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Abstract: Genome-scale metabolic model (GEM) is a powerful tool for interpreting and predicting 

cellular phenotypes under various environmental and genetic perturbations. However, GEM only 

considers stoichiometric constraints, and the simulated growth and product yield values will show 

a monotonic linear increase with increasing substrate uptake rate, which deviates from the experi-

mentally measured values. Recently, the integration of enzymatic constraints into stoichiometry-

based GEMs was proven to be effective in making novel discoveries and predicting new engineering 

targets. Here we present the first genome-scale enzyme-constrained model (eciCW773) for Coryne-

bacterium glutamicum reconstructed by integrating enzyme kinetic data from various sources using 

ECMpy workflow based on the high-quality GEM of C. glutamicum (obtained by modifying the 

iCW773 model). The enzyme-constrained model improved the prediction of phenotypes and simu-

lated overflow metabolism, while also recapitulating the trade-off between biomass yield and en-

zyme usage efficiency. Finally, we used eciCW773 to identify several gene modification targets for 

L-lysine production, most of which agree with previously reported genes. This study shows that 

incorporating enzyme kinetic information into the GEM enhances the cellular phenotypes predic-

tion of C. glutamicum, which can help identify key enzymes and thus provide reliable guidance for 

metabolic engineering. 
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1. Introduction 

Corynebacterium glutamicum is widely known as an excellent producer of amino acids 

[1]. Recent advances in metabolic engineering and synthetic biology have expanded the 

scope of chemicals that can be produced from C. glutamicum, but it remains difficult to 

synthesize these compounds on an industrially relevant scale [2]. Genome-scale metabolic 

models (GEMs) are a proven tool for the prediction of cellular behaviour and the discov-

ery of potential engineering targets [3]. Several GEMs of C. glutamicum have been devel-

oped (Fig. S1), and used to guide the production of high-value compounds such as glu-

taric acid [4], anthocyanins [5] and L-glutamate family amino acids [6]. The most widely 

used model of C. glutamicum is iCW773, constructed in 2017 [7], which accurately predicts 

the growth of cells cultured under different conditions. Although the quality of C. glu-

tamicum models has improved in the last decade, they mostly only consider reaction stoi-

chiometries and do not accurately depict the real situation inside the cell [8]. For example, 

metabolic overflow is a phenomenon in which incomplete oxidation of glucose to ethanol 

or acetate occurs in microorganisms in the presence of sufficient substrate, which has been 

recognized for a long time and frequently occurs in microbial cultures [9]. It has been 

shown that the limitation of intracellular protein resources is the cause of the metabolic 

overflow phenomenon [10], which cannot be properly explained by models only consid-

ering reaction stoichiometries. 
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With the accumulation of enzyme kinetic data and the availability of high-through-

put omics data, it has become possible to integrate these data into models to add con-

straints on individual reactions or aggregate constraints on enzyme resources [11, 12]. In 

2007, Zhang et al. constructed the FBAwMC model by introducing both a crowding coef-

ficient and cell volume constraint to limit the space occupied by enzymes [13]. Subse-

quently, the researchers developed other protein resource integration methods [14], which 

referred to as enzyme-constrained genome-scale models (ecGEMs), including MOMENT 

[15], GECKO [16], AutoPACMEN [17] and ECMpy [18]. The GECKO method was re-

ported in 2017 and was applied to construct an enzyme-constrained model of Saccharomy-

ces cerevisiae by adding many pseudo-metabolites to represent enzyme utilization and in-

cluding kcat values to expand the stoichiometric matrix. Notably, this enzyme-constrained 

model could accurately predict several metabolic phenotypes. Recently, Domenzain et al. 

upgrade GECKO to 2.0 to enhance models with enzyme and proteomics constraints for 

any organism with a compatible GEM reconstruction, which also proposed an automated 

calibration process for enzyme kinetic parameters and developed conventional algo-

rithms based on ecGEMs (e.g., flux variability analysis) [19]. Inspired by MOMENT and 

GECKO, in 2020 Bekiaris et al. proposed a simpler method for enzyme-constrained model 

construction, called AutoPACMEN [17], which could automatically download kinetic pa-

rameters of enzymes from the BRENDA [20] and SABIO-RK [21] databases. It was used 

to construct an enzyme-constrained model of Escherichia coli which only introduced one 

pseudo-reaction and pseudo-metabolite into the stoichiometric matrix. Different from 

GECKO and AutoPACMEN, ECMpy simply adds a constraint on the total amount of en-

zymes and does not require modification of the stoichiometric matrix, while providing 

higher prediction accuracy for the simulation of the E. coli growth rate [18]. Currently, 

ecGEMs have been constructed for many species, such as E. coli [18, 22]., S. cerevisiae [16], 

Yarrowia lipolytica [19], Aspergillus niger [23], and Bacillus subtilis [24]. 

