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Abstract
We evaluate the nested sum

∑an
an−1=c

∑an−1
an−2=c · · ·

∑a1
a0=c xa0 where an and c are any

integers and x is a real or complex variable. Consequently, we evaluate multiple
sums involving the terms of a general second order sequence, the Horadam sequence
(Wj(a, b; p, q)), defined for all non-negative integers j by the recurrence relation W0 =
a, W1 = b; Wj = pWj−1 − qWj−2 (j ≥ 2); where a, b, p and q are arbitrary complex
numbers, with p 6= 0, q 6= 0.
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1 Introduction
Let Fj be the jth Fibonacci number. Ivie [4] has shown that

m∑
s=1

s∑
r=1

Fr = Fm+4 − F4 −m,

n∑
m=1

m∑
s=1

s∑
r=1

Fr = Fn+6 − F6 − nF4 −
n(n + 1)

2
,

and more generally,
an∑

an−1=1

an−1∑
an−2=1

· · ·
a1∑

a0=1

Fa0 = Fan+2n −
n−1∑
j=0

F2(n−j)

(
an + j − 1

j

)
. (H)

In this paper we will extend the study to the Horadam sequence and derive more such sums.
Identity (H) is a special case of the more general identity (see Theorem 3)

an∑
an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

Wra0+s

V a0
r

= (−1)n Wr(an+2n)+s

qrnV an
r

− 1

V c−1
r

n−1∑
j=0

(−1)n−j Wr(2n−2j+c−1)+s

qr(n−j)

(
an + j − c

j

)
,
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in which (Wj(a, b; p, q)) is the Horadam sequence [3] defined for all non-negative integers j,
by the recurrence relation

W0 = a, W1 = b; Wj = pWj−1 − qWj−2 (j ≥ 2); (1.1)

where a, b, p and q are arbitrary complex numbers, with p 6= 0, q 6= 0.
Two important cases of (Wj) are the Lucas sequences of the first kind, (Uj(p, q)) = (Wj(0, 1; p, q)),
and of the second kind, (Vj(p, q)) = (Wj(2, p; p, q)); so that

U0 = 0, U1 = 1; Uj = pUj−1 − qUj−2, (j ≥ 2);

and
V0 = 2, V1 = p; Vj = pVj−1 − qVj−2, (j ≥ 2).

The most well-known Lucas sequences are the Fibonacci sequence, (Fj) = (Uj(1,−1)) and
the sequence of Lucas numbers, (Lj) = (Vj(1,−1)).
The special case p = 1 is also important, giving the sequence (wj(a, b; q)) = (Wj(a, b; 1, q)),
with corresponding special Lucas sequences (uj(q)) = (Uj(1, q)) and (vj(q)) = (Vj(1, q)).
The particular case (Gj(a, b)) = (wj(a, b;−1)) is the so-called gibonacci sequence, with the
Fibonacci and Lucas sequences, (Fj) = (Gj(0, 1)) and (Lj) = (Gj(2, 1)), as special cases.
Explicitly,

G0 = a, G1 = b; Gj = Gj−1 + Gj−2 (j ≥ 2).

The Binet formulas for sequences (Uj), (Vj) and (Wj) in the non-degenerate case, p2−4q > 0,
are

Uj =
τ j − σj

τ − σ
=

τ j − σj

∆
, Vj = τ j + σj, Wj = Aτ j + Bσj , (BW)

with
A =

b− aσ

τ − σ
, B =

aτ − b

τ − σ
,

where

τ = τ(p, q) =
p +

√
p2 − 4q

2
, σ = σ(p, q) =

p−
√

p2 − 4q

2
,

are the distinct zeros of the characteristic polynomial x2−px+ q of the Horadam sequence;
so that τσ = q and τ + σ = p.
The Binet formulas for the Fibonacci and Lucas numbers are

Fj =
αj − βj

α− β
=

αj − βj

√
5

, Lj = αj + βj, (BF)

where α = τ(1,−1) = (1 +
√

5)/2 is the golden ratio and β = σ(1,−1) = −1/α.
Extension of the definition of Wn to negative subscripts is provided by writing the recurrence
relation as W−n = (pW−n+1 −W−n+2)/q.

