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Abstract: Computers have evolved over the years and as the evolution continues, we have been
ushered into an era where high-speed internet has made it possible for devices in our homes, hospital,
energy and industry to communicate with each other. This era is what is known as the Internet of
Things (IoT). IoT has several benefits in the health, energy, transportation and agriculture sectors of
a country’s economy. These enormous benefits coupled with the computational constraint of IoT
devices which makes it difficult to deploy enhanced security protocols on them make IoT devices a
target of cyber-attacks. One approach that has been used in traditional computing over the years to
fight cyber-attacks is Intrusion Detection System (IDS). However, it is practically impossible to deploy
IDS meant for traditional computers in IoT environments because of the computational constraint
of these devices. In this regard, this study proposes a lightweight IDS for IoT devices using an
incremental ensemble learning technique. We used Gaussian Naive Bayes and Hoeffding tree to
build our incremental ensemble model. The model was then evaluated on the TON IoT dataset. Our
proposed model was compared with other state-of-the-art methods proposed and evaluated using the
same dataset. The experimental results show that the proposed model achieved an average accuracy
of 99.98%. We also evaluated the memory consumption of our model which showed that our model
achieved a lightweight model status of 650.11KB as the highest memory consumption and 122.38KB
as the lowest memory consumption.

Keywords: Internet of Things;Incremental Machine Learning; Intrusion Detection System; Online
Machine Learning; Cyber-Security, Ensemble Learning

1. Introduction

As the evolution of computing technology continues, the ability of things such as
fridges, air-conditioners, medical equipment, and meters among others to communicate
has become a reality due to fast communication technologies. A paradigm popularly
known as the Internet of Things (IoT) has not only become a household term with smart
homes, but it also has numerous uses in energy, agriculture, manufacturing, healthcare, and
transportation. There is no doubt that the IoT has many benefits, which is why the number
of IoT devices is growing at an exponential rate. The number of IoT devices is estimated to
reach 30.9 billion by 2025, according to [1]. The numerous benefits of the IoT ecosystem
make it attractive to cyber-attacks. An attack statistic presented by SAM Seamless Network
shows that over 1 billion IoT-based attacks happened in 2021 [2]. Although methodologies
such as encryption and secured architecture are progressively being deployed to ensure that
IoT devices are secured, the computational constraint of these devices makes it difficult to
implement these security measures to their fullest potential. Another approach to securing
these devices from cyber-attacks is to detect these attacks before they are exploited by an
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attacker. Intrusion Detection Systems have been around for more than four decades with
the development of these IDSs focused on traditional computing systems [3]. They have
been among the primary methodologies used to protect computer networks. [4] defines
intrusion detection as the process of detecting activities perpetrated against computer
systems by intruders. Over the past forty years, a lot of breakthroughs have been made
in the area of intrusion detection. One of the biggest breakthroughs in this area is the use
of machine learning in detecting intrusions. However, with all these breakthroughs it is
practically impossible to deploy traditional computing-based IDS methods in the internet
of things. This situation has been created because of the computational constraints posed
by IoT devices. This has led to several studies being carried out to design IDSs that can
be deployed in IoT systems without significantly affecting the computational resources of
these devices. Several approaches have been proposed in designing lightweight IDSs for
IoT environments, but these studies fail to either report how these lightweight IDSs are
achieved or how much computational resource these proposed approaches consume. For
example, [5-9] proposed various techniques that are supposed to translate into lightweight
IDSs but these works either failed to report how these methods translate into lightweight
IDS or how much computational resources these proposed methods consume. In this study,
we propose a novel lightweight intrusion detection system using an incremental machine
learning approach. The main contributions of this study are as follows

¢  Using an incremental machine learning approach to design a lightweight IoT intrusion
detection system

*  Measuring the memory consumption of our proposed model.

¢ The study uses an incremental ensemble approach to achieve improved accuracy.

*  The study evaluates the proposed IDS model on an IoT dataset.

The remainder of the paper is structured as follows. Section 2 discusses the study’s
background. Section 3 focuses on works relevant to our study, whereas sections 4, 5, and 6
focus on the proposed model, experimental evaluation, and conclusion, respectively.

2. Background
2.1. Intrusion Detection System

An intrusion detection system (IDS) is a security device that detects illegal access to
data within a networked or computer-based environment in order to threaten the integrity,
availability, or confidentiality of the computing device [10,11]. The objective of an IDS
continuously monitors network traffic and flag any activity that violates the normal usage
of the system [12]. According to [13], typically, an IDS consists of sensors, an analysis
engine and some reporting system. Intrusion detection systems can be classified either on
how they are deployed or how they detect illegal activities. From a deployment perspective,
an IDS can either be classified as distributed, centralized or a hybrid. on the other hand, an
IDS can be classified as a signature-based, anomaly-based, specification-based or hybrid.
[14] signature-based detection is the set of pre-defined rules such as the sequence of bytes in
network traffic that are pre-loaded to trigger an alert when a matched sequence is detected.
On the other hand, anomaly detection records the normal behaviour of a network and
then compares them with the current behaviour of the system. The authors also explained
the specification-based detection method as an approach that uses input specifications
that are designed manually. Finally, hybrid detection methods deploy a combination of
signature-based, anomaly-based and specification-based detection methods with the aim
of improving accuracy and reducing false positive rates.

2.2. Ensemble Learning

According to [15], ensemble learning is a machine learning technique that focuses on
combining the strengths of different machine learning algorithms into a single algorithm.
The primary goal of ensemble learning is to improve accuracy by leveraging the strengths
of the ensemble learners [16].
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There are instances where traditional machine learning models do not achieve high
accuracy, [17] Several ensemble-based techniques have been developed over time, but the
most popular are bagging, boosting, stacking generalization, and expert mixture [16].

