects unique features 201

using an innovative extraction technique. Current incremental learning techniques are 202

computationally expensive. The distributed intrusion detection method is used to distribute 203

the load across IoT and edge devices. Theoretical analysis and experiments show that 204

state-of-the-art techniques require less space and time. The study, however, reported on 205

time complexity but not on space complexity. Furthermore, the experimental validation 206

dataset is not an IoT-based dataset. 207
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4. Proposed Model 208

We detail the design and conceptual implementation of our suggested approach in 209

this section. The suggested model is based on a machine learning technique, ensuring 210

the creation of a lightweight IDS model suitable for the internet of things environment. 211

The proposed model employs incremental machine learning and data streaming ensemble 212

learning approaches to create a lightweight intrusion detection system for the internet 213

of things environment. The proposed model processes network data generated in IoT 214

environments as data streams. After each iteration, the model is updated. Figure 3 depicts 215

our proposed model. 216

1. Pre-processing: At this stage, the dataset used to train our proposed model is cleaned. 217

The data pre-processing approach used in this study includes imputing missing 218

data values and transforming and selecting features that are important to train our 219

machine learning model. We employed one-hot encoding as one of the techniques to 220

pre-process our data. A single hot encoding transformer will encode all of the features 221

that are provided to it. If a list or set is supplied, this transformer will encode each 222

item in the list or set. By composing it with compose.Select in River, you can apply it 223

to a subset of features. 224

2. Model training: In this study, we proposed a novel online stacking ensemble machine 225

learning technique using Gaussian Naive Bayes and Hoeffding Tree Classifier. We 226

chose these two machine learning models to build our ensemble learning because we 227

wanted to achieve the following three objectives 228

• Design a model that consumes a minimal computational resource (lightweight) 229

• Building a fast model 230

• A model that achieves a high accuracy 231

Gaussian Naive Bayes and Hoeffding Tree Classifier are used as the base classifiers 232

of our proposed model whiles Hoeffding Tree is used as the meta classifier of the 233

proposed model. Each observation of the dataset is read as a stream and is then 234

used to train the base and meta classifier. Each base classifier predicts each stream 235

of data, that is, XiYi which becomes feature input to the meta classifier. The meta 236

classifier (HT) then uses the outputs of the base classifiers to make a better prediction. 237

We chose Hoeffding trees because they learn patterns in data without continuously 238

storing data samples for future reprocessing. This makes them particularly suitable 239

for use on embedded devices. Similarly, Gaussian NB is quick and flexible, and it 240

produces highly reliable results. It works well with large amounts of data and requires 241

little training time. It also improves grading performance by removing insignificant 242

specifications [31,32]. 243

3. Model evaluation: The final stage of the model is the model evaluation stage. The 244

proposed model’s accuracy, precision, recall, F1, model training time, and memory 245

consumption are all evaluated. 246

We chose incremental or online machine learning to develop our framework in this work 247

for the following reasons. 248

1. Network traffic is generated in blocks as a data stream. By using incremental learning 249

on network traffic, models can predict the nature of traffic without having to be 250

trained on large datasets. 251

2. The computational constraints of IoT devices make loading an entire training dataset 252

into main memory difficult and impractical. Even if the entire training data can fit 253

into the main memory of an IoT device, the device’s computational power will be 254

drastically reduced. 255

3. Because of the sophisticated nature of cyber-attacks, new data is constantly available. 256

Retraining the model on the entire dataset will be time-consuming and computation- 257

ally expensive. Because models in online machine learning are trained with data 258

streams, they can easily learn from new data examples without consuming a lot of 259

computational power. 260
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4. Real-time network traffic is generated. To prevent intruders from gaining unau- 261

thorized access to devices, this traffic must be analyzed in real-time. In real-time 262

environments, online machine learning has proven to be an effective learning method. 263

5. Traffic flow is dynamic and constantly changing. Changes in network traffic can 264

have an impact on the predictive performance of machine learning models, which is 265

referred to as concept drift in machine learning. Models should be able to self-adapt 266

to changes in the relationship between input and output data to handle concept drifts. 267