2 Preliminary results
Let x be a real or complex variable, an an integer and n a positive integer. We wish to
evaluate

an∑
an−1=1

an−1∑
an−2=1

· · ·
a1∑

a0=1

xa0 ;

2
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the basic ingredient in our derivations.
The geometric progression sum

m∑
k=1

xk =
xm+1 − x

x− 1

can be arranged as
x− 1

x

m∑
j=1

xj = xm − 1. (D)

Multiply through the identity

x− 1

x

a1∑
a0=1

xa0 = xa1 − 1 (2.1)

by (x− 1)/x and sum over a1, making use of (D) with m = a2, to obtain(
x− 1

x

)2 a2∑
a1=1

a1∑
a0=1

xa0 =
x− 1

x

a2∑
a1=1

xa1 − x− 1

x

a2∑
a1=1

1

= xa2 − 1−
(

x− 1

x

) a2∑
a1=1

1.

Multiply through the above by (x− 1)/x and sum over a2, making use of (D) with m = a3.
This gives(

x− 1

x

)3 a3∑
a2=1

a2∑
a1=1

a1∑
a0=1

xa0 =
x− 1

x

a3∑
a2=1

xa2 − x− 1

x

a3∑
a2=1

1−
(

x− 1

x

)2 a3∑
a2=1

a2∑
a1=1

1

= xa3 − 1− x− 1

x

a3∑
a2=1

1−
(

x− 1

x

)2 a3∑
a2=1

a2∑
a1=1

1.

Continuing the iteration, we find(
x− 1

x

)n an∑
an−1=1

an−1∑
an−2=1

· · ·
a1∑

a0=1

xa0 = xan−1−
n−1∑
j=1

(
x− 1

x

)j an∑
an−1=1

an−1∑
an−2=1

· · ·
an−j+1∑
an−j=1

1. (2.2)

Thus, the task of finding
∑an

an−1=1

∑an−1

an−2=1 · · ·
∑a1

a0=1 xa0 reduces to that of evaluating∑an

an−1=1

∑an−1

an−2=1 · · ·
∑an−j+1

an−j=1 1 for the n−1 values of j. Note that there are exactly j sums
in the latter multiple sum. We will prove a lemma and return to (2.2).

Lemma 1. Let k, m and bs be non-negative integers and let s be a positive integer. Then

m∑
j=1

(
j + k − 1

k

)
=

(
k + m

k + 1

)
, (2.3)

bs∑
bs−1=1

bs−1∑
bs−2=1

· · ·
b1∑

b0=1

1 =

(
bs + s− 1

s

)
. (2.4)

3

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 September 2022                   doi:10.20944/preprints202209.0044.v1

https://doi.org/10.20944/preprints202209.0044.v1


Proof. Both identities will be proved by induction. To prove (2.3) we keep k fixed and carry
out an induction on m. Identity (2.3) is obviously true for m = 0 and m = 1. Assume the
truth for m = r to establish the induction hypothesis:

Pr :
r∑

j=1

(
j + k − 1

k

)
=

(
k + r

k + 1

)
.

We wish to prove that Pr =⇒ Pr+1 for r a positive integer.
r+1∑
j=1

(
j + k − 1

k

)
=

r∑
j=1

(
j + k − 1

k

)
+

(
k + r

k

)
=

(
k + r

k + 1

)
+

(
k + r

k

)
, by hypothesis Pr,

=

(
k + r + 1

k + 1

)
,

where, in the last step, we used Pascal’s identity:(
s

k + 1

)
+

(
s

k

)
=

(
s + 1

k + 1

)
.

Thus, Pr =⇒ Pr+1.
Since

b1∑
b0=1

1 =

(
b1

1

)
= b1,

identity (2.4) holds for s = 1. Assume the veracity for s = k to get the induction hypothesis:

Pk :

bk∑
bk−1=1

bk−1∑
bk−2=1

· · ·
b1∑

b0=1

1 =

(
bk + k − 1

k

)
.

We have
bk+1∑
bk=1

bk∑
bk−1=1

bk−1∑
bk−2=1

· · ·
b1∑

b0=1

1 =

bk+1∑
bk=1

(
bk + k − 1

k

)
, by hypothesis Pk,

=

(
bk+1 + k

k + 1

)
, by (2.3) with m = bk+1.

Thus, Pk =⇒ Pk+1.