In the enzyme-constrained models, kcat and molecular weight (MW) of an enzyme set 

constraints on the fluxes of the reactions catalyzed by that enzyme. Previous studies have 

made efforts to automatically acquire kcat values from databases and fill missing values 

using methods like machine learning [25]. In contrast, few studies paid attention to mo-

lecular weight. It may seem straightforward to obtain the MW of a protein from databases 

like UniProt. However, the MW values from these databases are for monomers and many 

enzymes contain two or more subunits. For example, 6-phosphogluconate dehydrogenase 

encoded by gene Cgl1452 is a homodimer and therefore MW is 105.2 kDa instead of 52.6.2 

kDa for the monomer. There are also many enzymes consisting of subunits encoded by 

different genes which are represented as ‘and’ GPR relationship in GEMs. However, what 

is missing in the GPR relationships is the number of each subunit in the protein complex. 

For example, Succinyl-CoA synthetase is a heterotetramer containing two alpha subunits 

(encoded by Cgl2565 in C. glutamicum with an MW of 30.26 kDa) and two beta subunits 

(encoded by Cgl2566 with an MW of 41.76 kDa). Therefore, the MW of this enzyme com-

plex should be 144.04 kDa (2*30.26+2*41.76) instead of 72.02 kDa. Such quantitative infor-

mation on enzyme subunit composition is difficult to obtain from databases and often 

missing in the published GEMs, leading to incorrect MW values which affect the predic-

tion accuracy of enzyme-constrained models. 

In this study, we first systematically corrected the GPR relationships in the iCW773 

model based on GPRuler [26] and protein homology similarity comparisons, and ex-

tended GPRuler to allow access to the quantitative subunit composition of each protein in 

the model. Then, we gathered the enzyme kinetics data of C. glutamicum using AutoPAC-

MEN and constructed the enzyme-constrained model eciCW773 based on the ECMpy 

workflow. We further comprehensively evaluated eciCW773 and confirmed that it had a 

better prediction accuracy of phenotypes than iCW773 and could simulate a variety of 

biological phenomena. Finally, we applied eciCW773 to metabolic engineering and dis-

covered potential targets for increasing the production of L-lysine. 
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2. Materials and Methods 

2.1. Model Calibration 

We obtained the iCW773 model, which has 773 genes, 1207 reactions, and 950 metab-

olites, from the supplemental data of Zhang et al. [9], and converted it to XML format. To 

meet the requirements of the AutoPACMEN and ECMpy processes for metabolic network 

format input, we modified the gene, reaction and metabolite information in the model as 

follows:  

(1) Metabolite correction: ‘(e)’ to ‘_e’, ‘-D’ to ‘__D’, ‘-L’ to ‘__L’, ‘-R’ to ‘__R’ and other 

‘-’ to ‘_’. 

(2) Reaction correction: ‘-’ to ‘__’ in reactions beginning with ‘EX’ and ‘-’ to ‘__’ in 

other reactions. 

(3) Adding UniProt ID information to the annotation, which is the basis for obtaining 

kinetic parameters. 

2.2. Correction of GPR relationship 

We found some errors in the GPR relationships in iCW773 during the analysis and 

corrected these errors using two methods. First, modified GPRuler was used to identify 

more “and” relationships. GPRuler identify the ‘and‘ relationships based on the protein 

complex information extracted from databases such as  UniProt [27] and Complex Portal 

[28]. However, the original terms (‘subunit’ and ‘chain’) used to identify complexes in 

GPRuler were extracted based on human and yeast protein description information and 

did not cover all C. glutamicum protein complexes. For example, the protein name of 

P06557 (encoding by Cgl3029) is Anthranilate synthase component 1, which will not be 

identified as a subunit forming an ‘and‘ relationship with another subunit using the orig-

inal terms. Therefore, we updated the terms by carefully checking the words used in Uni-

Prot to describe possible protein complex formation (e.g., 'component', 'binding protein', 

and 'assembly factor', etc. see Table S1 for the full list) to obtain more ‘and‘ relationships 

in C. glutamicum. We also simplified the GPRuler process by parsing UniProt data directly 

to obtain the corresponding GPR relationships without running the processes for gene 

identification, reaction identification, and gene filter. 