Figure 3. Our proposed model

4.1. Gaussian Naive Bayes 268

According to [33], the Naive Bayes algorithm is a typical illustration of how genera- 269

tive hypotheses and parameter guesses can facilitate learning. Consider the problem of 270

predicting a label y ∈ {0,1} from a vector of characteristics X = (x1,..., xd), where each xi is in 271

the range of {0,1}. The optimal classifier of Bayes is given below 272

hBayes(X) = argmaxP[Y = y|X = x], y ∈ {0, 1} (1)

We need 2d parameters to define the probability function P[Y = y|X = x], each of 273

which relates to P[Y = 1|X = x] for a given value of y ∈ {0, 1}d. This means that when 274

the number of features increases, so does the number of instances necessary. In the Naive 275

Bayes technique, we make the generative assumption that, given the label, the features are 276

independent of one another. To put it another way, 277

P[Y = y|X = x] =
d

∏
i=1

P[Y = y|X = x] (2)

The Bayes optimum classifier can be reduced further using this assumption and the 278

Bayes rule: 279

hBayes(X) = argmaxP[Y = y]
d

∏
i=1

P[Xi = xi|Y = y] (3)

That is, the set of parameters to estimate has been reduced to 2d +1. In this situation, 280

the generative assumption we made considerably decreased the number of parameters 281

we needed to learn. When the maximum likelihood principle is used to figure out the 282

parameters, the resulting classification model is called the Naive Bayes classifier. 283
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One typical technique to handle continuous attributes in Naive Bayes classification 284

is to use Gaussian distributions to express the probabilities of the features based on the 285

classes. As a result, every attribute is represented as Xi N(, 2) by a Gaussian probability 286

density function (PDF), [34] as reported by [35]. 287

Xi ∼ N(µ, σ2) (4)

The Gaussian PDF is shaped like a bell and is defined by the equation below where µ 288

is the mean and σ2 is the variance. 289

N(µ, σ2)(x) =
1√

2πσ2
e−

(x−µ)2

2a2 (5)

4.2. Hoeffding Tree (HT) 290

Hulten et al [36] are the first to propose Hoeffding trees. The Hoeffding tree algorithm 291

is a fundamental algorithm for stream data classification. It is an induction of a decision 292

tree algorithm that could learn from enormous data streams if the distributed generating 293

examples remain constant over time. It creates decision trees that are similar to the standard 294

batch learning method. Asymptotically, Hoeffding trees as well as decision trees are 295

connected. The HT technique is based on the basic premise that a modest sample size can 296

frequently be sufficient to identify an optimal splitting feature. The key point to understand 297

here is that classic batch learning algorithms produce decision trees based on attribute 298

splitting. The HT method is mathematically verified to use the Hoeffding bound. To 299

comprehend the significance of the Hoeffding bound, a few assumptions must be made. 300

Let’s say we get N separate samples of a random variable r with a range of R, where r is a 301

measure of attribute selection. In the case of Hoeffding trees, r is information gain, and if 302

we calculate the mean value of rmean for this sample, the Hoeffding limit indicates that the 303

true mean of r is at least 1-δ. The primary benefits of the HT algorithm are as follows: 304

1. it is incremental in nature 305

2. it achieves high accuracy with small sample size. 306

3. scans on the same data are never performed. 307

However, Hoeffding Tree has a few disadvantages. The main disadvantage is that HT 308

cannot handle concept drift because the node cannot be changed once it is created. [37] de- 309

scribed how to deal with concept drift using classifiers. The algorithm devotes a significant 310

amount of time to attributes with nearly identical splitting quality. Furthermore, memory 311

utilization can be further optimized. 312

[!h] ∈=

√
R21n 1

δ

2n
(6)

The algorithm for Hoeffding tree is shown in algorithm 1. 313

5. Experimental Evaluation 314

5.1. EXPERIMENTAL ENVIRONMENT 315

The proposed method was implemented using Python 3.8 with River as our framework 316

for online machine learning. The proposed method was implemented on a MacBook Pro 317

running on an M1 chip with 16 GB of RAM. The TON-IoT dataset was used to evaluate 318

the proposed framework. There are several incremental or online streaming libraries that 319

provide machine functionalities. Some of these libraries are Creme, scikit-multiflow and 320

