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Abstract
We evaluate the nested sum » o7 _ 70— ... %700 3% where a, and c are any

integers and «x is a real or complex variable. Consequently, we evaluate multiple
sums involving the terms of a general second order sequence, the Horadam sequence
(Wj(a,b;p,q)), defined for all non-negative integers j by the recurrence relation Wy =
a, Wi =b; W; = pW;_1 — ¢W,_2(j > 2); where a, b, p and ¢ are arbitrary complex
numbers, with p # 0, g # 0.
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1 Introduction

Let F} be the j% Fibonacci number. Ivie [4] has shown that

ZZFr:Fm+4_F4_m7

s=1 r=1
n m S 1
S F = Fug— By -y - ML,
m=1 s=1 r=1
and more generally,
an, an—1 al n—1 .
a, +7—1

3 ...ZF%_FW%_ZFM_J.)( , ) (H)

an—1=1ap_9o=1 ap=1 7=0 J

In this paper we will extend the study to the Horadam sequence and derive more such sums.
Identity (H) is a special case of the more general identity (see Theorem 3)

Qn, an—1 al
Sy Ly R
Vo

Ap—1=Canp—2=C ap=c
n—1 .
= (_1)n Wr(an+2n)+s _ 1 (_1>n*j Wr(2n—2j+c,1)+s anp+j—c
qrn‘/Tan ‘/Tc—l - qr(n—j) ] ,
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in which (W;(a, b;p,q)) is the Horadam sequence [3] defined for all non-negative integers j,
by the recurrence relation

Wo=a, Wy =b; W; =pW,_1 — qW;_2(j > 2); (1.1)

where a, b, p and ¢ are arbitrary complex numbers, with p # 0, ¢ # 0.
Two important cases of (W;) are the Lucas sequences of the first kind, (U;(p, ¢)) = (W;(0, 1;p,q)),
and of the second kind, (V;(p,q)) = (W;(2,p;p,q)); so that

Up=0,U=1U; =pUj_1 —qU;_5,(j > 2);

and
Vo=2,Vi=p V;=pVio1 —qVj_2,(j > 2).

The most well-known Lucas sequences are the Fibonacci sequence, (F;) = (U;(1,—1)) and
the sequence of Lucas numbers, (L;) = (V;(1,-1)).

The special case p = 1 is also important, giving the sequence (w;(a,b;q)) = (W;(a,b;1,q)),
with corresponding special Lucas sequences (u;(q)) = (U;(1,q)) and (v;(q)) = (V;(1,q)).
The particular case (G;(a,b)) = (w;(a,b; —1)) is the so-called gibonacci sequence, with the
Fibonacci and Lucas sequences, (F;) = (G;(0,1)) and (L;) = (G,;(2,1)), as special cases.
Explicitly,

G(] = a, G1 = b; Gj = ijl + ijg (] > 2)

The Binet formulas for sequences (U;), (V;) and (W) in the non-degenerate case, p*—4q > 0,

are . . , .

Uj=——=—x" Vi=tl+ol,  W;=A7 +Bo?, (BW)
with
A:b—aa’ B:CLT—I)’
T —0 T —0
where

_ VPP —4q P—VP?—4q
2 2 ’

are the distinct zeros of the characteristic polynomial 2% — pz + ¢ of the Horadam sequence;
so that To = q and 7+ 0 = p.
The Binet formulas for the Fibonacci and Lucas numbers are

o — B ol —
a—B3 5
where o = 7(1, —1) = (1 + v/5)/2 is the golden ratio and 8 = (1, —1) = —1/a.

Extension of the definition of W), to negative subscripts is provided by writing the recurrence
relation as W_,, = (pW_,.;1 — W_,.10)/q.