In the preceding paragraphs, we briefly explain the three categories of ensemble
learning.

2.2.1. Bagging-based Learning

Bagging, short for bootstrap aggregation, is an algorithm that is best suited for prob-
lems with a small training dataset. Given a training set S with a cardinality 7, the bagging
algorithm trains several independent classifiers T. Each of these classifiers are trained using
a percentage of N [16] sampling. Linear classifiers such as linear SVM, decision stumps, and
single-layer perceptrons are excellent candidates for bagging [16]. Classifiers are trained
and then combined using simple majority voting in bagging.

Bagging, an abbreviation for bootstrap aggregation, is a method that works well with
issues that have a limited training dataset. The bagging algorithm learns several indepen-
dent classifiers T given a training set S with a cardinality of n. Each of these classifiers is
trained using a proportion of N citezhang2012ensemble sampling. Linear classifiers like
linear SVM, decision stumps, and single-layer perceptrons are great candidates for bagging
[16].. In bagging, classifiers are trained and then concatenated using simple majority voting.

2.2.2. Boosting-based Learning

An iterative approach can be used to generate a strong classifier from a set of weak
classifiers. Although boosting also combines a large number of weak learners through
simple majority voting, there is one significant difference between boosting and bagging.
Every instance in bagging has an equal chance of being in each dataset used in training. In
boosting, on the other hand, the dataset used to train each subsequent model focuses on
instances misclassified by the previous model. At any given time, a boosting designed for a
binary class problem generates a set of three weak classifiers. The first learning classifier is
trained on a random subset of the training data available. A different subset of the original
training dataset is used to train the second learning classifier [18].

2.2.3. Stack Generalization

Non-trainable combiners are used in both bagging and boosting methods. The combi-
nation weights in non-trainable combiners are determined after the classifiers have been
trained. The combination rule used in non-trainable combiners does not allow determining
which member classifier learned from which partition of the feature space [16]. Train-
able combiners can be used to solve this problem. Individual ensemble members can be
combined using a separate classifier in stacked generalization.

2.2.4. Mixture of Experts

A sampling technique is used to train an ensemble of classifiers in a mixture of experts.
The classifiers are then combined using a weighted combination rule [19]. Furthermore, a
mixture of experts can encompass the selection of algorithms, with each classifier trained to
become an expert in a different aspect of the feature space. Individual classifiers are usually
not weak classifiers since they are trained to become experts.

2.3. Online/Incremental Machine Learning

Online machine learning is also known as incremental machine learning is increasingly
becoming popular in the area of real-time data streams. [20] online algorithms instanta-
neously build machine learning models after seeing a small portion of the data. This leads
to the inability to undo less optimal decisions that were earlier made because the data used
will no longer be available for the algorithm. The concept of machine learning models being
able to acquire knowledge from continuous data without accessing the original data has
been applied to domains like intelligent robots, auto-driving and unmanned aerial vehicles
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[21-23]. According to [24] as reported by [20], in data stream models infinite stream of data
arrives continuously and these streams of data are to be processed by systems that have
resource constraints. The main restriction of data stream models is that memory of these
systems are usually small and can only hold a minimal portion of the data stream. When it
comes to data stream models, only a minimal subset of the data can be kept for instant data
analysis [25]. Figure 1 shows an online machine learning model using an offline dataset
whiles figure 2 shows the same model using streams of network traffic.
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Figure 1. Online machine learning using Offline dataset.
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Figure 2. Online machine learning using data stream.

3. Related Work

Throughout this section, we will look at some studies that are relevant to our work.
Yang et al [26] proposed an ensemble framework for intrusion detection systems (IDSs)
in IoT environments, with a primary focus on idea drift adaptability. To manage concept
drift in IoT anomaly detection, the suggested framework employs a technique known as
performance-weighted probability averaging ensemble. When compared to other cutting-
edge approaches, the suggested framework performed better. Even though the author’s
proposed method took less time to run than the other methods they looked at for their
study, they did not look into how the proposed model affected other computing parameters,
such as memory.

Jan et al [5] used a supervised Support Vector Machine (SVM) to detect IoT adversarial
attacks. The authors utilized only the packet arrival rate to the sensor node to design the
proposed IDS. The accuracy of the proposed IDS showed better performance compared
to other models like neural networks, KNN and decision trees. One of the drawbacks


https://doi.org/10.20944/preprints202209.0058.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 September 2022 doi:10.20944/preprints202209.0058.v2

50f22

of this study is that it only considered DDoS attacks Additionally, the authors failed to
report how the proposed approach leads to a lightweight IDS. Parameters such as memory
consumption and model running time were not reported.

In a similar study, [27] proposed a lightweight IDS for IoT ecosystems using a Deep
Belief Network and Genetic Algorithm. According to the study, the proposed system was
more accurate than other methods that were looked at for the study. However, the study
failed to report how the proposed approach translates to a lightweight model. Moreover,
the dataset used for the experimental validation is not an IoT-based dataset. Like in other
studies, parameters that are supposed to prove the lightweight status of the proposed
method were not considered in the study.

Roy et al [7] also designed a lightweight IDS for IoT systems by using a set of optimiza-
tion techniques. They used multicollinearity, sampling, and dimensionality reduction to
reduce the training data, which resulted in a shorter training time. Like other earlier related
works considered in this section, although their proposed approach reduces the training
time of the model, the study did not report how much memory the model consumes.

Zhao et al. also [8], which suggested a network intrusion detection method for IoT
devices utilising a lightweight neural network. To minimise the dimensionality of features,
the authors employed a principal component analysis approach. The proposed method
was tested using the UNSW-NB15 and Bot-IoT datasets. Despite the fact that the authors
determined that both the ultralight feature extraction network and principal component
analysis contributed to the suggested model’s lightweight performance, they did not report
on the computational complexity of their proposed method.