River. In this study, we choose to build our incremental learning models using River. [38] 321

is a merger of creme and Scikit-multiflow. River is a library that allows continual learning 322

by handling dynamic data streams. We chose River because it includes data transformation 323

methods, learning algorithms, and optimization algorithms. Its distinct data structure 324

lends itself well to settings involving streaming data and web applications. 325
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Algorithm 1: Hoeffding Tree Algorithm [36]
Input: S is a sequence of examples,

X is a set of discrete attributes,
G(.) is a split evaluation function,
δ is one minus the desired probability of choosing the correct attribute at
any given node

Output: HT is a decision tree
procedure HOEFFDINGTREE(S, X, G, δ)

Let HT be a tree with a single leaf l1 (the root)
Let X1 = X ∪ {Xθ }
Let Ḡ1(Xθ) be the Ḡ obtained by predicting the most
frequent class in S

for each class Yk do
for each value Xij of each attribute Xi ∈ X do

Let nijk (l1) = 0
end

end
for each example (X, Yk) in S do

Sort (x, y) into a leaf l using HT
for each Xij in X ssuch that Xi ∈ X do

Increment nijk (l)
end

end
Label l with the majority class among the examples

seen so far at l
if the examples seen so far at l are not all of the same class then

end
Compute Ḡl (Xi) for each attribute Xi ∈ Xl − Xθ using the counts nijk(l)

Let Xa be the attribute with highest Ḡl .
Let Xb be the attribute with second-highest Ḡl .
Compute ∈ using Equation 1

if Ḡl (Xa)− Ḡl (Xb) > ∈ and Xa ̸= Xθ , then

end
Replace l by an internal node that splits on Xa.

For each branch of the split
Add a new leaf lm and let Xm = X − {Xa}.
Let Gm(Xθ) be the G obtained by predicting the most frequent class at l

for each class Yk and each value Xij of each attribute Xi ∈ Xm − {Xθ} do
Let nijk(lm) = 0
end
return HT

end procedure
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5.2. DATASET 326

According to [39], the TON-IoT dataset was built by the Cyber Range and IoT Las 327

at the University of South Wales. The dataset has nine (9) types of cyber-attacks. These 328

are Denial of Service (DoS), Distributed Denial of Service (DDoS), ransomware, backdoor, 329

data injection, scanning, Cross-site Scripting (XSS), password cracking and Man-in-The- 330

Middle (MiTM). The generated data were from seven IoT and IIoT devices namely, fridge, 331

motion light, garage door, GPS tracker, thermostat and weather. The fridge dataset has 332

a total of 587076 records, the motion light dataset has 452262 records, the garage door 333

has 591446 records, the GPS tracker produced 595686 records whiles the thermostat and 334

weather produced 442228 and 650242 records respectively. The statistics of the dataset used 335

is shown in tables 1 and 2. 336

5.3. EVALUATION METRICS 337

True positive (VP): Positive intrusion that is both expected and confirmed. 338

False positive (UP): An intrusion that was expected to be positive but ended up 339

turning out to be negative. 340

True negative (VN): The intrusion is expected to be negative and confirmed to be 341

negative. 342

False negative (UN): The intrusion was expected to be negative, but it turned out to 343

be positive. 344

5.3.1. Accuracy 345

A model’s overall accuracy can be measured by the number of correctly predicted 346

events made by the given model. The formula below computes the total accuracy of the 347

model. 348

Accuracy =
VP + VN

VP + VN + UP + UN

5.3.2. Precision 349

Precision is found by dividing the total number of positive detections by the number 350

of positive detections that were correctly identified as positive. 351

Precision =
VP

VP + UP

5.3.3. Recall 352

The recall is defined as the ratio of true positive detections to the number of real 353

abnormal samples. 354

Recall =
VP

VP + UN

5.3.4. F1 Score 355

The F1 score is the average of precision and recall. The F1-score is determined as the 356

weighted average of precision and recall, taking both the UP and UN into consideration. 357