T=7(p,q) , o=0(pq) =

F; = Lj=o + 7, (BF)

2 Preliminary results

Let x be a real or complex variable, a, an integer and n a positive integer. We wish to
evaluate

an an—1 al
E E e E xao;
ap—1=1anp_2=1 ap=1
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the basic ingredient in our derivations.
The geometric progression sum

can be arranged as

Multiply through the identity

1
S Y T (2.1)

by (z — 1)/ and sum over a;, making use of (D) with m = ay, to obtain

C—l)“ii x—lzxal_x;121

a1=1ap=1 ar1=1 a1=1
a _q <x - 1) i .
= — —
x
a1=1
Multiply through the above by (z —1)/z and sum over ay, making use of (D) with m = as.
This gives
r—1 3 a3 a2 a1 x—l r—1 as 2 a3 a2
o _ 1— 1
() oy -ty () Y
az=1a1=1ap=1 az=1 az=1 ax=1a1=1
r—1 -1\ & &
et () S
az=1 as=1a1=1

Continuing the iteration, we find

_1=lap— ap=1 an—1=1an_o=1 an—;=1
Thus, the task of finding >0 >on=! - 370 | 2% reduces to that of evaluating
P ND DAPRE ZZ" 711 1 for the n — 1 values of j. Note that there are exactly j sums

in the latter multiple sum. We will prove a lemma and return to (2.2).

Lemma 1. Let k, m and bs be non-negative integers and let s be a positive integer. Then
i+ k—1 k+m

= 2.
Z( k ) <k+1 ’ (2:3)

b b5,1 b1
: 1
Yo 1:(b5+5 ) (2.4)
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Proof. Both identities will be proved by induction. To prove (2.3) we keep k fixed and carry
out an induction on m. Identity (2.3) is obviously true for m = 0 and m = 1. Assume the
truth for m = r to establish the induction hypothesis:

(it k—1 k47
P, : = )
> ()6

We wish to prove that P, = P, for r a positive integer.

%(j+i—1):i<j+i—l>+<kzr>

j=1 j=1
k+r k+r
<k+1>+( i ), by hypothesis P,,

_(k+r+1
S\ k+1 )
where, in the last step, we used Pascal’s identity:
S S s+1
+ = .
k+1 k k+1

Thus, P, = P,4.
Since

identity (2.4) holds for s = 1. Assume the veracity for s = k to get the induction hypothesis:

. 2: %f ﬁil_(m+k )

bp_1=1bp_o=1 bp=1

We have

brt1 br_1 br+1

b +k—1 .
DD IED NS ( o >,byhypothe51s P
bk lbk 1= 1bk 2= =1 bo 1 bkzl
bpyr + k .
= ( k/:1+1 ),by (2.3) with m = by

Thus, P, = Ppi1. O

Using identity (2.4), we find
an—1 An—j+1
n 1
> Y oy =("Th)
ap—1=1anp—_o=1 an—;=1 ']
which inserted in (2.2), yields

() EE S B () e

ap—1=1anp—2=1 ap=1 7j=1

We now give a formal proof of (2.5). In section 3 we will consider some of its applications.
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Lemma 2. Let n be a positive integer. Let x be a real or complex variable. Then,

(:r;l) Z Zl Zx n_:(x;1>j<an+jj—1>' ()

1=lan_ ap=1 J

Proof. The proof is by induction on n. The identity is readily verified to be true for n =1,
giving (2.1). Assume the truth for n = k. We have the induction hypothesis:

P (33_1) Z Z Zx“o—x S(:ﬁ;l)j<ak+jj—l>'

akllakgl (101 jo

We wish to prove that P, =— Pi.1.

We have
T — 1 k+1 Ak+1 ag ap—1
(TS Y e
ap=— 1ak 1= 1ak 2= =1 apg= 1
ZL‘ — 1 ak“ x —1 Wkl
- = IS IR ST
“kl ap—1=1lag_2=1 ag=1
x_l a’k+1 k—1 3’;—1 a+_1
- { Z ) ( ‘ j ) },by induction hypothesis Py,
ap= 1 ]:0 ]
1—1“"“ k- 1( )mak“ (ak+j—1)
SIS e S ()R (Y,
S| j=0 v ap=1 J
(2.6)
Now,
Iilak-{—l v ] gl _ g
ag — — Ag4+1 1 27
x c;x x r—1 t ( )
and
)R () B () e
) - . , DY -9 J,
j=0 ap=1 J = x j+1

SEYE)

Y ()
j=o N T J ‘

Using (2.7) and (2.8) in (2.6), we find

. k+1 Ak+1 ag ap—1 ai k B j -
P <xx1) Z Z Z _._Zxaozxakﬂ_z(xxl) (ak+1‘;] 1)'

ap=lar_1=1agp_o=1 ap=1 7=0

Thus, P, = Pk—l—l' ]
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3 Main results

In this section, we will apply identity (E) to derive some nested identities involving Horadam
numbers.