Using identity (2.4), we find
an∑

an−1=1

an−1∑
an−2=1

· · ·
an−j+1∑
an−j=1

1 =

(
an + j − 1

j

)
,

which inserted in (2.2), yields(
x− 1

x

)n an∑
an−1=1

an−1∑
an−2=1

· · ·
a1∑

a0=1

xa0 = xan − 1−
n−1∑
j=1

(
x− 1

x

)j (
an + j − 1

j

)
. (2.5)

We now give a formal proof of (2.5). In section 3 we will consider some of its applications.

4
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Lemma 2. Let n be a positive integer. Let x be a real or complex variable. Then,(
x− 1

x

)n an∑
an−1=1

an−1∑
an−2=1

· · ·
a1∑

a0=1

xa0 = xan −
n−1∑
j=0

(
x− 1

x

)j (
an + j − 1

j

)
. (E)

Proof. The proof is by induction on n. The identity is readily verified to be true for n = 1,
giving (2.1). Assume the truth for n = k. We have the induction hypothesis:

Pk :

(
x− 1

x

)k ak∑
ak−1=1

ak−1∑
ak−2=1

· · ·
a1∑

a0=1

xa0 = xak −
k−1∑
j=0

(
x− 1

x

)j (
ak + j − 1

j

)
.

We wish to prove that Pk =⇒ Pk+1.
We have(

x− 1

x

)k+1 ak+1∑
ak=1

ak∑
ak−1=1

ak−1∑
ak−2=1

· · ·
a1∑

a0=1

xa0

=

(
x− 1

x

) ak+1∑
ak=1


(

x− 1

x

)k ak∑
ak−1=1

ak−1∑
ak−2=1

· · ·
a1∑

a0=1

xa0


=

(
x− 1

x

) ak+1∑
ak=1

{
xak −

k−1∑
j=0

(
x− 1

x

)j (
ak + j − 1

j

)}
, by induction hypothesis Pk,

=
x− 1

x

ak+1∑
ak=1

xak −
k−1∑
j=0

(
x− 1

x

)j+1 ak+1∑
ak=1

(
ak + j − 1

j

)
.

(2.6)

Now,
x− 1

x

ak+1∑
ak=1

xak =
x− 1

x

xak+1+1 − x

x− 1
= xak+1 − 1 (2.7)

and

k−1∑
j=0

(
x− 1

x

)j+1 ak+1∑
ak=1

(
ak + j − 1

j

)
=

k−1∑
j=0

(
x− 1

x

)j+1 (
ak+1 + j

j + 1

)
, by (2.3),

=
k∑

j=1

(
x− 1

x

)j (
ak+1 + j − 1

j

)

=
k∑

j=0

(
x− 1

x

)j (
ak+1 + j − 1

j

)
− 1.

(2.8)

Using (2.7) and (2.8) in (2.6), we find

Pk+1 :

(
x− 1

x

)k+1 ak+1∑
ak=1

ak∑
ak−1=1

ak−1∑
ak−2=1

· · ·
a1∑

a0=1

xa0 = xak+1 −
k∑

j=0

(
x− 1

x

)j (
ak+1 + j − 1

j

)
.

Thus, Pk =⇒ Pk+1.
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3 Main results
In this section, we will apply identity (E) to derive some nested identities involving Horadam
numbers.
First we wish to modify identity (E) so that each sum in the multiple sum on the left hand
side starts with an arbitrary index, say c. To do this, we replace the sequence of integers
(ai), i = 0, 1, 2, . . . , n with (ai − c + 1), i = 0, 1, 2, . . . , n. This gives(

x− 1

x

)n an∑
an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

xa0 = xan − xc−1

n−1∑
j=0

(
x− 1

x

)j (
aj + j − c

j

)
. (3.1)

Note that the identities in Lemma 1 can also be caused to start from j = c by writing
m − c + 1 for m and j − c + 1 for j, and replacing (bi), i = 0, 1, 2, . . . , s with (bi − c + 1),
i = 0, 1, 2, . . . , s, giving

m∑
j=c

(
j − c + k

k

)
=

(
m− c + k + 1

k + 1

)
, (3.2)

bs∑
bs−1=c

bs−1∑
bs−2=c

· · ·
b1∑

b0=c

1 =

(
bs + s− c

s

)
. (3.3)