We also observed that some ‘and‘ relationships in iCW773 were not identified by 

GPRuler and could be wrong. To address this, we developed a semi-automated process 

based on protein similarity to determine the correct relationship. We calculated the pro-

tein sequence similarity for the remaining ‘and’ relationships in iCW773 and revised the 

relationship to ‘or‘ if similarity exists between protein sequences as proteins with similar-

ity are more likely to be isoenzymes rather than forming protein complexes. We then man-

ually checked the gene annotation information in databases (BioCyc [29] and KEGG [30]) 

to ensure the correction is right. 

2.3. Acquisition of quantitative subunit composition 

As discussed in the Introduction section, quantitative subunit information of an en-

zyme is essential to correctly determine its MW but is missing in the GPR relationships in 

the models. We have manually collected the subunit number of each protein in our previ-

ous approach for constructing the enzyme-constrained model of E. coli eciML1515 [18]. 

Here we used a new automatic method to acquire the quantitative subunit information by 

extending GPRuler to resolve the subunit number of a protein based on information in 

the 'Interaction information' section in UniProt. For example, Q8NMK2 is described in 

UniProt as 'Homodimer', so its subunit number is 2. We created a word list to parse the 

description information (e.g., Homodimer; Heterotrimer; Tetramer of two alpha and two 

beta chains) and translated them into corresponding subunit numbers (Table S2). 

2.4. Construction of eciCW773 

After model correction, we split the reversible reactions in the model into two irre-

versible reactions because of different kcat values for different catalytic directions. We also 
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split the isozyme-catalyzed reaction into multiple individual enzyme-catalyzed reactions. 

Then the molecular weight for each protein monomer was obtained automatically from 

Uniprot using AutoPACMEN and combined with the protein subunit composition data 

obtained in section 2.3 to calculate the molecular weight for each enzyme using equation 

�� = ∑ �� ∗ ���
�
��� , where m is the number of different subunits in the enzyme complex 

and Nj is the number of jth subunits in the complex. We further obtained the kinetic pa-

rameters of the enzymes mainly from BRENDA and SABIO-RK, using AutoPACMEN. In 

addition, we calculated the mass fraction of total cellular enzymes (Eq. 4) using published 

RNA-Seq data of wild-type C. glutamicum ATCC 13032 grown on glucose [31, 32]. Finally, 

we used the ECMpy process to construct eciCW773 (see Fig. 1 for details), which can be 

mathematically represented as follows: 

 

 � = max{�� ∗ �} (1) 

 � ∗ � = 0 (2) 

 �� ≤ � ≤ �� (3) 

 � = ∑ �����
�(���������)
��� ∑ �����

�(���������)
����  (4) 

 ∑
��∗���

��∗����,�
≤ ������ ∗ ��

���  (5) 

where �� is the transposed vector of the integer coefficient of each flux in the objective 

function �; � is the stoichiometric matrix; �� and �� are the lower and upper bounds of 

the reaction fluxes in the system, respectively; ����,� is the turnover number of enzymes 

that catalyze reaction i; ��� denotes the molecular weight of enzyme i; �� is the saturation 

coefficient for enzyme i, whereby we use an average value of 0.5 for all the enzymes [18]; 

������  of 0.56 is the average protein content in most microbial cells [15];  � is the total mass 

fraction of all cellular enzymes in our ecGEM. 
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Figure 1. Workflow for the construction of eciCW773. 

2.5. Calibration of the Original kcat Values 

Generally, the initial enzyme-constrained model was unable to accurately predict the 

experimental value of the maximal growth rate, requiring an adjustment of the original 

kcat values, like GECKO, AutoPACMEN and ECMpy. Since no suitable 13C data were 

found, the correction of eciCW773 was performed using only method 1 proposed by 

ECMpy, which is based on enzyme usage. For enzymes that require calibration, the EC 

number was obtained and its corresponding kcat value was substituted by the highest value 

in the BRENDA and SABIO-RK databases for the given enzyme class. This iterative cor-

rection process was continued until the experimental value or the predefined number of 

iterations was reached, as described in GECKO 2.0 [19]. 