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ VP
2 ∗ VP + UP + UN

5.3.5. Memory 358

The computational constraint of IoT devices makes it difficult and sometimes im- 359

possible to run IDS meant for traditional computers on these IoT devices. This calls for 360

developing models that consume minimal memory (lightweight models). 361
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Table 1. Statistics of TON IoT dataset [39]

Fridge IoT dataset
Type of attack No of rows
Backdoor 35568
DDoS 10233
Injection 7079
Normal 500827
Password 28425
Ransomware 2902
XSS 2042

GPS tracker IoT dataset
Backdoor 35571
DDoS 10226
Injection 6904
Normal 513849
Password 513849
Ransomware 2833
Scanning 550
XSS 577

Motion light IoT dataset
Backdoor 28209
DDoS 8121
Injection 5595
Normal 388328
Password 17521
Ransomware 2264
Scanning 1775
XSS 449

Weather IoT dataset
Backdoor 35641
DDoS 15182
Injection 9726
Normal 559718
Password 25715
Ransomware 2865
Scanning 529
XSS 866

Garage IoT dataset
Backdoor 35568
DDoS 10230
Injection 6331
Normal 515443
Password 19287
Ransomware 2902
Scanning 529
XSS 1156

5.3.6. Model Running Time 362

In this evaluation metric, we measure the total time it takes for the proposed model to 363

run. 364

5.4. RESULTS 365

In this section, we present the results of the proposed and compared them with other 366

state-of-the-art techniques. To begin with, this study compares the results of the proposed 367
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Table 2. Statistics of TON IoT dataset continuation [39]

Modus IoT dataset
Backdoor 40035
Injection 7079
Normal 405904
Password 24269
Scanning 529
XSS 577

Thermostat IoT dataset
Backdoor 35568
DDoS 10230
Injection 6331
Normal 515443
Password 19287
Ransomware 2902
Scanning 529
XSS 1156

model with other state-of-the-art IDS proposed and evaluated with the TON IoT dataset. 368

We decided to limit the state-of-the-art to studied that used ToN IoT dataset because we 369

wanted to eliminate biases. In comparing these studies, we considered the category of the 370

TON IoT dataset used in each study, the method proposed by each of the works under 371

consideration, the highest accuracy recorded and whether the study records the time used 372

to build the model as well as the amount of memory the model consumes. The comparison 373

of our approach with other state of art IDS for IoT systems is presented in table 3. Where 374

the authors fail to report on a parameter, we indicate is as non-available (N/A). From 375

table 3, it could be observed that out of the five states-of-the-art IDSs considered in the 376

study none of them reports on the model or the memory consumption of their proposed 377

technique. Although [40,41] both report 100% accuracy, our proposed model outperforms 378

the methods proposed in those studies for the following reasons: 379

1. The accuracy reported in our study is the average accuracy of our proposed model 380

whereas [40,41] reports total accuracy. 381

2. Our study focused on multi-class classification whereas [40,41] focused on binary 382

class classification. 383

In table 4 the accuracy, time, and memory consumption of the models used to build 384

our incremental ensemble technique are compared with our proposed model. Although 385

the time and memory consumption of the individual models are lower than our proposed 386

model, we wanted to propose a model that achieves a trade-off between accuracy, time, 387

and memory consumption. Our proposed model ended up achieving a higher accuracy 388

without significantly increasing the time and memory consumption. The time and memory 389

consumption of the proposed model shows it can run on devices that are computationally 390

constrained without significantly impacting negatively on the computational resources of 391

these devices. 392

Figure 4 below shows the output of our proposed model in terms of the time taken 393

to build the model. The results show that our proposed model recorded the least training 394

time of 59 seconds on the thermostat dataset and the highest training time of 114 seconds 395

on the weather IoT dataset. The concept of incremental learning allows our model to learn 396

one stream of data at a time. Therefore, the time used to train the model on a stream of data 397

will be the total observations in the dataset divided by the total model training time. This 398

makes our model very fast irrespective of the size of the dataset. 399

When tested on the modus dataset, our proposed model achieved a superior average 400

accuracy of 96.81%, with precision, recall, and F1 scores of 97.23%, 96.81% and 96.92% 401

respectively. The Hoeffding tree had an average accuracy of 92.96%, with precision, recall, 402