In order to make a lightweight IDS for IoT systems, [9] said that they used a mix of
feature selection techniques on different datasets to make a lightweight IDS algorithm for
IoT traffic. However, two of the datasets used to evaluate their proposed lightweight IDS
were non-loT related. Also, the authors didn’t talk about how their proposed model would
affect the computing power in their experimental environment.

Latif et al [6] reported using a Dense Random Neural Network to develop a lightweight
intrusion detection system for IoT environments. The proposed model was evaluated on
the ToN-IoT dataset, and the results show a detection accuracy of 99.14% for binary class
classification and 99.05% for multiclass classifications. However, Latif et al. did not report
on the computational complexity of their proposed model. A parameter is required to
measure the lightness of the proposed model. Pan et al [28] also suggested a lightweight
intelligent intrusion detection system (IDS) architecture for wireless sensor networks. To
create their model, the authors used KNN and the sine cosine technique. The authors
reported that combining the above techniques improves classification accuracy and also
reduces false alarms. However, the authors failed to report how the lightweight model was
achieved or what parameters were used to determine the lightweight status of the model.

Reis et al. [29] created an IDS for cyber-physical systems using incremental support
vector machines. In their study, a one-class support vector machine was applied to each
sensor to retrieve abnormal behaviors. As an output of the proposed incremental machine
learning model, these anomalies are orchestrated. Although the model proposed by Reis et
al. achieved an accuracy higher than 95%, the study didn’t go into detail about how the
proposed method would affect the computational resources of cyber-physical systems.

To reduce the computation overhead [30], introduced a privacy-preserving pipeline-
based intrusion detection for distributed incremental learning that selects unique features
using an innovative extraction technique. Current incremental learning techniques are
computationally expensive. The distributed intrusion detection method is used to distribute
the load across IoT and edge devices. Theoretical analysis and experiments show that
state-of-the-art techniques require less space and time. The study, however, reported on
time complexity but not on space complexity. Furthermore, the experimental validation
dataset is not an IoT-based dataset.


https://doi.org/10.20944/preprints202209.0058.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 September 2022 doi:10.20944/preprints202209.0058.v2

6 of 22

4. Proposed Model

We detail the design and conceptual implementation of our suggested approach in
this section. The suggested model is based on a machine learning technique, ensuring
the creation of a lightweight IDS model suitable for the internet of things environment.
The proposed model employs incremental machine learning and data streaming ensemble
learning approaches to create a lightweight intrusion detection system for the internet
of things environment. The proposed model processes network data generated in IoT
environments as data streams. After each iteration, the model is updated. Figure 3 depicts
our proposed model.

1. Pre-processing: At this stage, the dataset used to train our proposed model is cleaned.
The data pre-processing approach used in this study includes imputing missing
data values and transforming and selecting features that are important to train our
machine learning model. We employed one-hot encoding as one of the techniques to
pre-process our data. A single hot encoding transformer will encode all of the features
that are provided to it. If a list or set is supplied, this transformer will encode each
item in the list or set. By composing it with compose.Select in River, you can apply it
to a subset of features.

2. Model training: In this study, we proposed a novel online stacking ensemble machine
learning technique using Gaussian Naive Bayes and Hoeffding Tree Classifier. We
chose these two machine learning models to build our ensemble learning because we
wanted to achieve the following three objectives

¢ Design a model that consumes a minimal computational resource (lightweight)
*  Building a fast model
* A model that achieves a high accuracy

Gaussian Naive Bayes and Hoeffding Tree Classifier are used as the base classifiers
of our proposed model whiles Hoeffding Tree is used as the meta classifier of the
proposed model. Each observation of the dataset is read as a stream and is then
used to train the base and meta classifier. Each base classifier predicts each stream
of data, that is, X;Y; which becomes feature input to the meta classifier. The meta
classifier (HT) then uses the outputs of the base classifiers to make a better prediction.
We chose Hoeffding trees because they learn patterns in data without continuously
storing data samples for future reprocessing. This makes them particularly suitable
for use on embedded devices. Similarly, Gaussian NB is quick and flexible, and it
produces highly reliable results. It works well with large amounts of data and requires
little training time. It also improves grading performance by removing insignificant
specifications [31,32].

3. Model evaluation: The final stage of the model is the model evaluation stage. The
proposed model’s accuracy, precision, recall, F1, model training time, and memory
consumption are all evaluated.

We chose incremental or online machine learning to develop our framework in this work
for the following reasons.

1. Network traffic is generated in blocks as a data stream. By using incremental learning
on network traffic, models can predict the nature of traffic without having to be
trained on large datasets.

2. The computational constraints of IoT devices make loading an entire training dataset
into main memory difficult and impractical. Even if the entire training data can fit
into the main memory of an IoT device, the device’s computational power will be
drastically reduced.

3. Because of the sophisticated nature of cyber-attacks, new data is constantly available.
Retraining the model on the entire dataset will be time-consuming and computation-
ally expensive. Because models in online machine learning are trained with data
streams, they can easily learn from new data examples without consuming a lot of
computational power.
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4. Real-time network traffic is generated. To prevent intruders from gaining unau-
thorized access to devices, this traffic must be analyzed in real-time. In real-time
environments, online machine learning has proven to be an effective learning method.