2.6. Comparative flux variability analysis 

We provided a fair comparison of flux variability range distributions between 

iCW773 and eciCW773 for a protein-limited regime (e.g., 0.479 h-1), using the computa-

tional procedure of GECKO 2.0. For reactions containing isozymes, we used the maximal 

value of the corresponding flux variability range (Eq. 6). For reversible reactions from 

ecModel, the corresponding flux variability ranges were solved using Eq. 7. 

 ��� = ��� ���,����

��� − ��,����

��� � , � ∈ � (6) 

 ��� = ���
��� − ��

���� − ���,���
��� − ��,���

��� � (7) 

2.7. Phenotype phase plane (PhPP) analysis 

PhPP analysis is a powerful tool that provides a global view of how optimal growth 

rates are affected by changes in two environmental variables such as the carbon and oxy-

gen uptake rate [33, 34]. We performed PhPP analysis on iCW773 and eciCW773 to predict 

the biomass-specific growth rates by varying the glucose and oxygen uptake rates, as de-

scribed in the literature [23]. Therefore, we varied the exchange reaction fluxes of glucose 
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in the range of 0-10 mmol/gDCW/h and oxygen in the range of 0-10 mmol/gDCW/h, with 

the objective set to maximize the biomass production rate, after which the results were 

analyzed by parsimonious FBA (pFBA) calculations [35]. 

2.8. Simulation of overflow metabolism 

We explored the overflow metabolism of C. glutamicum using eciCW773 by varying 

the substrate uptake rate from 1 to 6.3 mmol/gDCW/h (the model reaches its maximum 

growth rate at 0.479 mmol/gDCW/h) and solving for the pFBA to maximize the bio-

mass. To observe the trade-off phenomenon in unrestrained growth, we set glucose as the 

carbon source, and varied the substrate uptake rate from 1 to 6.3 mmol/gDCW/h to obtain 

the trade-off between the biomass yield (Eq. 8) and enzyme usage efficiency (Eq. 9). ���� 

was calculated using the minimum enzyme amount algorithm of ECMpy [18]. 

 biomass yield =
��������

��������∗���������
 (8) 

 enzyme usage efficiency =
��������

����
 (9) 

2.9. Prediction of metabolic engineering targets 

Enzyme cost can be used to identify key enzymes in the product synthesis pathway. 

For example, Ye et al. calculated the enzyme cost for L-lysine biosynthesis by fixing a low 

biomass growth rate (0.1 h-1) using the enzyme-constrained model of E.coli and improved 

L-lysine production by optimizing the expression of the proteins in the top 20 of the en-

zyme cost [22]. But this approach can only identify overexpressed targets in the pathway, 

we extended this approach to explore enhanced and weakened metabolic engineering tar-

gets. First, we determined the protein cost differences in reactions between two scenarios: 

high growth low product generation (HGLP, growth rate was set at 0.46 h-1) and low 

growth high product generation (LGHP, growth rate set at 0.1 h-1). Subsequently, we cal-

culated the cost of each reaction (Eq. 10) for both pathways [18]. Finally, we calculated the 

fold changes of enzyme cost and those with a fold change great than 1.5 were chosen as 

potential targets for metabolic engineering (Eq. 11-12). 

 ������ ����� =
��∗���

��∗����,�
 (10) 

��ℎ���� ������ = ��������
������ ��������

������ ��������
≥ 1.5�         (11) 

������ ������ = ��������
������ ��������

������ ��������
≥ 1.5�         (12) 

3. Results 

3.1. GPR Correction of iCW773 

There are 1207 reactions in the iCW773 model, 96 of which are "and" relationships. 