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 September 2022                   doi:10.20944/preprints202209.0058.v2

https://doi.org/10.20944/preprints202209.0058.v2


Version September 6, 2022 submitted to Journal Not Specified 13 of 22

Table 3. Using the ToN IoT dataset, we compared our proposed model to state-of-the-art models that
had been tested using the same dataset

Study Year of
the study

Method used Highest
accuracy

Model
training
time (S)

Memory
consump-
tion (KB)

[6] 2021 Dense Random
Neural Network

99.14% N/A N/A

[40] 2022 Optimized decision
tree

100 N/A N/A

[41] 2022 Ensemble based
voting

100 N/A N/A

[42] 2022 Graph Neural Net-
work

97.87 N/A N/A

[43] 2021 Synthetic minority
oversampling tech-
nique

99.0 N/A N/A

Our pro-
posed model

2022 Stack-based Incre-
mental ensemble
(HT and Gaussian
NB)

99.98 71 122.38

Figure 4. Model training time of our model using the TON IoT dataset.
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Table 4. Comparing the accuracy (Acc), model time consumption (Time) and memory usage of the
base classifiers against our model on the different datasets

Fridge IoT dataset
Gaussian NB Hoeffding Tree Our proposed model

Acc Time (s) Memory
(KB)

Acc Time (s) Memory
(KB)

Acc Time (s) Memory
(KB)

85.31% 29.9 15.85 98.68% 20.7 532.71 99.98% 104 650.11
Modus IoT dataset

Gaussian NB Hoeffding Tree Our proposed model
Acc Time (s) Memory

(KB)
Acc Time (s) Memory

(KB)
Acc Time (s) Memory

(KB)
77.60% 19.2 19.2 92.36% 14 124.58 96.81% 75 495.25

Garage IoT dataset
Gaussian NB Hoeffding Tree Our proposed model

Acc Time (s) Memory
(KB)

Acc Time (s) Memory
(KB)

Acc Time (s) Memory
(KB)

85.96% 37 27.05 95.70% 29.5 75.85 99.96% 131 394.95
Motion light IoT dataset

Gaussian NB Hoeffding Tree Our proposed model
Acc Time (s) Memory

(KB)
Acc Time (s) Memory

(KB)
Acc Time (s) Memory

(KB)
85.86% 22.9 20.6 92.06% 15.5 33.56 99.98% 79 219.58

GPS Tracker IoT dataset
Gaussian NB Hoeffding Tree Our proposed model

Acc Time (s) Memory
(KB)

Acc Time (s) Memory
(KB)

Acc Time (s) Memory
(KB)

85.20% 28.3 10.56 98.29% 18.7 120.36 99.97% 97 281.94
Weather IoT dataset

Gaussian NB Hoeffding Tree Our proposed model
Acc Time (s) Memory

(KB)
Acc Time (s) Memory

(KB)
Acc Time (s) Memory

(KB)
86.08% 33.4 20.58 98.37% 23.7 314.91 99.93% 116 627.81

Thermostat IoT dataset
Gaussian NB Hoeffding Tree Our proposed model

Acc Time (s) Memory
(KB)

Acc Time (s) Memory
(KB)

Acc Time (s) Memory
(KB)

87.27% 19.9 6.85 99.12% 13.8 55.07 99.94% 71 122.38
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Figure 5. Accuracy of Gaussian NB, HT and proposed model on Modus dataset.

Figure 6. Accuracy of Gaussian NB, HT and proposed model on Fridge dataset.

and F1 scores of 92.36%, 92.36%, and 92.36%, respectively. Using the GPS IoT dataset, the 403

Gaussian NB had an average accuracy of 77.60%, with precision, recall, and F1 scores of 404