5. Traffic flow is dynamic and constantly changing. Changes in network traffic can
have an impact on the predictive performance of machine learning models, which is
referred to as concept drift in machine learning. Models should be able to self-adapt
to changes in the relationship between input and output data to handle concept drifts.
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Figure 3. Our proposed model

4.1. Gaussian Naive Bayes

According to [33], the Naive Bayes algorithm is a typical illustration of how genera-
tive hypotheses and parameter guesses can facilitate learning. Consider the problem of
predicting a label y € {0,1} from a vector of characteristics X = (x3,..., x4), where each x; is in
the range of {0,1}. The optimal classifier of Bayes is given below

hBayes(X) = argmaxP[Y = y|X = x|,y € {0,1} (1)

We need 27 parameters to define the probability function P[Y = y | X = x], each of
which relates to P[Y = 11X = x] for a given value of y € {0,1}. This means that when
the number of features increases, so does the number of instances necessary. In the Naive
Bayes technique, we make the generative assumption that, given the label, the features are
independent of one another. To put it another way,

d
PIY =y|X =a] =] | P[Y = y[X = x| 2
i=1
The Bayes optimum classifier can be reduced further using this assumption and the
Bayes rule:
d
IBayes(X) = argmaxP[Y = y] [ TP[Xi = x;|Y = y] ®)
i=1

That is, the set of parameters to estimate has been reduced to 2d +1. In this situation,
the generative assumption we made considerably decreased the number of parameters
we needed to learn. When the maximum likelihood principle is used to figure out the
parameters, the resulting classification model is called the Naive Bayes classifier.
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One typical technique to handle continuous attributes in Naive Bayes classification
is to use Gaussian distributions to express the probabilities of the features based on the
classes. As a result, every attribute is represented as Xi N(, 2) by a Gaussian probability
density function (PDF), [34] as reported by [35].

X~ N(p, o) 4)
The Gaussian PDF is shaped like a bell and is defined by the equation below where u
is the mean and ¢? is the variance.

1 (x=p)?

N(p,0%)(x) = e o’ ®)

2702

4.2. Hoeffding Tree (HT)

Hulten et al [36] are the first to propose Hoeffding trees. The Hoeffding tree algorithm
is a fundamental algorithm for stream data classification. It is an induction of a decision
tree algorithm that could learn from enormous data streams if the distributed generating
examples remain constant over time. It creates decision trees that are similar to the standard
batch learning method. Asymptotically, Hoeffding trees as well as decision trees are
connected. The HT technique is based on the basic premise that a modest sample size can
frequently be sufficient to identify an optimal splitting feature. The key point to understand
here is that classic batch learning algorithms produce decision trees based on attribute
splitting. The HT method is mathematically verified to use the Hoeffding bound. To
comprehend the significance of the Hoeffding bound, a few assumptions must be made.
Let’s say we get N separate samples of a random variable r with a range of R, where r is a
measure of attribute selection. In the case of Hoeffding trees, r is information gain, and if
we calculate the mean value of 74, for this sample, the Hoeffding limit indicates that the
true mean of r is at least 1-6. The primary benefits of the HT algorithm are as follows:

1.  itisincremental in nature

2. itachieves high accuracy with small sample size.

3. scans on the same data are never performed.

However, Hoeffding Tree has a few disadvantages. The main disadvantage is that HT
cannot handle concept drift because the node cannot be changed once it is created. [37] de-
scribed how to deal with concept drift using classifiers. The algorithm devotes a significant
amount of time to attributes with nearly identical splitting quality. Furthermore, memory
utilization can be further optimized.

1
Rzlng
2n

The algorithm for Hoeffding tree is shown in algorithm 1.

[th] e=

(6)

5. Experimental Evaluation
5.1. EXPERIMENTAL ENVIRONMENT

The proposed method was implemented using Python 3.8 with River as our framework
for online machine learning. The proposed method was implemented on a MacBook Pro
running on an M1 chip with 16 GB of RAM. The TON-IoT dataset was used to evaluate
the proposed framework. There are several incremental or online streaming libraries that
provide machine functionalities. Some of these libraries are Creme, scikit-multiflow and
River. In this study, we choose to build our incremental learning models using River. [38]
is a merger of creme and Scikit-multiflow. River is a library that allows continual learning
by handling dynamic data streams. We chose River because it includes data transformation
methods, learning algorithms, and optimization algorithms. Its distinct data structure
lends itself well to settings involving streaming data and web applications.
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Algorithm 1: Hoeffding Tree Algorithm [36]

Input: S is a sequence of examples,
X is a set of discrete attributes,
G(.) is a split evaluation function,
¢ is one minus the desired probability of choosing the correct attribute at
any given node
Output: HT is a decision tree
procedure HOEFFDINGTREE(S, X, G, 6)
Let HT be a tree with a single leaf I; (the root)
LetXl ZXU{Xg}
Let G1(Xp) be the G obtained by predicting the most
frequent class in S
for each class Y; do
for each value X;; of each attribute X; € X do
‘ Let Rijk (=0
end
end
for each example (X, Y}) in S do
Sort (x, y) into a leaf / using HT
for each X;j in X ssuch that X; € X do
‘ Increment n;j (I)
end
end
Label [ with the majority class among the examples
seen so far at [
if the examples seen so far at | are not all of the same class then

end

Compute G; (X;) for each attribute X; € X; — Xp using the counts 1k (1)
Let X, be the attribute with highest G;.
Let X, be the attribute with second-highest G;.
Compute € using Equation 1

if Gl (Xa)— Gl (Xp) > € and X, # Xy, then

end
Replace | by an internal node that splits on X,.

For each branch of the split

Add a new leaf [, and let X,;, = X — {X,}.