First we wish to modify identity (E) so that each sum in the multiple sum on the left hand
side starts with an arbitrary index, say c¢. To do this, we replace the sequence of integers
(a;), 1=0,1,2,...,n with (a; —c+1),71=0,1,2,...,n. This gives

() £ 5 e BERY ()

_1=can ap=c

Note that the identities in Lemma 1 can also be caused to start from j = ¢ by writing
m —c+ 1 for m and j — ¢+ 1 for j, and replacing (b;), i = 0,1,2,...,s with (b; —c+ 1),

1=0,1,2,...,s, giving
" (j—c+k m—c+k+1
= 3.2
Z( k > ( E+1 )’ (32)

J=c

Z 5oy 83

_1=cbs_o=c bop=c

The identity obtained by setting ¢ = 0 in (3.3) provided the motivation for Butler and
Karasik [2| to look at nested sums.

Multiplying through (3.1) by (x/(z — 1))" and writing z/y for x and —z/y for x, in turn,
we have the following useful versions:

f(@,y;an,n,¢) = Z ail Z (g)

an—1=Can—-2=C ap=c

(5026 6 )

<

9(z,y; an,n, ) = Z “i:l Z (f)ao

Ap—1=Cap_2=C ap=c

T ns e\ O n—1 n—j T c—1 a, +j—c
- (55) () rorg ) ) ()
T+y Yy =0 Tty Yy J
(B)
Equipped with identities (A) and (B), we are now ready to state the results regarding the

nested sums involving Horadam numbers. Theorems 1 and 2 are concerned with Fibonacci
and Lucas numbers while Theorems 3-7 address the general Horadam sequence.

<

Theorem 1. Let a,, s and ¢ be any integers and let n be a positive integer. Then,

an—1 n—1
F2n+3an+s F2(n )+3(c—1)+s [ On +]
DR DR DY TR Dl T i) ()
Ap—1=CQp_2=C ap=c Jj=0
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An—1 n—1
Z Z Z Lont3an+s 2 :L2(n )+3(c—1)+s an+7J —
L3a0+3 == 272 - 277, ] j . (Flb)
anp—-1=Can—-2=C ap=c 7=0

Proof. Consider identity (A). Simplify both sides of
f(@* 1 an,m,0) F f(5°,1; 0,1, ),
using the Binet formulas (BF). O

Theorem 2. Let a,, s and ¢ be any integers and let n be a positive integer. Then,

an—1 al n—1
a an Fn+3an+s c Fn —j+3(c—1)+s [ Gn + ] —C
D03 D s = (e ey Bt (),
an—1=Can—-2=C ap=c ]ZO
(F2a)
an—1 al n—1 .
a an Ln+3an+s c Ln—j+3(c—1)+s ap+J—¢
Z Z Z (—=1)* Laggts = (—1) 2—n+(—1) Z BT — ; ~
ap—-1=Can-2=C ap=—c ]:0
(F2b)
Proof. Consider identity (B). Simplify both sides of
g(a37 1;an7n7c):[:g(/837 1;an7n7c>?
using the Binet formulas (BF). O

Theorem 3. Letr, s, c and a, be any integers and let n be a positive integer. Then,

an—1
rao—i—s
>y ey e
Ap_1=CQp_9=C ap=c 1 (FS)
Wr(an+2n )+s - r(2n—2j+c—1)+s [ n + ] —C
= <_1) 'r'n,Van o Vc 1 Z (n 7) j
=
Proof. Refer to identity (A). Use the Binet formulas (BW) to simplify both sides of
ATSf(TT’ V"; an’ n’ C) + Bo-sf(o-T’ Vr; an’ n’ C)'
O