60.21%, 77.60%, and 67.81%, respectively. Figure 5 shows the results of our model when 405

evaluated using the modus IoT dataset. 406

Similarly, our proposed model has a superior average accuracy of 99.98% when it 407

was evaluated using the fridge IoT dataset. The proposed model also recorded the same 408

value for precision, recall and F1 score using the same dataset. Hoeffding tree algorithm 409

recorded 98.63%, 98.68%, 98.52% and 98.52% for precision, recall, F1 score and average 410

accuracy respectively. Gaussian NB recorded the least average accuracy. Recording an 411

average accuracy of 85.31%. Gaussian NB also recorded the least values for precision, recall 412

and F1 scores with 72.8%, 85.31% and 78.55% respectively. Figure 6 illustrates the outcomes 413

of our model when tested against the fridge IoT dataset. 414

The experimental findings show that when tested using the motion IoT dataset, our 415

proposed method performed better. The proposed ensemble model achieved an average 416

accuracy of 99.98% with precision and recall of the same value whiles recording 99.97% for 417

F1 score. The same dataset revealed that the Hoeffding tree recorded an average accuracy 418

of 92.06% whiles recording a precision, recall and F1 score of 88.56%, 92.06% and 89.64% 419

respectively. The average accuracy, precision, recall and F1 score recorded by Gaussian NB 420
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Figure 7. Accuracy of Gaussian NB, HT and proposed model on Motion dataset.

Figure 8. Accuracy of Gaussian NB, HT and proposed model on Garage dataset.

is 85.86%, 73.73%, 85.86% and 79.33% respectively. Figure 7 depicts the results of our model 421

when tested against the motion IoT dataset. 422

When tested on the garage IoT dataset, our proposed ensemble model again had the 423

highest precision, recall, F1 score, and average accuracy. Our proposed model recorded 424

an average accuracy of 99.96% with the same value being recorded for precision, recall 425

and F1 score. Hoeffding tree on the other hand recorded a precision, recall, F1 score and 426

average accuracy of 95.52%, 95.70%, 95.26% and 95.70% respectively. Gaussian Naive Bayes 427

recorded a precision, recall, F1 score and average accuracy of 73.88%, 85.96%, 79.46% and 428

85.96 respectively when it was evaluated using the garage IoT dataset. Figure 8 shows the 429

results of our model when tested against the garage IoT dataset. 430

Evaluating our proposed model on the GPS tracker dataset, our model achieved a 431

superior average accuracy of 99.97% with precision, recall and F1 score of 99.97% each. 432

Hoeffding tree recorded an average accuracy of 98.29% whiles recording a precision, recall 433

and F1 score of 98.36%, 98.29% and 98.08% respectively. Evaluating the Gaussian NB using 434

the GPS IoT dataset revealed an average accuracy of 85.20% with precision, recall and F1 435

score of 88.26%, 85.20% and 82.02% respectively. Figure 9 shows the results of our model 436

when evaluated using the GPS tracker IoT dataset. 437
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Figure 9. Accuracy of Gaussian NB, HT and proposed model on GPS Tracker dataset.

Figure 10. Accuracy of Gaussian NB, HT and proposed model on the Thermostat dataset.

The experimental result shows that when our proposed model is evaluated using the 438

thermostat IoT dataset, the model achieved an average accuracy of 99.94% with a precision, 439

recall and F1 score of 99.94% for each of them respectively. Gaussian NB showed an average 440

accuracy of 87.27% whiles recording a precision, recall and F1 score of 76.17%, 87.27% and 441

81.34% respectively. Hoeffding tree showed an average accuracy of 99.12% with a precision, 442

recall and F1 score of 99.07%, 99.12% and 99.03% respectively. Figure 10 shows the results 443

of our model when tested against the thermostat IoT dataset. 444

We also evaluated our model on the weather IoT dataset which is one of the datasets 445

found in the TON IoT dataset. The results show that Gaussian NB recorded a precision, 446

recall, F1 and average accuracy of 80.02%, 86.08%, 76.65% and 86.08% respectively. On 447

the other hand, the Hoeffding tree recorded a precision, recall, F1 and average accuracy 448

of 98.47%, 98.37%, 98.30% and 98.37% respectively. However, our proposed ensemble 449

technique recorded an average accuracy of 99.93% with a precision, recall and F1 score of 450

99.93% respectively. Figure 11 illustrates the outcomes of our model when tested against 451

the weather IoT dataset. 452

The Fridge IoT dataset recorded the highest consumption of 650.11KB whiles the 453

weather IoT dataset recorded the lowest memory consumption of 122.38KB. The results 454

of the memory consumption of the model proposed in this study show that even at the 455
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Figure 11. Accuracy of Gaussian NB, HT and proposed model on Weather dataset.