The identity obtained by setting c = 0 in (3.3) provided the motivation for Butler and
Karasik [2] to look at nested sums.
Multiplying through (3.1) by (x/(x − 1))n and writing x/y for x and −x/y for x, in turn,
we have the following useful versions:

f(x, y; an, n, c) =
an∑

an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

(
x

y

)a0

=

(
x

x− y

)n (
x

y

)an

−
n−1∑
j=0

(
x

x− y

)n−j (
x

y

)c−1 (
an + j − c

j

)
,

(A)

g(x, y; an, n, c) =
an∑

an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

(−1)a0

(
x

y

)a0

= (−1)an

(
x

x + y

)n (
x

y

)an

+ (−1)c

n−1∑
j=0

(
x

x + y

)n−j (
x

y

)c−1 (
an + j − c

j

)
.

(B)

Equipped with identities (A) and (B), we are now ready to state the results regarding the
nested sums involving Horadam numbers. Theorems 1 and 2 are concerned with Fibonacci
and Lucas numbers while Theorems 3–7 address the general Horadam sequence.

Theorem 1. Let an, s and c be any integers and let n be a positive integer. Then,

an∑
an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

F3a0+s =
F2n+3an+s

2n
−

n−1∑
j=0

F2(n−j)+3(c−1)+s

2n−j

(
an + j − c

j

)
, (F1a)

6
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an∑
an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

L3a0+s =
L2n+3an+s

2n
−

n−1∑
j=0

L2(n−j)+3(c−1)+s

2n−j

(
an + j − c

j

)
. (F1b)

Proof. Consider identity (A). Simplify both sides of

f(α3, 1; an, n, c)∓ f(β3, 1; an, n, c),

using the Binet formulas (BF).

Theorem 2. Let an, s and c be any integers and let n be a positive integer. Then,

an∑
an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

(−1)a0F3a0+s = (−1)an
Fn+3an+s

2n
+(−1)c

n−1∑
j=0

Fn−j+3(c−1)+s

2n−j

(
an + j − c

j

)
,

(F2a)

an∑
an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

(−1)a0L3a0+s = (−1)an
Ln+3an+s

2n
+(−1)c

n−1∑
j=0

Ln−j+3(c−1)+s

2n−j

(
an + j − c

j

)
.

(F2b)

Proof. Consider identity (B). Simplify both sides of

g(α3, 1; an, n, c)∓ g(β3, 1; an, n, c),

using the Binet formulas (BF).

Theorem 3. Let r, s, c and an be any integers and let n be a positive integer. Then,

an∑
an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

Wra0+s

V a0
r

= (−1)n Wr(an+2n)+s

qrnV an
r

− 1

V c−1
r

n−1∑
j=0

(−1)n−j Wr(2n−2j+c−1)+s

qr(n−j)

(
an + j − c

j

)
.

(F3)

Proof. Refer to identity (A). Use the Binet formulas (BW) to simplify both sides of

Aτ sf(τ r, Vr; an, n, c) + Bσsf(σr, Vr; an, n, c).

The restricted Horadam sequence version of (F3) is

an∑
an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

wra0+s

va0
r

= (−1)n wr(an+2n)+s

qrnvan
r

− 1

vc−1
r

n−1∑
j=0

(−1)n−j wr(2n−2j+c−1)+s

qr(n−j)

(
an + j − c

j

)
.

7

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 September 2022                   doi:10.20944/preprints202209.0044.v1

https://doi.org/10.20944/preprints202209.0044.v1


In particular,
an∑

an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

wa0+s

= (−1)n wan+2n+s

qn
−

n−1∑
j=0

(−1)n−j w2n−2j+c−1+s

qn−j

(
an + j − c

j

)
.

The gibonacci version of (F3) is

an∑
an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

Gra0+s

La0
r

= (−1)n(r−1)Gr(an+2n)+s

Lan
r

− 1

Lc−1
r

n−1∑
j=0

(−1)(n−j)(r−1)Gr(2n−2j+c−1)+s

(
an + j − c

j

)
;

a particular case of which (r = 1, s = 0) is

an∑
an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

Ga0 = Gan+2n −
n−1∑
j=0

G2(n−j)

(
an + j − c

j

)
;

of which (H) is a special case (c = 1).

