
 
 

Review 

Recent Progress in Phage Therapy for Controlling Multidrug- 
Resistant Acinetobacter Baumannii Including in Human and 
Poultry 
Yan Zhang 1,2#, Yuanqing Lin2# , Salvatore Galgano3, Jos Houdijk3, Wei quan Xie4,Yajie Jin 1, Jiameng Lin 1,Wuqiang 
Song 1,4，Yijuan Fu2, ,Xiuying Li2,Wenting Chui2,Wei Kan2, Cai Jia2,Guangwei Hu2, and Tao Li 1,* 

1   Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shang-
hai,200241, China 

2  Animal Disease prevention and control center in Qinghai Province，Xining，810001, Qinghai, China 
3 Monogastric Science Research Centre, Scotland’s Rural College, Roslin Institute Building, Easter Bush, UK 
4 Guilin Medical University, Guilin, 541199, Guangxi, China 
#   These authors contribute equally  
* Correspondence: litao@shvri.ac.cn (Tao Li) 

Abstract: Acinetobacter baumannii is a multidrug-resistant and invasive pathogen associated with the 
etiopathology of both an increasing number of nosocomial infections and of relevance to poultry 
production systems. Multidrug-resistant Acinetobacter baumannii has been reported in connection to 
severe challenges to clinical treatment, mostly due to an increase rate of resistance to carbapenems. 
Amid the possible strategies aiming to reduce the insurgence of antimicrobial resistance, phage 
therapy has gained particular importance for the treatment of bacterial infections. This review sum-
marises the different phage-therapy approaches currently in use for multiple-drug resistant Acineto-
bacter baumannii, including single phage therapy, phage cocktails, phage -antibiotic combination 
therapy, phage coding Acinetobacter baumannii and the novel phage enzyme treatment. Although 
phage therapy represents a potential treatment solution for multidrug-resistant Acinetobacter bau-
mannii, further research is needed to unravel some unanswered questions especially in regard to its 
in vivo applications, before possible routine clinical use. 
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1. Introduction 

The Gram-negative aerobic, non-motile, pleomorphic bacillus Acinetobacter baumannii 
[1] is a multidrug-resistant opportunistic pathogen, currently identified as one of the ma-
jor causes of nosocomial infections in the healthcare system worldwide [2] . Moubareck et 
al. defined A. baumannii as the main causative agent of pneumonia, sepsis, meningitis, 
urinary tract and wound infections [3], correlated to a nosocomial mortality rate of up to 
35% [4]. Antimicrobial resistance (AMR) has been identified as a major worldwide health 
threat; in recent years, the irrational use of antibiotics, especially broad-spectrum ap-
proaches, has led to an increased selection of microbial species able to both survive med-
ical treatments and lead to an increased genomic distribution of AMR genes [5; 6]. 
Amongst the increasing number of multidrug-resistant bacteria reported, A. baumannii, 
especially nosocomial-relevant, has also been correlated to an increased resistance to mul-
tiple antibiotics [7]. Different outcomes have been reported for A. baumannii infected pa-
tients, including the need for cardiac surgery, with a prevalence of high-mortality pulmo-
nary infections [8]. According to Asif et al. (2018), A. baumannii AMR gene distribution 
significantly differs between patients in different hospitals and departments [9]. Specifi-
cally, A. baumannii has been found resistant to common antibiotics, such as cefopera-
zone/sulbactam, ampicillin/sulbactam and piperacillin/tazobactam, while polymyxin B 
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still showed strong antibacterial activity against multidrug resistant A. baumannii in vitro 
[10]. A. baumannii infection and drug resistance rates are generally increasing leading to a 
decrease effectiveness of general antibiotic therapy in worldwide. For example, car-
bapenems are critically important broad-spectrum antibiotics, whose pivotal therapeuti-
cal role is endangered by the insurgence of multi-resistance amongst multidrug resistant 
A. baumannii [6]. There is increasing evidence that extensively drug-resistant (XDR) and 
pan-drug-resistant (PDR) A. baumannii strains accumulate in, amongst others, countries 
like Iran and Croatia [11; 12; 13]. 