Figure 12. Memory consumption of our proposed model on various sub-datasets of TON IoT dataset

highest memory consumption the proposed IDS achieves a lightweight status and can 456

potentially run on IoT devices without significantly affecting the available memory of these 457

devices. The memory consumption of our proposed model is shown in figure 12. 458

The precision, recall and F1 score of Gaussian Naive Bayes, Hoeffding tree and our 459

proposed model on different attack categories is shown in tables 5 and 6 below. 460

6. Conclusion 461

The security of the Internet of Things ecosystems is increasingly gaining great impor- 462

tance as a result of its numerous applications. The security of IoT systems has gone beyond 463

encryption, authentication, and secured architecture. Recently, a lot of security-based 464

research in IoT systems has been focused on detecting attacks and anomalies in network 465

traffic. However, because of the computational constraints of IoT devices, IDS developed 466

for traditional computing systems cannot be deployed in IoT environments. It is therefore 467

expedient to design lightweight IDS that can be deployed on IoT devices. In this view, 468

we used the incremental machine learning technique to design a lightweight IDS for IoT 469

systems using incremental ensemble machine learning algorithms. Our proposed model 470

was evaluated using the TON IoT dataset. The results show that our proposed model 471

achieved a high average accuracy rate of 99.98%. The experimental results show the highest 472
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Table 5. Comparing the Precision (P), Recall (R) and F1 score of each model on each attack category

Fridge IoT dataset
Gaussian NB Hoeffding Tree Our proposed model

Attack cate-
gory

P (%) R (%) F1
(%)

P (%) R (%) F1
(%)

P (%) R (%) F1
(%)

Backdoor 0.00 0.00 0.00 98.73 99.38 99.06 99.97 99.76 99.86
DDoS 0.00 0.00 0.00 88.65 95.58 91.99 99.98 99.95 99.97
Injection 0.00 0.00 0.00 75.37 83.26 79.12 99.87 99.97 99.92
Normal 85.31 100.00 92.07 99.96 100.00 99.98 99.98 100.00 99.99
Password 0.00 0.00 0.00 90.09 92.99 91.52 99.97 99.97 99.97
Ransomware 0.00 0.00 0.00 43.83 27.29 33.64 99.59 99.69 99.64
XSS 0.00 0.00 0.00 100.00 11.31 20.33 100.00 99.41 99.71

Modus IoT dataset
Backdoor 0.00 0.00 0.00 83.16 71.65 76.97 97.35 87.40 92.10
Injection 0.00 0.00 0.00 41.83 18.16 25.33 75.70 69.80 72.63
Normal 77.60 100.00 87.39 99.97 100.00 99.99 99.99 99.98 99.99
Password 0.00 0.00 0.00 46.42 68.78 55.43 71.61 89.00 79.36
Scanning 0.00 0.00 0.00 47.65 63.14 54.31 86.60 71.64 79.62
XSS 0.00 0.00 0.00 14.29 0.20 0.40 17.51 25.10 20.63

Garage IoT dataset
Backdoor 0.00 0.00 0.00 99.55 94.32 96.86 99.67 99.91 99.79
DDoS 0.00 0.00 0.00 35.38 98.51 52.06 99.65 98.99 99.32
Injection 0.00 0.00 0.00 0.00 0.00 0.00 99.81 99.78 99.79
Normal 85.96 100.00 92.45 99.97 100.00 99.99 100.00 100.00 100.00
Password 0.00 0.00 0.00 66.51 47.23 55.23 99.85 99.88 99.87
Ransomware 0.00 0.00 0.00 0.00 0.00 0.00 99.90 99.83 99.86
Scanning 0.00 0.00 0.00 0.00 0.00 0.00 99.81 98.68 99.24
XSS 0.00 0.00 0.00 0.00 0.00 0.00 100.00 99.13 99.57