We obtained protein composition information for a total of 112 reactions using GPRuler, 

of which 24 had GPR relationships consistent with the model. The 88 reactions with in-

consistent GPR relationships were manual checked and corrected using information from 

database like UniProt, Biocyc, KEGG and literature (Table S3). They can be classified into 

three categories. First, the GPR relationship in the model is correct, so there is no need to 

replace (14 reactions). Second, the prediction results of GPRuler are correct and can be 

used to replace the GPR relationship in the model directly (12 reactions). For example, the 

GPR relationship of succinyl-CoA synthetase is ‘Cgl2565 or Cgl2566’ in the model. How-

ever, in UniProt Succinyl-CoA synthetase is described as a heterotetramer containing two 
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alpha and two beta subunits. The beta subunit (Cgl2566) provides nucleotide specificity 

of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A 

and phosphate are found in the alpha subunit (Cgl2565). Third, both the prediction results 

of GPRuler and the GPR relationship in the model are wrong and should be manual cor-

rected using Uniprot, Biocyc, KEGG or literature (62 reactions). For example, the gene 

composition of the Adenosylcobalamin 5'-phosphate synthase (ADOCBLS) is given as 

‘Cgl0245 and Cgl2201’ in the model, while from GPRuler the GPR relationship were ob-

tained as ‘Cgl0245 and Cgl0246’. Whereas Cgl0245 and Cgl0246 do form a protein complex, 

its function is Lipid II isoglutaminyl synthase (glutamine-hydrolyzing) rather than Ade-

nosylcobalamin 5'-phosphate synthase. Therefore, we corrected the GPR relationship for 

this reaction to ‘Cgl2201’ as Cgl2201 is the true adenosylcobalamin-5’-phosphate synthase 

based on information from Uniprot. 

In addition, we observed that 58 “and” relationships in the model were not identified 

by GPRuler. To determine the correctness of these relationships, we calculated the protein 

sequence similarity for all gene pairs which have ‘and‘ relationships in the model. The 

results showed that no similarity between protein pairs in the 41 reactions (Table S4).  

However, the remaining 17 reactions with an 'and' relationship have high similarities 

(great than 20%) between the corresponding proteins, which are more likely to be iso-

zymes. For example, the GPR relationship for Methylisocitrate lyase (MCITL2) is 'Cgl0658 

and Cgl0695', which has 81% sequence similarity. By further searching the KEGG database 

for verification, we found that Cgl0695 and Cgl0658 have the same protein name, catalysis 

the same reaction and map the same EC number but not any information implying they 

are subunits of a protein complex. They are more likely to be two isoenzymes and there-

fore the correct GPR relationship for Methylisocitrate lyase should be 'Cgl0658 or Cgl0695'. 

After manual investigation, we modified 'and' relationships to 'or' relationships for 17 re-

actions in the model (Table S4). 

3.2. ecModel Calibration 

After that, we split each reversible reaction into independent forward and reverse 

reactions, including 333 reactions. The isozyme-catalyzed reactions were divided into 

multiple reactions (append num in reaction ID, e.g., ACOATA_num1), and a total of 202 

reactions were split into 571 reactions. After this step, the number of reactions in the model 

was expanded to 1850. The growth rate predicted by the initial ecModel at a glucose up-

take rate of 5.05 mmol/gDCW/h was low compared to the experimental value (0.12 h-1 vs. 

0.45 h-1) [36]. We calibrated the initial ecModel based on the enzyme usage, and after 13 

rounds of calibration and modification of 10 reactions, the simulated growth rate of 0.423 

h-1 was close to the experimental value (Table S5). Although the growth rate was corrected, 

the abnormal flux in the TCA cycle was mainly caused by the exceptionally large molec-

ular weight of the pyruvate dehydrogenase complex consisting of 24 subunits, which was 

corrected using the maximal kcat of this enzyme in the databases (Fig. S2). After this mod-

ification, the growth rate reached 0.454 h-1, which was consistent with the experimental 

value. 

3.3. Basic information of eciCW773 

There were 794 reactions in the modified ecModel with available kcat data of enzymes 

with EC numbers, accounting for 42.92% of the total reactions, which were divided into 6 

major categories, most of which were transferases (Fig. 2A, outer ring). These 794 reactions 

were catalyzed by a total of 349 enzymes (different EC numbers) (Fig. 2A, inner ring), and 

the kcat values spanned 7 orders of magnitude with a median value of 33.3 s-1 (Fig. 2B). 