Let G, (Xp) be the G obtained by predicting the most frequent class at /
for each class Yy and each value X of each attribute X; € X,,, — {Xp} do

‘ Let Tll‘]‘k(lm) =0
end
return HT
end procedure
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5.2. DATASET

According to [39], the TON-IoT dataset was built by the Cyber Range and IoT Las
at the University of South Wales. The dataset has nine (9) types of cyber-attacks. These
are Denial of Service (DoS), Distributed Denial of Service (DDoS), ransomware, backdoor,
data injection, scanning, Cross-site Scripting (XSS), password cracking and Man-in-The-
Middle (MiTM). The generated data were from seven IoT and IIoT devices namely, fridge,
motion light, garage door, GPS tracker, thermostat and weather. The fridge dataset has
a total of 587076 records, the motion light dataset has 452262 records, the garage door
has 591446 records, the GPS tracker produced 595686 records whiles the thermostat and
weather produced 442228 and 650242 records respectively. The statistics of the dataset used
is shown in tables 1 and 2.

5.3. EVALUATION METRICS

True positive (Vp): Positive intrusion that is both expected and confirmed.

False positive (Up): An intrusion that was expected to be positive but ended up
turning out to be negative.

True negative (Vy): The intrusion is expected to be negative and confirmed to be
negative.

False negative (Uy): The intrusion was expected to be negative, but it turned out to
be positive.

5.3.1. Accuracy

A model’s overall accuracy can be measured by the number of correctly predicted
events made by the given model. The formula below computes the total accuracy of the
model.

Vp 4+ Vy
Vp+ Vy + Up + Uy

Accuracy =

5.3.2. Precision

Precision is found by dividing the total number of positive detections by the number
of positive detections that were correctly identified as positive.

Vp

Precision = —————
Vp+ Up

5.3.3. Recall

The recall is defined as the ratio of true positive detections to the number of real
abnormal samples.
Vp

Recall = ————
Vp+ Un

5.3.4. F1 Score
The F1 score is the average of precision and recall. The Fl-score is determined as the
weighted average of precision and recall, taking both the Up and Uy into consideration.

Fl— 2 * Precision x Recall 2% Vp
~ Precision + Recall ~— 2% Vp+ Up + Uy

5.3.5. Memory

The computational constraint of IoT devices makes it difficult and sometimes im-
possible to run IDS meant for traditional computers on these IoT devices. This calls for
developing models that consume minimal memory (lightweight models).
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Table 1. Statistics of TON IoT dataset [39]

Fridge IoT dataset
Type of attack No of rows
Backdoor 35568
DDoS 10233
Injection 7079
Normal 500827
Password 28425
Ransomware 2902
XSS 2042

GPS tracker IoT dataset
Backdoor 35571
DDoS 10226
Injection 6904
Normal 513849
Password 513849
Ransomware 2833
Scanning 550
XSS 577
Motion light IoT dataset

Backdoor 28209
DDoS 8121
Injection 5595
Normal 388328
Password 17521
Ransomware 2264
Scanning 1775
XSS 449

Weather IoT dataset
Backdoor 35641
DDoS 15182
Injection 9726
Normal 559718
Password 25715
Ransomware 2865
Scanning 529
XSS 866

Garage IoT dataset
Backdoor 35568
DDoS 10230
Injection 6331
Normal 515443
Password 19287
Ransomware 2902
Scanning 529
XSS 1156

5.3.6. Model Running Time

In this evaluation metric, we measure the total time it takes for the proposed model to

run.

5.4. RESULTS

In this section, we present the results of the proposed and compared them with other
state-of-the-art techniques. To begin with, this study compares the results of the proposed
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Table 2. Statistics of TON IoT dataset continuation [39]

Modus IoT dataset

Backdoor 40035
Injection 7079
Normal 405904
Password 24269
Scanning 529
XSS 577

Thermostat IoT dataset
Backdoor 35568
DDoS 10230
Injection 6331
Normal 515443
Password 19287
Ransomware 2902
Scanning 529
XSS 1156

model with other state-of-the-art IDS proposed and evaluated with the TON IoT dataset.
We decided to limit the state-of-the-art to studied that used ToN IoT dataset because we
wanted to eliminate biases. In comparing these studies, we considered the category of the
TON IoT dataset used in each study, the method proposed by each of the works under
consideration, the highest accuracy recorded and whether the study records the time used
to build the model as well as the amount of memory the model consumes. The comparison
of our approach with other state of art IDS for IoT systems is presented in table 3. Where
the authors fail to report on a parameter, we indicate is as non-available (N/A). From
table 3, it could be observed that out of the five states-of-the-art IDSs considered in the
study none of them reports on the model or the memory consumption of their proposed
technique. Although [40,41] both report 100% accuracy, our proposed model outperforms
the methods proposed in those studies for the following reasons:

1.  The accuracy reported in our study is the average accuracy of our proposed model
whereas [40,41] reports total accuracy.

2. Our study focused on multi-class classification whereas [40,41] focused on binary
class classification.

In table 4 the accuracy, time, and memory consumption of the models used to build
our incremental ensemble technique are compared with our proposed model. Although
the time and memory consumption of the individual models are lower than our proposed
model, we wanted to propose a model that achieves a trade-off between accuracy, time,
and memory consumption. Our proposed model ended up achieving a higher accuracy
without significantly increasing the time and memory consumption. The time and memory
consumption of the proposed model shows it can run on devices that are computationally
constrained without significantly impacting negatively on the computational resources of
these devices.

Figure 4 below shows the output of our proposed model in terms of the time taken
to build the model. The results show that our proposed model recorded the least training
time of 59 seconds on the thermostat dataset and the highest training time of 114 seconds
on the weather IoT dataset. The concept of incremental learning allows our model to learn
one stream of data at a time. Therefore, the time used to train the model on a stream of data
will be the total observations in the dataset divided by the total model training time. This
makes our model very fast irrespective of the size of the dataset.