Poultry production has an essential contribution in food security and nutrition, with 
a fast-growing market [14], mostly due to poultry meat and eggs a rather affordable pro-
tein source [15]. A good number of regulations have led to a decreased usage of antimi-
crobial through food animal production [16], however A. baumannii is commonly found 
in poultry and their produce. Indeed, its role in as zoonotic AMR agent has been investi-
gated [17] , indicating possible AMR transmission from poultry to humans [18]. Multidrug 
resistant A. baumannii has been listed as a key priority by the World Health Organization 
(WHO) in the attempt of identifying pathogens that pose an increased threat to human 
health [19], hence the urgent need for alternative treatment strategies. 

Bacteriophages (phages) are viruses that specifically target bacteria with a basic struc-
ture constituted by an outer protein capsid enclosing the nucleic acid [20]. Similarly to 
other viruses, a typical phage lytic infection cycle is characterized by adhesion to the bac-
terial cell via recognizing host outer receptors, injection of phage genome into the cytosol, 
viral replication, followed by bacterial lysis and liberation of new phage [21], which could 
potentially infect new susceptible bacterial cells. Phage therapy, based on such lytic dy-
namics, could function as self-amplifying "drug", targeting sensitive bacterial cells and 
therefore providing an alternative to antibiotic therapy [22]. Strictly lytic phages are usu-
ally preferred for phage therapy, whereas the use of temperate  phages has been avoided 
due to their ability to mediate gene transfer between bacteria through specialized trans-
duction, which may increase bacterial virulence [23] or horizontal AMR gene transfer [24]. 
Beyond being a promising alterative to classic antibiotics, aiming to decrease the insur-
gence of AMR, phages could be also used towards biofilms, whilst having lower systemic 
toxicity and improved self-reproduction abilities compared to classic antibiotics [25; 26]. 
Phage therapy has been relatively poorly studied in the past, in contrast the majority of 
the studies have focused their attention on classic antibiotics, targeting tolerance, immune 
response, pharmacokinetics, pharmacodynamics, and animal models of infection [27].  
Recently, a significant number of studies on phage therapy have been published, under-
lining the important role of this possible therapeutical alternative [28; 29; 30; 31; 32] and 
in 2017, phage therapy was reported for the first time as possible treatment for A. bau-
mannii infection [33]. The current state of the art in regard to both advantages and limita-
tion connected with phage therapy is summarized in Table 1. 

Research on bacteriophage as antibiotic alternative has become increasingly popular 
due to raise of AMR and the increasing number of multi-drug-resistant bacteria. Numer-
ous in vivo and in vitro studies using single or mixed phage types (phage cocktails) have 
been conducted over the years. The following sections describe in detail the most common 
phage therapies tested so far, especially considering their applications against A. bau-
mannii in both human medicine and applied to poultry production, including single phage 
therapy [47], phage-cocktails [48], phage-antibiotic combination therapy [49],  phage-de-
rived enzymes [50] and novel approaches to phage therapy, such as combination with 
photosensitisers [51](Fig. 1) 

Table 1. Advantages and limitations of phage therapy in comparison to antibiotics 
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Figure 1. The most common phage therapies tested so far against pathogens, in-
cluding single phage therapy, phage-cocktails, phage-antibiotic combination therapy, 

Advantage Limitations 

Narrow antimicrobial spectrum [34] 

There is no definite optimal dos-
age and/or administration plan. 
Adaptive  anti-phage  immun-

ity  may  develop through 
Multiple dosing may be con-

nected to [35] 

Abundant in water, soil and other eco-
logical environment [36] 

Technical challenges accompany 
the preparation of phagocytic 

mixture in advance [37]  

Lower side-effects [38] 

Can promote horizontal gene 
transfer through transduction, 

which may lead to the spread of 
drug resistance [39] 

Low environmental impact [34] 
Lack of reproducibility amongst 
results from different in vivo and 

in vitro studies [40] 

Low impact on the broad microbial 
communities [41]  

The immune response of the 
body may affect phage activity  

[42] 

Low phage characterisation and isola-
tion cost[43] 

Stability and shelf life [44] 

 Effectiveness against bacterial bio-
films [45] 

Convoluted rational design 
(pharmacodynamics/pharmaco-

kinetics) [ 46] 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 September 2022                   doi:10.20944/preprints202209.0037.v1

https://doi.org/10.20944/preprints202209.0037.v1


 4 of 13 
 

phage-encoded enzymes and novel applied to phage therapy, such as combination with 
photo-sensitisers. 