There are 1107 enzymes present in the eciCW773, while non-monomeric enzymes occupy 

30.81% (Fig. S3). The distribution of subunit composition in C. glutamicum is slightly dif-

ferent to that of E. coli [18], in that the proteins containing more than 2 subunits are gen-

erally low in C. glutamicum (Fig. S3). The biological reason for the difference is not clear 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 September 2022                   doi:10.20944/preprints202209.0019.v1

https://doi.org/10.20944/preprints202209.0019.v1


 

and might be an interesting topic for further research. Finally, the molecular weights of 

the enzymes spanned a range from 7 to 2000 kDa (Fig. 2C). 

Since the protein abundance of C. glutamicum could not be found in PAXdb [37], we 

obtained the abundance of each protein from the published data [31, 32]. An � value of 

0.46 was obtained by calculating the mass fraction of enzymes that could be expressed by 

the genes in the model, which was a representation of a percentage of the total protein 

constraints in C. glutamicum. 

 

Figure 2. Basic information of eciCW773. (A) Enzyme classification. The outer ring shows the 646 

reactions with available enzyme kinetic data, which were divided into six categories. The inner ring 

shows the 304 different enzymes that catalyze these reactions according to the EC numbers, which 

can also be divided into six categories. (B) Cumulative distribution of kcat values. (C) Cumulative 

distribution of molecular weights. 

3.4. eciCW773 reduces the solution space 

A major challenge for GEMs is how to obtain a biologically meaningful flux distribu-

tion, since there are alternate optimal solutions in which the same maximal objective can 

be achieved through different flux distributions [38]. This limitation can be overcome by 

integrating experimentally measured exchange fluxes as constraints [19]. Previous studies 

have demonstrated that enzyme constraint models can significantly reduce the solution 

space of fluxes [18, 19]. We compared the cumulative distributions of the flux variability 

ranges of iCW773 and eciCW773, which revealed that the median flux variability range at 

a high growth rate is significantly reduced by 10 orders of magnitude after introducing 

enzyme constraints (Fig. 3A). The cumulative distribution also showed a decrease in the 

number of reactions with completely variable fluxes, which may represent undesirable 

futile cycles caused by a lack of information regarding their thermodynamic or enzymatic 

costs [19]. At high growth rates, completely variable fluxes accounted for 4% of the active 

reactions in iCW773, in contrast to the complete absence of this extreme range of variabil-

ity in eciCW773. 

With the subsequent increase of carbon source and oxygen fluxes, PhPP analysis 

showed that the growth rate of iCW773 increased linearly with increasing carbon source 

consumption, which is inconsistent with the experimental observations, while eciCW773 

significantly reduced the solution space (Fig. 3BC). All these results demonstrate that 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 September 2022                   doi:10.20944/preprints202209.0019.v1

https://doi.org/10.20944/preprints202209.0019.v1


 

incorporating more information and constraints into a GEM can improve the predictive 

accuracy of the model and enable it to simulate a more realistic cellular phenotype. 

 

Figure 3. The solution space of iCW773 and eciCW773. (A) Cumulative distribution of flux variabil-

ity of eciCW773 and iCW773 at high growth rates. Growth rates at various glucose and oxygen 

uptake rates were simulated using iCW773 (B) and eciCW773 (C). 

3.5. Simulation of overflow metabolism 

In previous studies, ecModels were used to simulate overflow metabolism in S. cere-

visiae [16] and E.coli [18]. As shown in Fig. 4A, eciCW773 was also able to precisely simu-

late the overflow metabolism phenomenon at a glucose uptake rate of 4.5 mmol/gDCW/h, 

which could not be reproduced in iCW773. When overflow metabolism occurs, the micro-

organism must activate a fermentation pathway with low energy production efficiency 

but high enzyme efficiency to maintain growth, and this pathway will cause a portion of 

the substrate to be converted into by-products [39], resulting in carbon loss and a rapid 

decrease of the biomass yield, illustrating a trade-off between enzyme efficiency and 

growth rate (Fig. 4B). This metabolic process can be divided into a substrate-limited stage, 

overflow switching stage, and overflow stage. In the first stage, the glucose uptake rate is 

low (less than 4.5 mmol/gDCW/h) and has a linear relationship with the growth rate, 

which is consistent with iCW773 (Fig. 4A). When the substrate supply gradually increased 

(between 4.5 and 5 mmol/gDCW/h), the cell growth is limited, and metabolism is switched 

to a more enzymatically efficient pathway. Finally, when the overflow metabolism phe-

nomenon occurs (greater than 5 mmol/gDCW/h), the by-product pathway of acetate pro-

duction switches to higher enzymatic efficiency, consuming more substrates and resulting 

in lower biomass yield, which is consistent with empirical models of microbial growth 

[40]. 
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Figure 4. Simulation of overflow metabolism. (A) Comparison of in silico overflow metabolism be-

tween iCW773 and eciCW773. (B) Trade-off phenomenon simulated by eciCW773. 