Theorem 4. Let r, s, c and an be any integers and let n be a positive integer. Then,
an∑

an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

(−1)a0W2ra0+s

qra0
= (−1)an

Wr(2an+n)+s

qranV n
r

+
(−1)c

qr(c−1)

n−1∑
j=0

Wr(n−j+2c−2)+s

V n−j
r

(
an + j − c

j

)
.

(F4)

Proof. Refer to (B) and simplify

Aτ sg(τ r, σr; an, n, c) + Bσsg(σr, τ r; an, n, c).

The gibonacci version of (F4) is

an∑
an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

(−1)(r−1)a0G2ra0+s = (−1)(r−1)an
Gr(2an+n)+s

Ln
r

+ (−1)r(c−1)+c

n−1∑
j=0

Gr(n−j+2c−2)+s

Ln−j
r

(
an + j − c

j

)
.

In particular,

an∑
an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

G2a0+s = G2an+n+s −
n−1∑
j=0

Gn−j+2c−2+s

(
an + j − c

j

)
.

For the proof of Theorems 5 and 6, we require the identities stated in Lemma 3.

8
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Lemma 3. Let r and d be any integers. Then,

Ur+d − τ rUd = σdUr, (L1)
Ur+d − σrUd = τ dUr, (L2)

Vr+d − τ rVd = −σdUr∆, (L3)
Vr+d − σrVd = τ dUr∆. (L4)

Proof. Each identity follows directly from the Binet formulas. For example, to prove (L1),
we have

Ur+d − τ rUd =
τ r+d − σr+d

τ − σ
− τ r τ d − σd

τ − σ

=
1

τ − σ

(
τ r+d − σr+d − τ r+d + τ rσd

)
=

σd

τ − σ
(τ r − σr) = σdUr.

Theorem 5. Let r, s, c, d and an be any integers; r 6= 0, r + d 6= 0. Let n be a positive
integer. Then,

an∑
an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

(
Ud

Ur+d

)a0

Wra0+s

=
(−1)nUn+an

d

qdnUn
r Uan

r+d

W(r+d)n+ran+s

−
(

Ud

Ur+d

)c−1 n−1∑
j=0

(−1)n−j

qd(n−j)

(
Ud

Ur

)n−j

Wr(n−j+c−1)+d(n−j)+s

(
an + j − c

j

)
.

(F5)

Proof. Refer to identity (A) and simplify both sides of

Aτ sf(τ rUd, Ur+d; an, n) + Bσsf(σrUd, Ur+d; an, n),

using the Binet formulas and (L1) and (L2).

Note that when d = r, (F5) reduces to (F3).
The gibonacci version of (F5) is

an∑
an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

(
Fd

Fr+d

)a0

Gra0+s

=
(−1)n(d+1)F n+an

d

F n
r F an

r+d

G(r+d)n+ran+s

−
(

Fd

Fr+d

)c−1 n−1∑
j=0

(−1)(n−j)(d+1)

(
Fd

Fr

)n−j

Gr(n−j+c−1)+d(n−j)+s

(
an + j − c

j

)
.

The identity stated in Lemma 4 is required in the proof of Theorem 6.
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Lemma 4 ([1, Lemma 1]). For integer j,

Aτ j − Bσj =
wj+1 − qwj−1

∆
.

Theorem 6. Let r, s, c, d and an be any integers; r 6= 0. If n is a positive even integer,
then,

an∑
an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

(
Vd

Vr+d

)a0

Wra0+s

=
1

qdn∆n

(
Vd

Ur

)n (
Vd

Vr+d

)an

Wr(n+an)+dn+s

−
(

Vd

Vr+d

)c−1
1

∆n

(n−2)/2∑
j=0

∆2j

qd(n−2j)

(
Vd

Ur

)n−2j

W(r+d)(n−2j)+r(c−1)+s

(
an + 2j − c

2j

)

−
(

Vd

Vr+d

)c−1
1

∆n+2

n/2∑
j=1

{
∆2j

qd(n−2j+1)