 

2. Phage Therapy on human infection 

2.1. Single phage therapy 

Therapies based on a single virus type, also known as monophage therapies have 
been vastly applied as A. baumannii treatment. Jeonet et al. (2012) found that the phage 
YMC 13/03/R2096 ABABBP or the molar φ-R2096 exhibited high lytic activity against A. 
baumannii growth in a dose-dependent manner [52]. In another study, intranasally ad-
ministered phage SH-AB15519, originally isolated from hospital wastewater, has been 
found effective in treating pneumonia led by carbapenem-resistant A. baumannii infec-
tion in mice [53]. Interestingly, phage SH-AB15519 has been demonstrated to be lacking 
genes connected to further virulence or AMR [22], possibly a symptom of its low inte-
gration rate, which might endorse the use of this phage as a possible antibiotic alterna-
tive. PD-6A3 is a novel A. baumannii phage, also inhibiting Escherichia coli and Methicil-
lin-resistant bacteria [54]. Furthermore, Phage Abp9 effectively treated the biofilm pro-
duced by A. baumannii strain ABZY9 in vitro and contributed to positive treatment out-
put in a murine model of A. baumannii infection [55]. Phage φ KM18P was used in XDR 
A. baumannii bacteraemia models in BALB/ C and C57BL/6 mice, where improved the 
survival rate of animals and reduced the number of bacteria in the blood, concurring 
with decreased levels of TNF- α and interleukin-6 [56]. The bacteriophage 
vB_AbaP_AGC01, isolated from a fish pond sample collected in Stargard (Poland), has 
been shown to have high specificity to A. baumannii and to generate high-yield viral off-
spring (317±20 plaque-forming units per cell) [57]. .Phage vB_AbaP_AGC01 alone or in 
combination with antibiotics (gentamicin , ciprofloxacin and meropenem) significantly 
reduced A. baumannii cell count in a human heat-inactivated plasma model [57]. In paral-
lel, phage vB_AbaM_PhT2 prevented A. baumannii induced cell damage in human brain 
and bladder cell lines by significantly reducing the bacterial cytotoxicity and the dose of 
colistin needed [58]. Therefore, these findings could suggest that many phages in gen-
eral, and perhaps phage vB_AbaM_PhT2 in particular, could be applied as an antibacte-
rial agent in a hospital environment. Bacteriophage STP4-A screened by Mengzhe Li et 
al. has a strong inhibitory effect on both single and multiple salmonella strains and is a 
safe antibacterial agent with a wide host range, which can be used in the poultry indus-
try. Tawakol et al.[59] showed that phage therapy (via intratracheal inoculation) not only 
reduced the severity of APEC infection when studied as a single pathogen infection, but 
also prevented mortality from co-infection of APEC and infectious bronchitis virus 
(IBV). In addition, phage treatment significantly reduced the number of pathogenic exfo-
liated E. coli and IBV in the mixed infection group but not in the case of IBV only chal-
lenge. 