When tested on the modus dataset, our proposed model achieved a superior average
accuracy of 96.81%, with precision, recall, and F1 scores of 97.23%, 96.81% and 96.92%
respectively. The Hoeffding tree had an average accuracy of 92.96%, with precision, recall,
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Table 3. Using the ToN IoT dataset, we compared our proposed model to state-of-the-art models that
had been tested using the same dataset

Figure 4. Model training time of our model using the TON IoT dataset.
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[40] 2022 Optimized decision | 100 N/A N/A
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[41] 2022 Ensemble  based | 100 N/A N/A
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[42] 2022 Graph Neural Net- | 97.87 N/A N/A
work
[43] 2021 Synthetic minority | 99.0 N/A N/A
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Table 4. Comparing the accuracy (Acc), model time consumption (Time) and memory usage of the
base classifiers against our model on the different datasets

Fridge IoT dataset
Gaussian NB Hoeffding Tree Our proposed model
Acc Time (s) | Memory| Acc Time (s) | Memory| Acc Time (s) | Memory
(KB) (KB) (KB)
85.31% | 29.9 15.85 98.68% | 20.7 532.71 | 99.98% | 104 650.11
Modus IoT dataset
Gaussian NB Hoeffding Tree Our proposed model
Acc Time (s) | Memory| Acc Time (s) | Memory| Acc Time (s) | Memory
(KB) (KB) (KB)
77.60% | 19.2 19.2 92.36% | 14 12458 | 96.81% | 75 495.25
Garage IoT dataset
Gaussian NB Hoeffding Tree Our proposed model
Acc Time (s) | Memory| Acc Time (s) | Memory| Acc Time (s) | Memory
(KB) (KB) (KB)
85.96% | 37 27.05 95.70% | 29.5 75.85 99.96% | 131 394.95
Motion light IoT dataset
Gaussian NB Hoeffding Tree Our proposed model
Acc Time (s) | Memory| Acc Time (s) | Memory| Acc Time (s) | Memory
(KB) (KB) (KB)
85.86% | 22.9 20.6 92.06% | 15.5 33.56 99.98% | 79 219.58
GPS Tracker IoT dataset
Gaussian NB Hoeffding Tree Our proposed model
Acc Time (s) | Memory| Acc Time (s) | Memory| Acc Time (s) | Memory
(KB) (KB) (KB)
85.20% | 28.3 10.56 98.29% | 18.7 120.36 | 99.97% | 97 281.94
Weather IoT dataset
Gaussian NB Hoeffding Tree Our proposed model
Acc Time (s) | Memory| Acc Time (s) | Memory| Acc Time (s) | Memory
(KB) (KB) (KB)
86.08% | 33.4 20.58 98.37% | 23.7 31491 | 99.93% | 116 627.81
Thermostat IoT dataset
Gaussian NB Hoeffding Tree Our proposed model
Acc Time (s) | Memory| Acc Time (s) | Memory| Acc Time (s) | Memory
(KB) (KB) (KB)
87.27% | 19.9 6.85 99.12% | 13.8 55.07 99.94% | 71 122.38
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Figure 5. Accuracy of Gaussian NB, HT and proposed model on Modus dataset.
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Figure 6. Accuracy of Gaussian NB, HT and proposed model on Fridge dataset.

and F1 scores of 92.36%, 92.36%, and 92.36%, respectively. Using the GPS IoT dataset, the
Gaussian NB had an average accuracy of 77.60%, with precision, recall, and F1 scores of
60.21%, 77.60%, and 67.81%, respectively. Figure 5 shows the results of our model when
evaluated using the modus IoT dataset.

Similarly, our proposed model has a superior average accuracy of 99.98% when it
was evaluated using the fridge IoT dataset. The proposed model also recorded the same
value for precision, recall and F1 score using the same dataset. Hoeffding tree algorithm
recorded 98.63%, 98.68%, 98.52% and 98.52% for precision, recall, F1 score and average
accuracy respectively. Gaussian NB recorded the least average accuracy. Recording an
average accuracy of 85.31%. Gaussian NB also recorded the least values for precision, recall
and F1 scores with 72.8%, 85.31% and 78.55% respectively. Figure 6 illustrates the outcomes
of our model when tested against the fridge IoT dataset.

The experimental findings show that when tested using the motion IoT dataset, our
proposed method performed better. The proposed ensemble model achieved an average
accuracy of 99.98% with precision and recall of the same value whiles recording 99.97% for
F1 score. The same dataset revealed that the Hoeffding tree recorded an average accuracy
of 92.06% whiles recording a precision, recall and F1 score of 88.56%, 92.06% and 89.64%
respectively. The average accuracy, precision, recall and F1 score recorded by Gaussian NB
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Figure 7. Accuracy of Gaussian NB, HT and proposed model on Motion dataset.
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Figure 8. Accuracy of Gaussian NB, HT and proposed model on Garage dataset.

is 85.86%, 73.73%, 85.86% and 79.33% respectively. Figure 7 depicts the results of our model
when tested against the motion IoT dataset.

When tested on the garage IoT dataset, our proposed ensemble model again had the
highest precision, recall, F1 score, and average accuracy. Our proposed model recorded
an average accuracy of 99.96% with the same value being recorded for precision, recall
and F1 score. Hoeffding tree on the other hand recorded a precision, recall, F1 score and
average accuracy of 95.52%, 95.70%, 95.26% and 95.70% respectively. Gaussian Naive Bayes
recorded a precision, recall, F1 score and average accuracy of 73.88%, 85.96%, 79.46% and
85.96 respectively when it was evaluated using the garage IoT dataset. Figure 8 shows the
results of our model when tested against the garage IoT dataset.