(
Vd

Ur

)n−2j+1 (
W(r+d)(n−2j+1)+r(c−1)+s+1−

qW(r+d)(n−2j+1)+r(c−1)+s−1

) (
an + 2j − 1− c

2j − 1

)}
,

(F6a)

while if n is a positive odd integer, then,

an∑
an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

(
Vd

Vr+d

)a0

Wra0+s

=
1

qdn∆n+1

(
Vd

Ur

)n (
Vd

Vr+d

)an (
Wr(n+an)+dn+s+1 − qWr(n+an)+dn+s−1

)
−

(
Vd

Vr+d

)c−1
1

∆n+1

(n−1)/2∑
j=0

{
∆2j

qd(n−2j)

(
Vd

Ur

)n−2j (
W(r+d)(n−2j)+r(c−1)+s+1−

qW(r+d)(n−2j)+r(c−1)+s−1

) (
an + 2j − c

2j

)}
−

(
Vd

Vr+d

)c−1
1

∆n+1

(n−1)/2∑
j=1

∆2j

qd(n−2j+1)

(
Vd

Ur

)n−2j+1

W(r+d)(n−2j+1)+r(c−1)+s

(
an + 2j − 1− c

2j − 1

)
.

(F6b)

Proof. First employ the summation identity

m∑
j=0

fj =

bm/2c∑
j=0

f2j +

dm/2e∑
j=1

f2j−1
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to write (A) as

f(x, y; an, n, c) =
an∑

an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

(
x

y

)a0

=

(
x

x− y

)n (
x

y

)an

−
b(n−1)/2c∑

j=0

(
x

x− y

)n−2j (
x

y

)c−1 (
an + 2j − c

2j

)

−
d(n−1)/2e∑

j=1

(
x

x− y

)n−2j+1 (
x

y

)c−1 (
an + 2j − 1− c

2j − 1

)
.

(A2)

Using (A2), the Binet formulas and (L3) and (L4),

Aτ sf(τ rVd, Vr+d; an, n) + Bσsf(σrVd, Vr+d; an, n)

evaluates to
an∑

an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

(
Vd

Vr+d

)a0

Wra0+s

=
1

qdn

(
Vd

Ur∆

)n (
Vd

Vr+d

)an (
Aτ r(n+an)+dn+s + (−1)nBσr(n+an)+dn+s

)
−

(
Vd

Vr+d

)c−1 b(n−1)/2c∑
j=0

{
1

qd(n−2j)

(
Vd

Ur∆

)n−2j (
Aτ (r+d)(n−2j)+r(c−1)+s+

(−1)nBσ(r+d)(n−2j)+r(c−1)+s
) (

an + 2j − c

2j

)}
−

(
Vd

Vr+d

)c−1 d(n−1)/2e∑
j=1

{
1

qd(n−2j+1)

(
Vd

Ur∆

)n−2j+1 (
Aτ (r+d)(n−2j+1)+r(c−1)+s−

(−1)nBσ(r+d)(n−2j+1)+r(c−1)+s
) (

an + 2j − 1− c

2j − 1

)}
.

(3.4)

The stated results now follow from the parity consideration of n in (3.4), the Binet formulas
and Lemma 4.

We now state the gibonacci versions of (F6a) and (F6b) for any integers r, s, c, d and an
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such that r 6= 0. If n is a positive even integer, then,

an∑
an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

(
Ld

Lr+d

)a0

Gra0+s

=
1

5n/2

(
Ld

Fr

)n (
Ld

Lr+d

)an

Gr(n+an)+dn+s

−
(

Ld

Lr+d

)c−1
1

5n/2

(n−2)/2∑
j=0

5j

(
Ld

Fr

)n−2j

G(r+d)(n−2j)+r(c−1)+s

(
an + 2j − c

2j

)

−
(

Ld

Lr+d

)c−1
(−1)d

5(n+2)/2

n/2∑
j=1

{
5j

(
Ld

Fr

)n−2j+1 (
G(r+d)(n−2j+1)+r(c−1)+s+1+

G(r+d)(n−2j+1)+r(c−1)+s−1

) (
an + 2j − 1− c

2j − 1

)}
,

while if n is a positive odd integer, then,

an∑
an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

(
Ld

Lr+d

)a0

Gra0+s

=
(−1)d

5(n+1)/2

(
Ld

Fr

)n (
Ld

Lr+d

)an (
Gr(n+an)+dn+s+1 + Gr(n+an)+dn+s−1

)
−

(
Ld

Lr+d

)c−1
(−1)d

5(n+1)/2

(n−1)/2∑
j=0

{
5j

(
Ld

Fr

)n−2j (
G(r+d)(n−2j)+r(c−1)+s+1+

G(r+d)(n−2j)+r(c−1)+s−1

) (
an + 2j − c

2j

)}
−

(
Ld

Lr+d

)c−1
1

5(n+1)/2

(n−1)/2∑
j=1

5j

(
Ld

Fr

)n−2j+1

G(r+d)(n−2j+1)+r(c−1)+s

(
an + 2j − 1− c

2j − 1

)
.