Motion light IoT dataset
Backdoor 0.00 0.00 0.00 43.94 99.28 60.92 99.97 99.70 99.83
DDoS 0.00 0.00 0.00 0.00 0.00 0.00 99.96 99.94 99.95
Injection 0.00 0.00 0.00 0.00 0.00 0.00 99.93 99.95 99.94
Normal 85.86 100.00 92.39 99.95 100.00 99.97 99.98 100.00 99.99
Password 0.00 0.00 0.00 0.00 0.00 0.00 99.98 99.98 99.98
Ransomware 0.00 0.00 0.00 0.00 0.00 0.00 99.82 99.82 99.82
Scanning 0.00 0.00 0.00 0.00 0.00 0.00 99.77 99.77 99.77
XSS 0.00 0.00 0.00 0.00 0.00 0.00 100.00 99.11 99.55

GPS Tracker IoT dataset
Backdoor 95.05 7.50 13.90 97.87 99.47 98.66 99.97 99.73 99.61
DDoS 98.77 8.65 15.91 69.66 92.50 79.47 99.87 99.97 99.92
Injection 16.77 46.00 24.58 79.02 79.78 79.40 99.84 99.88 99.86
Normal 88.42 96.57 92.31 99.96 100.00 99.98 99.98 100.00 99.99
Password 100.00 11.11 20.00 85.27 83.39 84.32 99.96 99.94 99.95
Ransomware 20.08 58.84 29.94 99.54 7.70 14.29 99.12 99.61 99.37
Scanning 100.00 0.18 0.36 100.00 20.36 33.84 100.00 99.64 99.82
XSS 10.92 13.52 12.08 0.00 0.00 0.00 100.00 95.84 97.88

memory consumption at 650.11KB and the lowest memory consumption at 122.38KB. The 473

experimental result shows that our approach has led to the design of an IDS that has a high 474

accuracy rate and a lightweight model that can potentially run on IoT devices. In the future, 475

we plan to evaluate our approach to other IoT-based datasets and deploy our model on an 476

IoT device to evaluate parameters such as CPU usage, memory, and energy consumption. 477

Additionally, future work could consider exploring how concept drifts in these datasets 478

could be handled. 479
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Table 6. Comparing the Precision (P), Recall (R) and F1 score of each model on each attack category
continuation

Gaussian NB Hoeffding Tree Our proposed model
Attack cate-
gory

P (%) R (%) F1
(%)

P (%) R (%) F1
(%)

P (%) R (%) F1
(%)

Weather IoT dataset
Backdoor 100.00 0.05 0.10 96.42 99.48 97.92 99.89 99.98 99.94
DDoS 0.00 0.00 0.00 83.59 93.53 88.28 99.89 99.84 99.87
Injection 0.00 0.00 0.00 69.59 89.18 78.18 97.39 99.88 98.62
Normal 86.08 100.00 92.52 99.97 100.00 99.98 100.00 100.00 100.00
Password 0.00 0.00 0.00 89.57 78.11 83.45 99.93 98.87 99.45
Ransomware 100.00 0.31 0.63 86.95 34.66 49.56 96.71 99.55 98.11
Scanning 0.00 0.00 0.00 100.00 38.56 55.66 95.19 86.01 90.37
XSS 0.00 0.00 0.00 100.00 39.84 56.98 100.00 94.11 96.97

Thermostat IoT dataset
Backdoor 0.00 0.00 0.00 97.48 99.43 98.44 99.93 99.75 99.84
Injection 0.00 0.00 0.00 88.55 93.47 90.94 99.11 99.80% 99.45
Normal 87.27 100.00 93.20 99.95 100.00 99.97 99.98 100.00 99.99
Password 0.00 0.00 0.00 85.37 84.64 85.00 99.52 98.99 99.26
Ransomware 0.00 0.00 0.00 72.39 44.70 55.27 99.55 98.23 98.89
Scanning 0.00 0.00 0.00 0.00 0.00 0.00 69.33 85.25 76.47
XSS 0.00 0.00 0.00 100.00 1.34 2.64 100.00 94.65 97.25
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