The restricted Horadam sequence version of (F3) is

an—1
Up—1=CQapn_2=C apg=c

n—1 .
n Wr(an+2n)+s 1 n—i Wr(2n—2j+c—1)+s [ Gn +7—c
= (_1) TN yQ T (_1> ! T(i—j) ( : :
q v Uy q J
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In particular,

an—1
DI U ST
an—-1=Can—2=C apg=c
n—1 .
n Wa,+2n+s n_‘an—2j+c—1+s an + J—cC
= (-1 =y () ( : )
q" JZO g j
The gibonacci version of (F3) is
an—1
Tao—i—s
> oY ey
Ap_1=CQp_2=CcC apg=c
n(r— Gr(an+2n)+s RS < n—j)(r— an +j—c
= (=)D Tan ~ e Z DG e 1)4s i ;
r r jZO

a particular case of which (r =1, s =0) is
an—1 n—1 a + j —c
S Y Y G = G za2m(n . )
a =ca =c ap=c 0 J
n—1=Can—2= 0= J=
of which (H) is a special case (¢ = 1).

Theorem 4. Let r, s, ¢ and a, be any integers and let n be a positive integer. Then,

an—1

Z Z Z WQrao-I—s . (_1)an Wr(2an+n)+s
rao o qranVn
An_1=Can_2=cC ag=c r
c n— 1 + . <F4)
’!‘ n— ]+20 D4s (An T ) —C
r c— 1) Z ( j )
Proof. Refer to (B) and simplify
AT%g(1", 0" an,n,c) + Bo'g(o", 775 an, n, c).
]
The gibonacci version of (F4) is
an—1
GT Qa n S
$ 8 S )Gy (1o Gt
Ly
ap—1=Can—-2=C ap=c
n—1 .
Grin_itoe— an+j—c
_1yr(e—1)+c r(n—j+2c—2)+s n T J
(aytene Y S (176
=0 r

In particular,

an—1
Z Z Z Graots = Grantnrs = Z Grjtoc—2+s (a" . C)

Ap—1=C Ap_2=C ap=c j

For the proof of Theorems 5 and 6, we require the identities stated in Lemma 3.

8
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Lemma 3. Let r and d be any integers. Then,

Urra — 7'Us = U,
Urpa — 0"Uy = 7°U,,
Viea—7Va=—0cUA,
Viga — 0'Vy =10, A.

~ o~~~
=
w

Proof. Each identity follows directly from the Binet formulas. For example, to prove (L1),

we have
Trer _ o.rer 7_d _ O'd
Upg—T7TUj=————7
T—0 T—0
1
— (Trer O,rer Tr+d 4 Tro,d)
T—0
d
o
= (7" —o") = o,
T—0

]

Theorem 5. Let r, s, ¢, d and a, be any integers; r # 0, r +d # 0. Let n be a positive
integer. Then,

3 S (Y

Ap—1=Can_2=C¢C ap=c

( )nUTH‘an
= ﬁw(r+d)n+ran+s (F5)
¢ U Ur+d

c—1 n—1 i n—1g .

Ui > 1z:(—l)" ’ (Ud> ’ (an+9—0)

— - Wr n—j+c— n—j)+s . :
( Uyia por q?n=3) \ U, (n—j+e=1)+d(n—j)+ j

Proof. Refer to identity (A) and simplify both sides of

ATsf( "Ug, U, r+d; (n, I ) + Basf(UTUdv Ur+td; G, n),
using the Binet formulas and (L1) and (L2). O

Note that when d = r, (F5) reduces to (F3).
The gibonacci version of (F5) is

S Y (F)

Ap—1=CQap—_2=C¢C ap=c
(_1) (d+1)Fn+an

= G
. 0n (r+d)n+ran+s
F Fr—l—d

Fd c—1n—1 ' Fd n—j a + ] —c
_ _pyeeny (24N e (O '
(Frer) Jz:; ( ) Fr (n=jtemtdln=g .7