Evaluating our proposed model on the GPS tracker dataset, our model achieved a
superior average accuracy of 99.97% with precision, recall and F1 score of 99.97% each.
Hoeffding tree recorded an average accuracy of 98.29% whiles recording a precision, recall
and F1 score of 98.36%, 98.29% and 98.08% respectively. Evaluating the Gaussian NB using
the GPS IoT dataset revealed an average accuracy of 85.20% with precision, recall and F1
score of 88.26%, 85.20% and 82.02% respectively. Figure 9 shows the results of our model
when evaluated using the GPS tracker IoT dataset.
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Figure 9. Accuracy of Gaussian NB, HT and proposed model on GPS Tracker dataset.

100

95
£ o
©
=3
8
=
g
@©
o 85
80
—— Gaussian Naive Bayes
Hoeffding Tree
—— Proposed Model
5
Prescision Recall F1 Awvg accuracy

Figure 10. Accuracy of Gaussian NB, HT and proposed model on the Thermostat dataset.

The experimental result shows that when our proposed model is evaluated using the
thermostat IoT dataset, the model achieved an average accuracy of 99.94% with a precision,
recall and F1 score of 99.94% for each of them respectively. Gaussian NB showed an average
accuracy of 87.27% whiles recording a precision, recall and F1 score of 76.17%, 87.27% and
81.34% respectively. Hoeffding tree showed an average accuracy of 99.12% with a precision,
recall and F1 score of 99.07%, 99.12% and 99.03% respectively. Figure 10 shows the results
of our model when tested against the thermostat [oT dataset.

We also evaluated our model on the weather IoT dataset which is one of the datasets
found in the TON IoT dataset. The results show that Gaussian NB recorded a precision,
recall, F1 and average accuracy of 80.02%, 86.08%, 76.65% and 86.08% respectively. On
the other hand, the Hoeffding tree recorded a precision, recall, F1 and average accuracy
of 98.47%, 98.37%, 98.30% and 98.37% respectively. However, our proposed ensemble
technique recorded an average accuracy of 99.93% with a precision, recall and F1 score of
99.93% respectively. Figure 11 illustrates the outcomes of our model when tested against
the weather IoT dataset.

The Fridge IoT dataset recorded the highest consumption of 650.11KB whiles the
weather IoT dataset recorded the lowest memory consumption of 122.38KB. The results
of the memory consumption of the model proposed in this study show that even at the
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Figure 11. Accuracy of Gaussian NB, HT and proposed model on Weather dataset.
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Figure 12. Memory consumption of our proposed model on various sub-datasets of TON IoT dataset

highest memory consumption the proposed IDS achieves a lightweight status and can
potentially run on IoT devices without significantly affecting the available memory of these
devices. The memory consumption of our proposed model is shown in figure 12.

The precision, recall and F1 score of Gaussian Naive Bayes, Hoeffding tree and our
proposed model on different attack categories is shown in tables 5 and 6 below.

6. Conclusion

The security of the Internet of Things ecosystems is increasingly gaining great impor-
tance as a result of its numerous applications. The security of IoT systems has gone beyond
encryption, authentication, and secured architecture. Recently, a lot of security-based
research in IoT systems has been focused on detecting attacks and anomalies in network
traffic. However, because of the computational constraints of IoT devices, IDS developed
for traditional computing systems cannot be deployed in IoT environments. It is therefore
expedient to design lightweight IDS that can be deployed on IoT devices. In this view,
we used the incremental machine learning technique to design a lightweight IDS for IoT
systems using incremental ensemble machine learning algorithms. Our proposed model
was evaluated using the TON IoT dataset. The results show that our proposed model
achieved a high average accuracy rate of 99.98%. The experimental results show the highest
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Table 5. Comparing the Precision (P), Recall (R) and F1 score of each model on each attack category

Fridge IoT dataset

Gaussian NB Hoeffding Tree Our proposed model
Attack cate- | P (%) | R(%) | F1 P(%) | R(%) | F1 P(%) | R(%) | F1
gory (%) (%) (%)
Backdoor 0.00 0.00 0.00 98.73 | 99.38 | 99.06 | 99.97 | 99.76 | 99.86
DDoS 0.00 0.00 0.00 88.65 | 95.58 | 91.99 | 99.98 | 99.95 | 99.97
Injection 0.00 0.00 0.00 7537 | 83.26 | 79.12 | 99.87 | 99.97 | 99.92
Normal 85.31 | 100.00 | 92.07 | 99.96 | 100.00 | 99.98 | 99.98 | 100.00 | 99.99

Password 0.00 0.00 0.00 90.09 | 9299 | 91.52 | 99.97 | 99.97 | 99.97
Ransomware | 0.00 0.00 0.00 43.83 | 27.29 | 33.64 | 99.59 | 99.69 | 99.64

XSS 0.00 0.00 0.00 100.00 | 11.31 | 20.33 | 100.00 | 99.41 | 99.71
Modus IoT dataset

Backdoor 0.00 0.00 0.00 83.16 | 71.65 | 7697 | 97.35 | 87.40 | 92.10

Injection 0.00 0.00 0.00 41.83 | 18.16 | 25.33 | 75.70 | 69.80 | 72.63

Normal 77.60 | 100.00 | 87.39 | 99.97 | 100.00 | 99.99 | 99.99 | 99.98 | 99.99

Password 0.00 0.00 0.00 4642 | 68.78 | 5543 | 71.61 | 89.00 | 79.36
Scanning 0.00 0.00 0.00 47.65 | 63.14 | 5431 | 86.60 | 71.64 | 79.62