2.2. Cocktail therapy 

Phage cocktails typically consist of multiple phages combined, each of them hav-
ing unique host specificity due to selective affinity towards a specific bacterial receptor, 
conferring a broad therapeutically pyrolysis spectrum [60]. On the other hand, the devel-
opment of phage resistance, especially to lytic viruses should be carefully monitored, 
and cocktails seem to be a valid approach to limit such occurrences. It has been shown, 
for example that a designed cocktail of phage vB_AbaS_D0, isolated from hospital-sew-
age samples in Dalian (China), and vB_AbaP_D2 decreased the mutation frequency of A. 
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baumannii whilst also decreased the percentage of phage-resistance in a murine bacterae-
mia model [61]. Wu et al. reported the administration of a phage cocktail to four patients 
in a COVID-19 intensive care unit in China was able to treat carbapenem-resistant A. 
baumannii infection, otherwise showing the insurgence of phage-resistant A. baumannii 
strains when only one phage was administered [62]. The application of a cocktail of bac-
teriophages has also been demonstrated to be an effective substitute to antibiotic growth 
promoter replacement in broiler diets [63], which would further assist to reduce devel-
opment of anti-microbial resistance arising from poultry production. The combination of 
phages (φkm18p, φTZ1 and φ314) as a cocktail was able to decrease the concentration of 
A baumannii in another study in contrast to single-phage administration, otherwise cor-
related to recidivist bacterial growth [64]. In parallel, another study demonstrated the 
improved output when using phage cocktail compared to single phage in lysing A. bau-
mannii bacteria without further leading to resistance [65]. 

Similarly, the emergence of anti-phage mutants can be suppressed by ensuring a 
high titre throughout cocktail treatment. Beyond phage-resistance, another factor to con-
sider is that treatment with high-populated phage cocktails may lead to complex phar-
macological and immune responses, which may hinder the implementation of clinical 
trials [66], hence the recommendation of the use of a less complex cocktail consisting of 
up to 2-10 phages as the first choice [67]. As observed in other fields, the misuse of anti-
biotics associated with livestock including poultry production, has led to the selection 
and spread of multi-drug resistant organisms (MDRO), including A. baumannii [68]. The 
zoonosis risk associated with these MDRO is not only clinically relevant towards the 
development of a specific symptomatology, but it could also contribute to the spread of 
AMR to humans, thanks to mechanisms like e.g., horizontal gene transfer. Although the 
use of phage therapy to control A. baumannii infection in poultry has not been reported, 
many studies have been carried out on other pathogens in farming animals. Indeed, 
Campylobacter jejuni abundance in broilers was decreased by oral treatment with Campyl-
obacter-specific- phage cocktail, without further affecting microbiota species [69], provid-
ing a working example towards further future application of similar strategies to modu-
late A. baumannii overgrowth in poultry and other livestock. 

2.3. Phage-antibiotic synergy  

Phage-antibiotic synergy (PAS) refers to the usage of antibiotics at sublethal doses 
in combination to phage administration, with the aim of increasing the release of phage-
progeny from bacterial cells [70]. PAS strategies might represent some advantages such 
as enhanced bacterial inhibition, reduced development of phage and penetration of bio-
films [71]. However, care should be taken when considering a combined therapy, due to 
their unavoidable increased risk towards AMR insurgence. Low antibiotic doses used in 
such combinations could indeed facilitate the selection of resistant species, moreover the 
impact of these antibiotics on the rest of the microbiota symbionts, beyond the primary 
target, ought to be taken into consideration [72]. 

Importantly, the final PAS effect is affected by not only the qualitative distribution 
of antibiotics in the mix, but also by their relative concentrations. Ma Chao et al. opti-
mised the multiplicity of infection (MOI, i.e., optimal phage/target ratio) of phages in 
combination with 8 different antibiotics applied to the control of A. baumannii, demon-
strating that a reduction of rifampicin concentration led to a decreased PAS effect, other-
wise increased by a decrease of both meropenem and minocycline concentrations  [73]. 
On the other hand, the effectiveness of PAS, as a combined approach, has been shown in 
several studies. Indeed, Bartłomiej Grygorcewicz et al. observed approximately a 4-
log reduction of A. baumannii when using vB_AbaP_AGC01 phage in combination 
to ciprofloxacin and meropenem, in a heat-inactivated plasma blood model [57]. Xin 
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Tan et al. reported pathogen clearance and clinical improvement in patients previously 
diagnosed with carbapenem-resistant A. baumannii pneumonia, after treatment with mo-
nophage preparation in combination with tigecycline and polymyxin E [74]. 