The identity stated in Lemma 4 is required in the proof of Theorem 6.
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Lemma 4 (|1, Lemma 1]). For integer j,

; i Wiyl — qW;—1
ATl —Bo? = 2F =
A
Theorem 6. Let r, s, ¢, d and a, be any integers; v # 0. If n is a positive even integer,
then,
> -2 ()
Y Y Wraps
Ap_1=Cap_2=C apg=c V+d

1 Vd " ‘/d an
- T Wr n+a n-+s
RIANG (Ur) (Vr+d) (n+an)+dnt
Ve \“ 1 " AY Va\" W a, +2j —c
B Vitd An ; qd("*Qj) E (r+d)(n—25)+r(c—1)+s 2

c— n/2 n—25+1
Vd AQ] ‘/d J
- (V+d> An+2 Z { d(n—2j+1) U (W(r+d)(n—2j+1)+r(c—1)+8+1_

a,+27—1—c¢
Wr n—2j r(c— s— . 3
GWr+d)(n—2j+1)47(e-1)+a-1) ( 2j — 1 )}

(F6a)

while if n is a positive odd integer, then,

£ S

Ap—1=Cap—_9=C ap=c

1 "/d n Vd Qn,
- gin An+1 (E) (Vr+d> (Wr(n+an)+dn+s+1 - qWT(n-i—an)—i-dn—i-s—l)
( v, )cl 1 (”215/2{ A2 <Vd)n2j o,
- n+1 dn=25) \ 7. (r+d)(n—2j)+r(c—1)+s+17
V;"-l-d A =0 q ( 7) Ur
ap, + QJ —C
AWt d)(n—2j)+r(c—1)+5—1) < 2] )}

Va1 ' A Va\" W anp+2j—1—c
— At Z —qd(n—2j+1) UT (r+d)(n—2j4+1)+r(c—1)+s 2] 1 .

Vita =
(F6h)

Proof. First employ the summation identity

Lm/2] [m/2]

ij = Z fo + Z faj—1
j=0 j=0 Jj=1

10
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to write (A) as

an—1
f(z,y; an,n,c) Z Z Z( >
Ap—1=Cap_2=C ap=c

()OS )T () w

[(ni/ﬂ e\ N fa, 42 —1—¢
— T—Y Y 25 =1 |

7=1

Using (A2), the Binet formulas and (L3) and (1.4),

ATsf<TTVd7 ‘/7"+d; G, TL) + Bo_s]c(o_r‘/d, ‘/r—i-d; Ap, TL)

evaluates to

5 3> () W

Ap—1=Cap_2=C apg=c
1 Vi " [ V. "
) () s

1 Ln-1)/2] o
Ve \ 1 Vy 7 .
. A (r+d)(n—27)+r(c—1)+s
(‘/r—ﬁ—d) Z { qd n—2j) (U A ( T +

=0
(= 1)"Bo A2 rie14s) (O t2j—c
25

c—1 [(n—1)/2] n—2j4+1
. (V‘/d ) Z { - 12].+1) (U‘/dA) (AT(r—f—d)(n—2j+1)+r(c—1)+s
r+d q ne r

Jj=1
(—1)"Bo 241 4r(e1)+s) <an +2j—1— C) } |

2j — 1
(3.4)

The stated results now follow from the parity consideration of n in (3.4), the Binet formulas
and Lemma 4. O

We now state the gibonacci versions of (F6a) and (F6b) for any integers r, s, ¢, d and a,

11
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such that r # 0. If n is a positive even integer, then,

3 z( ) G

Ap—1=Cap_2=C apg=c

L (LaY' L\
= W Fr Lr+d r(nt+an)+dn+s

Ly c—1 1 (nf/Q 5j Ly n—2j . an+2j—c
Lr+d 5n/2 Fr (r+d)(n—2j)+r(c—1)+s 2]