3.6. Exploration of the targets based on enzyme cost 

We compared the pathway characteristics at LGHP and HGLP to analyze the differ-

ences in the product synthesis pathways and found 23 reactions in which the change of 

enzyme cost was higher (Fig. 5). We first noticed the pathway changes in the L-lysine 

synthesis pathway between the two conditions, some reactions (e.g., ME2, PPC and MDH) 

were more favorable for L-lysine production (with increased flux) and some others (e.g., 

PTAr, ACKr and SUCOAS) are in contrast (Fig. 5 red and blue boxes). For example, malate 

dehydrogenase (ME2) catalyzes the conversion of malate to pyruvate to regenerate py-

ruvate depleted by pyruvate carboxylase (PYRC)[41]. PYRC catalyzed the conversion of 

pyruvate to oxaloacetate, a known precursor of L-lysine synthesis [40]. ME2, MDH and 

PYRC, therefore, form a cycle for NADPH regeneration, which can provide more NADPH 

for the L-lysine synthesis pathway. What’s more, the pyruvate-oxaloacetate (OAA) sup-

ply has been considered a bottleneck for L-lysine production, while overexpression and 

point mutation of phosphoenolpyruvate carboxylase (PPC) has been applied to increase 

OAA availability [42-44]. 

At the same time, some reactions were more amenable for high-level growth and 

should be downregulated for L-lysine production. For example, decreased flux via suc-

cinyl-CoA synthetase (SUCOAS) was reported to increase the L-lysine yield and maintain 

optimal cell growth at the same time [45]. In addition, as we mentioned above, when en-

zyme constraints occurred, the acetate overflow phenomenon can be captured by 

eciCW773. It was reported that the production of organic acids such as acetate or lactate 

may reduce the yield of biological products [39]. Thus, less flux toward acetate overflow 

reactions (PTAr and ACKr) may result in more L-lysine production. 

After analyzing these pathway changes, we further analyzed the enzyme costs of the 

L-lysine synthetic pathway calculated from the enzyme-constrained model. To explore 

the variability of enzyme costs, we calculated the log2 fold changes of enzyme costs be-

tween LGHP and HGLP as shown in Fig. 5. We found that the upregulated values were 

mainly focused on the pathway of L-lysine synthesis from aspartate (DAPDC, DAPDH, 

DHSPS, etc.) and the pentose phosphate (PP) pathway (TKT1, TALA, GND, etc.), which 

was in agreement with the literature [41, 46, 47]. In addition, lower fluxes in TCA may 

lead to more fluxes for lysine production [48-50]. For example, Jan et al. showed that re-

duced citrate synthase (CS) activity leads to a strong accumulation of L-lysine [50]. 
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Figure 5. Simulation of differential pathways under high and low L-lysine production conditions. 

The red box indicates reactions that are more beneficial for L-lysine production, and the blue box 

indicates reactions that are more beneficial for growth. Red bars indicate enhanced targets for L-

lysine production in C. glutamicum. Blue bars indicate weak targets that may increase L-lysine pro-

duction in C. glutamicum. 

4. Discussion 

We constructed the enzyme-constrained model eciCW773 based on the iCW773 

model of C. glutamicum using the upgraded workflow (Fig. 1). First, we updated the work-

flow of ECMpy to automatically acquire kcat values from databases and fill missing values 

using AutoPACMEN. In the construction of the ecModel of E. coli using ECMpy, we have 

emphasized the impact of the subunit composition of proteins on the accuracy of model 

simulations, but it was done by manually correcting GPR relationships and collecting the 

subunit number of each protein [18]. In this study, we achieved the semi-automated cor-

rection of GPR relationships using GPRuler and protein homology similarity, and the au-

tomated acquisition of the quantitative subunit composition data based on UniProt. The 