2.4. Phage-encoded enzymes for the treatment of A. baumannii 

2.4.1. Endolysins 

Endolysins are phage-produced hydrolases that lyse bacterial cell walls allowing 
further release of progeny phages at the end of the replication cycle [75]. These enzymes 
are very effective towards peptidoglycan layers, leading to a sudden drop in osmotic 
pressure and therefore lysis [76]. According to their action on the main bonds in the pep-
tidoglycan layer, endolysins divided into five categories: I) N-acetyl-β-D-intracellular 
amidase, II) N-acetyl-β-D-glucosaminidase, III) transglycosidase; IV) N-acetyl-leucoyl-l-
alanine amidase and V) L-alaninoyl-D-glutamate endopeptidase [77]. The main ad-
vantage of endolysin therapy over traditional broad-spectrum antibiotics is their high 
specificity towards bacterial species or subspecies without interacting with the sur-
rounding microbial cells [78]. Additionally, further endolysins advantages are connected 
to reduced resistance, to their synergistic activity with different antibacterial agents, and 
to their ability to play an effective role on biofilm and mucosal surface [79]. 

TS2631, an endolysin from the Thermus scotoductus bacteriophage vB_Tsc2631, can 
also lysate A. baumannii and P. aeruginosa [78]. Wu et al. overexpressed and purified en-
dolysin (Ply6A3) from vB_AbaP_PD-6A3, demonstrating its ness towards 179 out of 552 
clinical multidrug-resistant A. baumannii strains tested (32.4%). In vitro, Ply6A3 not only 
inhibited A. baumannii but also other strains such as E. coli and MSRA, indicating Ply6A3 
activity targeting MSRA cell wall. During the observation period, no obvious side effects 
were observed after intraperitoneal injection of Ply6A3 in mice [79]. In another trial, the 
activity profiles of recombinant endotoxins firstly identified and isolated from members 
of the Myoviridae phage family（LysAm24, LysAp22, LysECD7, and LysSi3）[80], of 
were estimated towards one hundred Gram-negative pathogens, including clinical iso-
lates, MDR Klebsiella pneumoniae, Salmonella, P. aeruginosa, E. coli, A. baumannii, and Enter-
obacter spp. Of the bacteria investigated, A. baumannii was the most sensitive to endoly-
sin. The data showed that these enzymes did not promote the development of short-
term drug resistance. Furthermore, LysSi3 and LysECD7. did not decrease Bifidobacte-
rium and Lactobacillus abundance in humans [81]. In addition, LysAB54 from A. bau-
mannii bacteriophage p54 showed high antibacterial activity against a variety of Gram-
negative pathogens [82]. Free peptidoglycan within the gastrointestinal tract is another 
endolysin target. In monogastric farm animals, and poultry in particular, peptidoglycan 
in bacterial cell debris may detriment gastrointestinal functionality. Supplementation of 
microbial muramidase with endolysin activity has been shown to benefit growth perfor-
mance and gastrointestinal functionality in broilers [83; 84; 85]. With poultry being a res-
ervoir for MDRO, the use of endolysin based feed additives might assist to reduce the 
AMR level ending in the food chain. 

 
2.4.2. Depolymerases 

During biofilm formation, bacterial cells are usually surrounded by extracellular pol-
ymers (EPS), which can also act as barriers for phage penetration [88]. A. baumannii EPS 
increases the resistance of the bacterium to antimicrobial agents due to diffusion limita-
tion and can lead to severe persistent infections that are particularly difficult to treat, also 
providing resistance to phages [89]. Depolymerases are phage-derived enzymes that fa-
cilitates the early stages of phage infection by degrading extracellular bacterial protein 
[90]. The depolymerase responsible for degrading EPS, or O-polysaccharides can be found 
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either as a virion component, or it can be secreted in a soluble form during bacterial cell 
lysis [91]. This unique ability of depolymerases to specifically recognize and degrade EPS 
and related biofilm components provides an attractive and promising tool for pathogen 
control [92]. On the other hand, biofilms are also known to develop within drinking lines 
in e.g. poultry production systems (Maes et al., 2019), pointing towards the use of depol-
ymerases as a management practive implementation, also assisting AMR management. 
An example is provided by the tail spike protein derived from φAB6 with depolymerase 
activity, which can significantly inhibit the formation of and degrade existing biofilms, at 
concentration ≥0.78 ng [93]. Moreover, such proteins have also been found effective in 
reducing A. baumannii adhesion on the surface of medical devices [93]. 