In particular, for the Fibonacci sequence, we have that if n is a positive even integer, then,

an∑
an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

(
Ld

Lr+d

)a0

Fra0+s

=
1

5n/2

(
Ld

Fr

)n (
Ld

Lr+d

)an

Fr(n+an)+dn+s

−
(

Ld

Lr+d

)c−1
1

5n/2

(n−2)/2∑
j=0

5j

(
Ld

Fr

)n−2j

F(r+d)(n−2j)+r(c−1)+s

(
an + 2j − c

2j

)

−
(

Ld

Lr+d

)c−1
(−1)d

5(n+2)/2

n/2∑
j=1

5j

(
Ld

Fr

)n−2j+1

L(r+d)(n−2j+1)+r(c−1)+s

(
an + 2j − 1− c

2j − 1

)
,
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while if n is a positive odd integer, then,
an∑

an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

(
Ld

Lr+d

)a0

Fra0+s

=
(−1)d

5(n+1)/2

(
Ld

Fr

)n (
Ld

Lr+d

)an

Lr(n+an)+dn+s

−
(

Ld

Lr+d

)c−1
(−1)d

5(n+1)/2

(n−1)/2∑
j=0

5j

(
Ld

Fr

)n−2j

L(r+d)(n−2j)+r(c−1)+s

(
an + 2j − c

2j

)

−
(

Ld

Lr+d

)c−1
1

5(n+1)/2

(n−1)/2∑
j=1

5j

(
Ld

Fr

)n−2j+1

F(r+d)(n−2j+1)+r(c−1)+s

(
an + 2j − 1− c

2j − 1

)
.

As for the sequence of Lucas numbers, we have that if n is a positive even integer, then,
an∑

an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

(
Ld

Lr+d

)a0

Lra0+s

=
1

5n/2

(
Ld

Fr

)n (
Ld

Lr+d

)an

Lr(n+an)+dn+s

−
(

Ld

Lr+d

)c−1
1

5n/2

(n−2)/2∑
j=0

5j

(
Ld

Fr

)n−2j

L(r+d)(n−2j)+r(c−1)+s

(
an + 2j − c

2j

)

−
(

Ld

Lr+d

)c−1
(−1)d

5n/2

n/2∑
j=1

5j

(
Ld

Fr

)n−2j+1

F(r+d)(n−2j+1)+r(c−1)+s

(
an + 2j − 1− c

2j − 1

)
,

while if n is a positive odd integer, then,
an∑

an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

(
Ld

Lr+d

)a0

Lra0+s

=
(−1)d

5(n−1)/2

(
Ld

Fr

)n (
Ld

Lr+d

)an

Fr(n+an)+dn+s

−
(

Ld

Lr+d

)c−1
(−1)d

5(n−1)/2

(n−1)/2∑
j=0

5j

(
Ld

Fr

)n−2j

F(r+d)(n−2j)+r(c−1)+s

(
an + 2j − c

2j

)

−
(

Ld

Lr+d

)c−1
1

5(n+1)/2

(n−1)/2∑
j=1

5j

(
Ld

Fr

)n−2j+1

L(r+d)(n−2j+1)+r(c−1)+s

(
an + 2j − 1− c

2j − 1

)
.

Theorem 7. Let r, s, d, an, c be any integers; r + 1 6= d. If Wr+s 6= 0 and Wr+d 6= 0 then,
an∑

an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

qa0

(
Ur−d

Ur−d+1

)a0
(

Ws+d−1

Ws+d

)a0

= (−1)nqn+anUn
r−d

(
Ur−d

Ur−d+1

)an
(

Ws+d−1

Ws+d

)an
(

Ws+d−1

Wr+s

)n

− qc−1

(
Ur−d

Ur−d+1

)c−1 (
Ws+d−1

Ws+d

)c−1 n−1∑
j=0

(−1)n−jqn−jUn−j
r−d

(
Ws+d−1

Wr+s

)n−j (
an + j − c

j

)
.