XSS 0.00 0.00 0.00 1429 | 0.20 0.40 17.51 | 25.10 | 20.63
Garage IoT dataset

Backdoor 0.00 0.00 0.00 99.55 | 94.32 | 96.86 | 99.67 | 9991 | 99.79

DDoS 0.00 0.00 0.00 3538 | 9851 | 52.06 | 99.65 | 98.99 | 99.32

Injection 0.00 0.00 0.00 0.00 0.00 0.00 99.81 | 99.78 | 99.79

Normal 85.96 | 100.00 | 92.45 | 99.97 | 100.00 | 99.99 | 100.00 | 100.00 | 100.00

Password 0.00 0.00 | 0.00 | 6651 | 4723 | 5523 | 99.85 | 99.88 | 99.87
Ransomware | 0.00 0.00 | 0.00 | 0.00 0.00 0.00 | 99.90 | 99.83 | 99.86
Scanning 0.00 0.00 | 0.00 | 0.00 0.00 0.00 | 99.81 | 98.68 | 99.24
XSS 0.00 0.00 | 0.00 | 0.00 0.00 0.00 100.00 | 99.13 | 99.57
Motion light IoT dataset
Backdoor 0.00 0.00 | 0.00 |4394 |99.28 | 60.92 | 99.97 | 99.70 | 99.83

DDoS 0.00 0.00 0.00 0.00 0.00 0.00 99.96 | 99.94 | 99.95
Injection 0.00 0.00 0.00 0.00 0.00 0.00 99.93 | 99.95 | 99.94
Normal 85.86 | 100.00 | 92.39 | 99.95 | 100.00 | 99.97 | 99.98 | 100.00 | 99.99

Password 0.00 0.00 0.00 0.00 0.00 0.00 99.98 | 99.98 | 99.98
Ransomware | 0.00 0.00 0.00 0.00 0.00 0.00 99.82 | 99.82 | 99.82
Scanning 0.00 0.00 0.00 0.00 0.00 0.00 99.77 | 99.77 | 99.77
XSS 0.00 0.00 0.00 0.00 0.00 0.00 100.00 | 99.11 | 99.55
GPS Tracker IoT dataset
Backdoor 95.05 | 7.50 13.90 | 97.87 | 99.47 | 98.66 | 99.97 | 99.73 | 99.61

DDoS 98.77 | 8.65 1591 | 69.66 | 9250 | 79.47 | 99.87 | 99.97 | 99.92
Injection 16.77 | 46.00 | 2458 | 79.02 | 79.78 | 79.40 | 99.84 | 99.88 | 99.86
Normal 88.42 | 96.57 | 92.31 | 99.96 | 100.00 | 99.98 | 99.98 | 100.00 | 99.99

Password 100.00 | 11.11 | 20.00 | 85.27 | 83.39 | 8432 | 99.96 | 99.94 | 99.95
Ransomware | 20.08 | 58.84 | 29.94 | 99.54 | 7.70 1429 | 99.12 | 99.61 | 99.37
Scanning 100.00 | 0.18 0.36 100.00 | 20.36 | 33.84 | 100.00 | 99.64 | 99.82
XSS 1092 | 13.52 | 12.08 | 0.00 0.00 0.00 100.00 | 95.84 | 97.88

memory consumption at 650.11KB and the lowest memory consumption at 122.38KB. The
experimental result shows that our approach has led to the design of an IDS that has a high
accuracy rate and a lightweight model that can potentially run on IoT devices. In the future,
we plan to evaluate our approach to other IoT-based datasets and deploy our model on an
IoT device to evaluate parameters such as CPU usage, memory, and energy consumption.
Additionally, future work could consider exploring how concept drifts in these datasets
could be handled.
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Table 6. Comparing the Precision (P), Recall (R) and F1 score of each model on each attack category

continuation

Gaussian NB Hoeffding Tree Our proposed model
Attack cate- | P (%) | R(%) | F1 P (%) | R(%) | F1 P(%) | R(%) | F1
gory (%) (%) (%)

Weather IoT dataset

Backdoor 100.00 | 0.05 0.10 96.42 | 9948 | 97.92 | 99.89 | 99.98 | 99.94
DDoS 0.00 0.00 0.00 83.59 | 93.53 | 88.28 | 99.89 | 99.84 | 99.87
Injection 0.00 0.00 0.00 69.59 | 89.18 | 78.18 | 97.39 | 99.88 | 98.62
Normal 86.08 | 100.00 | 92.52 | 99.97 | 100.00 | 99.98 | 100.00 | 100.00 | 100.00

Password 0.00 0.00 0.00 89.57 | 78.11 | 83.45 | 99.93 | 98.87 | 99.45
Ransomware | 100.00 | 0.31 0.63 86.95 | 34.66 | 49.56 | 96.71 | 99.55 | 98.11
Scanning 0.00 0.00 0.00 100.00 | 38.56 | 55.66 | 95.19 | 86.01 | 90.37

XSS 0.00 0.00 0.00 100.00 | 39.84 | 56.98 | 100.00 | 94.11 | 96.97
Thermostat IoT dataset

Backdoor 0.00 0.00 0.00 97.48 | 99.43 | 9844 | 9993 | 99.75 | 99.84

Injection 0.00 0.00 0.00 88.55 | 9347 | 9094 | 99.11 | 99.80%| 99.45

Normal 87.27 | 100.00 | 93.20 | 99.95 | 100.00 | 99.97 | 99.98 | 100.00 | 99.99

Password 0.00 0.00 0.00 85.37 | 84.64 | 85.00 | 99.52 | 98.99 | 99.26
Ransomware | 0.00 0.00 0.00 7239 | 4470 | 55.27 | 99.55 | 98.23 | 98.89
Scanning 0.00 0.00 0.00 0.00 0.00 0.00 69.33 | 85.25 | 76.47
XSS 0.00 0.00 0.00 100.00 | 1.34 2.64 100.00 | 94.65 | 97.25
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