GEMs and most of the ecGEMs neglect the quantitative subunit composition information 

of non-monomeric enzymes, so the introduction of the number of subunits in the GPR 

relationship might also be necessary for future model reconstruction. 
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The eciCW773 model exhibited a better simulation accuracy of strain behavior than 

the original iCW773. The growth rate increased linearly with the substrate uptake in the 

classical model, while the enzyme constraint narrowed the solution space, resulting in a 

model prediction that is closer to the real experimental observations. Due to growth rate 

limitations and enzyme resource constraints, eciCW773 was better able to predict the phe-

nomenon of overflow metabolism, which was absent from the original model. This indi-

cates that enzyme restriction is the primary driver behind enzyme protein redistribution 

and corresponding metabolic flux changes, which was consistent with previous studies 

[51]. Thus, our study not only corroborates the hypothesis that effective proteome reas-

signment is an important principle of metabolic regulation, but also shows how simple 

physicochemical constraints can be integrated into a GEM to improve its predictive 

power. Our model also made predictions based on the enzyme cost, offering a more intu-

itive reproduction of metabolic engineering strategies than the original GEM. According 

to the results of simulations using eciCW773, some potential targets in the glycolysis path-

way should be considered for improving L-lysine production in the future, which may 

generate more energy and phosphoenolpyruvate, thus redistributing more flux toward 

the L-lysine synthesis pathway and cell growth. 

Even though the eciCW773 model offers better phenotype predictions, it still has sev-

eral shortcomings. First, the GEM of C. glutamicum is still evolving and there is still a lack 

of annotated information in some areas. Recently, Feierabend et al. reconstructed the 

iCGB21FR model using iEZ482 as a reference [52], which added seventeen different data-

bases that are cross-referenced in the model's annotations and reached a high MEMOTE 

score (Fig. S1)[53]. This new model expands the number of reactions in the GEM of C. 

glutamicum to 1892. Of course, our process for constructing the enzyme-constrained model 

of C. glutamicum is generic, and another enzyme-constrained model can be constructed by 

simply replacing the initial model. Besides, the quality of the enzyme-constrained model 

depends on the input data on enzyme kinetics and intracellular protein abundance [16]. 

Unfortunately, there is little data on both for C. glutamicum. There are three ways to im-

prove the coverage of enzyme kinetic parameters in the model: 1) directly populate un-

known reactions with mean or median values of enzyme kinetic parameters from other 

reactions [16-18]; 2) expand the EC number annotation information of model reactions 

using EC number prediction tools [54, 55]; and 3) directly predict reactions with unknown 

parameters based on existing enzyme kinetic parameters via machine learning or deep 

learning approaches [25, 56]. In addition, the kinetic data are mainly sourced from the 

BRENDA and SABIO-RK databases, which mostly collect in vitro measurements that dif-

fer somewhat from the in vivo data. The improvement of parameter accuracy and cover-

age will increase the prediction efficiency and reduce the cost of result evaluation, which 

will help construct high-quality metabolic models of species such as C. glutamicum. Fi-

nally, although ecGEM has improved predictive power compared to traditional GEMs, 

biological systems are also subject to other constraints in addition to enzyme resources, 

and the construction of multi-constraint models (e.g., ETGEM [57] and ETFL [58]) will 

certainly provide new prospects for systems biology research. 

5. Conclusions 

In this study, we constructed an enzyme-constrained genome-scale metabolic model 

of C. glutamicum (eciCW773) by integrating various enzymatic parameters at the entire 

network level. The results show that constraints on enzyme resources can simulate strain 

growth limitations and recapitulate metabolic overflow phenomena, resulting in more re-

alistic pathway predictions, which can be used to identify key enzymes to provide meta-

bolic engineering targets for creating cell factories to produce valuable chemicals. 

Supplementary Materials: Figure S1: Model development of Corynebacterium glutamicum; Figure S2: 

Pathway changes after changing the kcat of PDH; Figure S3: Number of subunits per complex (only 

consider complex with two or more subunits) in C. glutamicum; Table S1: Keywords of protein com-

plex formation in UniProt;  Table S2: Correspondence between subunit descriptions and true 
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numbers in UniProt;  Table S3: GPR modifications based on GPRuler results;  Table S4: GPR Modi-

fications by homology similarity; Table S5: Reactions for kcat calibration. 
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