2.5. Novel technologies applied to phage therapy 

Recently, some technological developments based on phage therapy have been de-
scribed, additionally to the traditional therapeutic schemes mentioned so far. One appli-
cation is based on the work of Bei Ran et al. (2021), who developed a unique photodynamic 
antimicrobial agent (APNB) based on a cationic photosensitizer and a bacteriophage for 
precise bacterial eradication, also showing high efficacy against biofilm [94]. NB is a ben-
zoxazine compound, which is a well-known DNA-binding dye with relatively low sys-
temic toxicity, and in some cases also known for delaying tumoral growth. In this context, 
NB can direct selective phototoxicity in combination to phage therapy, increasing the ef-
fectiveness of the latter, which when used alone could not achieve optimal therapeutic 
results [95]. The combination of the dye to the phage as an antimicrobial agent allows the 
real-time monitoring and evaluation of the treatment dynamics , based on the NB fluores-
cence. Further structural modification with e.g., sulphur atoms provide excellent reactive 
oxygen species generation ability, which could be used in combination with APNB spec-
ificity towards binding pathogenic microorganisms. Both in vitro and in vivo experiments 
demonstrated that APNB can effectively treat A. baumannii infection. Although, it ought 
to be mentioned that A. baumannii recovered faster after APNB treatment compared to 
ampicillin and polymyxin B in mice, APNB has promising application against MDRP and 
biofilm [51]. 

In terms of new technologies based on phage therapy, aerosol spray applied to 
both poultry and bedding material in production facilities may help prevent horizontal 
transmission of pathogens. Indeed, phage-based products can be used as biological dis-
infectants in hatcheries, farms, transport containers, poultry processing plants and food 
contact surfaces. Although not trialled against A. baumannii, bacteriophage-based surface 
disinfectants, such as BacWash TM (OmniLytics Inc., USA), targeting Salmonella, can be 
used as a cleaning agent. Similarly, Ecolicide PX™ (Intralytix) targeting E. coli O157:H7 
has been developed to purify the skin of live animals prior to slaughter [96]. El-Gohary 
et al. [97] demonstrated that treating pads by spraying a bacteriophage preparation 
against E. coli could limit its spread in broilers. Similar phage therapy applications are 
rarely reported against A. baumannii, although based on these successful examples in 
poultry production, it is particularly important to study and include A. baumannii as a 
therapeutical target, both as a zoonotic agent and to limit the correlated spread of AMR. 

3. Conclusions 
Almost all the new recently developed antibiotics are variants of antibiotic classes 

discovered in the 1980s, however the currently reviewed and approved antibiotics inad-
equately address the challenges posed by the emergence and spread of AMR. Therefore, 
it is imperative to explore innovative approaches for the treatment of bacterial infections. 
Phage therapy represent an extremely promising, highly specific antimicrobial alterna-
tive. Phage mechanism of action relies on targeting and killing or inactivating sensitive 
bacteria specifically, and a variety of treatment options are under study at the moment 
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as described in this review, with implications not only to humans, but also to poultry 
production. The latter is of rather importance, as reservoir for AMR and zoonotic bacte-
ria. Efficacy and safety of phage therapy has been shown in the context of treatment of 
multidrug-resistant A. baumannii, through both in vitro and in vivo applications. 

The current state of the art of the research on phage therapy is not comprehensive. 
Further clinical trials prior to successful routine applications in humans are rather im-
portant. In addition, several aspects of phage therapy require further elucidation, such 
as stability of the formulation, industrial scaling, coupled with intrinsic caveats related 
to the possible insurgence of bacteriophage resistance, phage coevolution with bacteria 
and broader effect on gut microbiota. 
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