(F7)
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Proof. Refer to (A) and simplify

f(qUr−dWs+d−1, Ur−d+1Ws+d; an, n, c),

making use of the following identity [3, Identity 3.15]:

Wr+s = Ur−d+1Ws+d − qUr−dWs+d−1.

The restricted Horadam version (p = 1) and the gibonacci version of (F7) are

an∑
an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

qa0

(
ur−d

ur−d+1

)a0
(

ws+d−1

ws+d

)a0

= (−1)nqn+anun
r−d

(
ur−d

ur−d+1

)an
(

ws+d−1

ws+d

)an
(

ws+d−1

wr+s

)n

− qc−1

(
ur−d

ur−d+1

)c−1 (
ws+d−1

ws+d

)c−1 n−1∑
j=0

(−1)n−jqn−jun−j
r−d

(
ws+d−1

wr+s

)n−j (
an + j − c

j

)
,

an∑
an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

(−1)a0

(
Fr−d

Fr−d+1

)a0
(

Gs+d−1

Gs+d

)a0

= (−1)anF n
r−d

(
Fr−d

Fr−d+1

)an
(

Gs+d−1

Gs+d

)an
(

Gs+d−1

Gr+s

)n

+ (−1)c

(
Fr−d

Fr−d+1

)c−1 (
Gs+d−1

Gs+d

)c−1 n−1∑
j=0

F n−j
r−d

(
Gs+d−1

Gr+s

)n−j (
an + j − c

j

)
.

Taking r = 1, d = 0 gives

an∑
an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

qa0

(
ws−1

ws

)a0

= (−1)nqn+an

(
ws−1

ws

)an
(

ws−1

ws+1

)n

− qc−1

(
ws−1

ws

)c−1 n−1∑
j=0

(−1)n−jqn−j

(
ws−1

ws+1

)n−j (
an + j − c

j

)
,

an∑
an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

(−1)a0

(
Gs−1

Gs

)a0

= (−1)an

(
Gs−1

Gs

)an
(

Gs−1

Gs+1

)n

+ (−1)c

(
Gs−1

Gs

)c−1 n−1∑
j=0

(
Gs−1

Gs+1

)n−j (
an + j − c

j

)
.
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4 Concluding comments
In this paper we evaluated the following nested sums involving the terms of the Horadam
sequence:

an∑
an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

Wra0+s

V a0
r

,

an∑
an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

(−1)a0W2ra0+s

qra0
,

an∑
an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

(
Ud

Ur+d

)a0

Wra0+s,
an∑

an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

(
Vd

Vr+d

)a0

Wra0+s,

an∑
an−1=c

an−1∑
an−2=c

· · ·
a1∑

a0=c

qa0

(
Ur−d

Ur−d+1

)a0
(

Ws+d−1

Ws+d

)a0

.

Explicit results for the special Horadam sequence (wj) and the gibonacci sequence Gj were
presented.
The starting point for each summation in the multiple sums considered was fixed at ai = c,
for i = 0, 1, 2, . . . , n− 1. It is possible to choose a different lower limit for each sum in the
nested sum. The aim would then be to evaluate

an∑
an−1=cn−1

an−1∑
an−2=cn−2

· · ·
a2∑

a1=c1

a1∑
a0=c0

xa0 , (S)

in which the sequence of integers (ci), i = 0, 1, 2, . . . , n− 1, is such that ci may be different
from cj if i is different from j. In this case, a similar iteration to what produced (2.2) would
give(

x− 1

x

)n an∑
an−1=cn−1

an−1∑
an−2=cn−2

· · ·
a1∑

a0=c0

xa0

= xan − xcn−1−1 −
n−1∑
j=1


(

x− 1

x

)j

xcn−j−1−1

an∑
an−1=cn−1

an−1∑
an−2=cn−2

· · ·
an−j+1∑

an−j=cn−j

1

.

A suggestion for further research would be the determination of sums of the form

bs∑
bs−1=cs−1

bs−1∑
bs−2=cs−2

· · ·
b2∑

b1=c1

b1∑
b0=c0

1,

which would facilitate the evaluation of (S).
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