=0

= n/2 n—2j+1
La b= Lqg !
- ( > 5(nt2)/2 Z 5 il (G(T-i-d)(n—2j+1)+r(c—1)+5+1+
Jj=1 T

LT+d
a, +25—1—c
Gr n—2j r(c— s— . )
(r+d)(n—2j+1)+r(c—1)+ 1) < 2] -1 )}

while if n is a positive odd integer, then,

O3 S ()" G

Anp—1=Can_2=C¢C ap=c

() (25)
= p— - Gr n-+an n—+s + GT n+an nrs—
5(nt1)/2 Fr Lr-i—d ( (n+an)+dn+s+1 (n+an)+dn+ 1)

o (n-1)/2 n—2j
Lq b(—1) i ( La !
_< ) s 2 (7 E (Grtan-2tre-n+s1t

Lr—f—d =0
an, +25 —c
G (r+d) (n—25)+r(c—1)+5—1) ( 2] )}

Ly c—1 1 (n—1)/2 i Ly n—2j+1 . 21—
B Lr+d 5(n+1)/2 le Fr (r+d)(n—2j+1)+r(c—1)+s 2] 1 .

In particular, for the Fibonacci sequence, we have that if n is a positive even integer, then,

O3 z( Y P

an—-1=Canp—-2=C ap=c

L (LY L\
= W Fr L,r.+d r(n+an)+dn+s

Lo\ 1 & L\ tn+2j — ¢
o 571/2 Z 5 FT F(T+d)(n72j)+"1(c*1)+5 2]

Liyta =
Ld c— d n/2 n—2j5+1 . a, + 2] 1.
B Lr-i—d 5(n+2)/2 Z (r+d)(n—25+1)+r(c—1)+s 2] 1 ,

12
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while if n is a positive odd integer, then,

O3 z( N b

ap—1=—Canp—-2=C ap=c

(=D (L La \™ I
= 5 )/ Fr Lr+d r(n+an)+dn+s

Ld c—1 (_1)d (n—1)/2 ; Ld n—2jL an+2j—c
- 5(n+1)/2 Z 5 FT (r+d)(n—25)+r(c—1)+s 2]

Lr—l—d ay
Lo\ _1 = j [ La e an+2j—1—c
j=

As for the sequence of Lucas numbers, we have that if n is a positive even integer, then,

S ()

r+d
Ap—1=Can_2=c ap=c

L (La\"( L\,
= W E Lr+d r(nt+an)+dn+s

L, c—1 1 (n—2)/25j Ly n—2jL a, +2j — ¢
o 5n/2 Z FT (r+d)(n—2j)+r(c—1)+s 2j

Liria s
Ld . n/2 5] Ld n-2+ F Qp -+ 2] — 1 — C
— Loia 5n/2 Z il (r+d)(n—=2j4+1)+r(c—1)+s 2j — 1 ,

while if n is a positive odd mteger, then,

O3 z( N

Ap—1=Cap_9=C ap=c

~(=D)? (Lq Lg \* I
= 5(n—1)/2 F,,, Lr+d r(n+ap)+dn+s

Ly c—1 (_1)d (n—l)/25j Ly n—sz a4+ 2j — ¢
B 5(n—1)/2 Z E (r+d)(n—2j)+r(c—1)+s 2j

Lr—l—d

j=0
Ly \“' 1 (n-1)/2 » Ly\" %t , b2 —1—c
a L, q 5(n+1)/2 ; F, (r+d)(n—2j+1)+r(c—1)+s 21 .

Theorem 7. Let r, s, d, a,, ¢ be any integers; r+1 £ d. If W, s #£ 0 and W4 # 0 then,
Sy e () ()
_1=Canp_2=cC ap=c U d+1 Ws+d

U—a N\ (Werat N\ (Wera1\"
-y, () (Mt} (s
r—d+1 s+d r+s

c—1 c—1n—1 n—j .
e (UUr—d > (MI;s/er—l) Z (_1)n—jqn7jU:L:dj (MI/;F/+d_1> J (an +? — c)
r—d+1 s+d =0 r+s J
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Proof. Refer to (A) and simplify

f(qu—dWs—i—d—h Ur—d-l—le—l—d; A, N, C);
making use of the following identity [3, Identity 3.15]:

WT+S = Ur—d+1Ws+d - qUT—dWs—l—d—l-

The restricted Horadam version (p = 1) and the gibonacci version of (F7) are

£ S ()

u w
Anp—1=Can_2=C¢C ap=c r—d+1 std

Ur—d an ws+d—1 o Wst+d—1 "
i e (2 (2
(=1) d Up_d+1 Weid Wyt s
Up_g c—1 War g c—1n—1 .y n—j " +] .
c—1 r— s+d—1 n—j n—j, n—j s4+d—1 n _
—q R -1 q U, ( ) ( . ),
(Ur—d—i—l) ( Witd ) ;( ) AT ;
Z aif Z ( —d )ao (Gs+d1)a°
Ap—1=Canp—2=C ap=c T d+1 Gerd
— (_1)anFn ( Fr—d )an ( s+d— 1) < s+d— 1>
r—d F’T_d—l-1 s+d r+s
# -1 (e ) <Gs+d1>c Z /(%) - (57)
FrfdJrl Gs+d — T+s ]
Taklng T = ]_, d — 0 gives

S Y ()

Ap—1=Cap_2=C ap=c

- e (22 (1)
Wg ws+1

ao

Ap—1=C ap_2=C ap=c

orle
) &) )

J
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4 Concluding comments

In this paper we evaluated the following nested sums involving the terms of the Horadam

sequence:
an—1 ai an—1
OED SRS DL S S PR et
Vao ) Ta() ’
Ap—_1=Cap_2=C ap=c T Ap—1=CQp_2=C ap=c
an an—1 al ao an—1
>y > U ) ", § YT § j
ce U rag+s» V rao+s>
Ap—1=Cap—_2=C ap=c r+d Ap—1=Cap_2=C ap=c r+d
an—1 ag ag
ag r d Werdfl
... q —_— —W .
Ap—1=Cap—_2=C ap=c r d+1 std

Explicit results for the special Horadam sequence (w;) and the gibonacci sequence G; were

presented.
The starting point for each summation in the multiple sums considered was fixed at a; = ¢,
fori=0,1,2,...,n — 1. It is possible to choose a different lower limit for each sum in the

nested sum. The aim would then be to evaluate

an—1

)DRED SIS S 9P (S)

Gn—1=Cn—1 An—2=Cn—2 a1=cC1 ap=Cco

in which the sequence of integers (¢;), i = 0,1,2,...,n — 1, is such that ¢; may be different
from ¢; if 7 is different from j. In this case, a similar iteration to what produced (2.2) would
give

() L X e

Anp—-1=Cn—1 An—-2=Cn—2 ap=co
n—1 ] an—1 An—j541
a Cn—1—1 I — 1 ’ C i—1—1
— pOn _ gn- _E: ZCn—i— E E E 1

A x
Jj=1 n—1=Cn—1 Gn—2=Cp—2 Ap—j=Cn—j

A suggestion for further research would be the determination of sums of the form

bs—1 b b1
SR SIS 3B Sit
bs—1=cs—1 bs—2=c5—2 b1=c1 bo=co

which would facilitate the evaluation of (S).

References

[1] K. Adegoke, R. Frontczak and T. Goy, Special formulas involving polygonal numbers
and Horadam numbers, Carpathian Mathematical Publications, 13.1 (2021), 207-216.

15


https://doi.org/10.20944/preprints202209.0044.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 September 2022 doi:10.20944/preprints202209.0044.v1

[2] S. Butler and P. Karasik, A note on nested sums, Journal of Integer Sequences 13
(2010), Article 10.4.4.

[3] A. F. Horadam, Basic properties of a certain generalized sequence of numbers, The
Fibonacci Quarterly 3:3 (1965), 161-176.

[4] J. Tvie, Multiple Fibonacci sums, The Fibonacci Quarterly 7:3 (1969), 303—-309.

16


https://doi.org/10.20944/preprints202209.0044.v1

