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Abstract: We prove the non-Archimedean (resp. p-adic) Banach space version of non-Archimedean
(resp. p-adic) Welch bounds recently obtained by M. Krishna. More precisely, we prove following results.
> /\?‘ = maxi<;<n |A;]? for all
Aj €K, 1< j <n,foralln € N. Let X be a d-dimensional non-Archimedean Banach space over K. If

(i) Let K be a non-Archimedean (complete) valued field satisfying

{7j}7-, is any collection in X and {f;}7_, is any collection in X* (dual of X) satisfying f;(7;) =1
for all 1 < j < n and the operator Sy, : Sym™(X) > = ~— Y7, fj®m(:c)7]®m € Sym™(X), is
diagonalizable, then

1<j k<

(1) b 15 () fi(m) ™) = ’7

We call Inequality as non-Archimedean functional Welch bounds.

(ii) For a prime p, let Q, be the p-adic number field. Let X be a d-dimensional p-adic Banach space
over Qp. If {7;}7_, is any collection in X and {f;}_; is any collection in X* (dual of X') satisfying
fi(rj) = 1for all 1 < j < n and there exists b € Q, such that ijl fj‘-g’m( ) f’m = bz for all
x € Sym™(X), then

oy o InP?
@) max{lnl () ()™ > =l
We call Inequality as p-adic functional Welch bounds.
We formulate non-Archimedean functional and p-adic functional Zauner conjectures.
Keywords: Non-Archimedean valued field; Non-Archimedean Banach space; p-adic number field; p-adic

Banach space; Welch bound; Zauner conjecture
Mathematics Subject Classification (2020): 12J25, 46510, 47510, 11D8&8.

1. INTRODUCTION

Everything starts from the result Prof. L. Welch, obtained in 1974 .

Theorem 1.1. [82] (Welch Bounds) Let n > d. If {7;}7_, is any collection of unit vectors in Ce,
then

2
Z |TJka ZZ'TJ’TIC _ﬁ, vm € N.

1<j,k<n j=1k=1 m
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In particular,

Further,

1
(Higher order Welch bounds) lgj’rglga%(’j#k (7, 7)™ > — l(n) - 1] , VYmeN.

d+m—1
m

In particular,
n—d

(First order Welch bound) Lo e (i, T) |2 > =1

Theorem is a powerful tool in many areas such as in the study of root-mean-square (RMS) absolute
cross relation of unit vectors , frame potential @,, correlations , codebooks , numerical
search algorithms , quantum measurements , coding and communications , code division
multiple access (CDMA) systems , wireless systems , compressed /compressive sensing @
, ‘game of Sloanes’ [45], equiangular tight frames , equiangular lines ,
digital fingerprinting etc.

Theorem 1.1 has been upgraded/different proofs were given in 74,[80,81]. In 2021
M. Krishna derived continuous version of Theorem 1.1 . In 2022 M. Krishna obtained Theorem 1.1
for Hilbert C*-modules , Banach spaces , non-Archimedean Hilbert spaces and p-adic Hilbert
spaces .

In this paper we derive non-Archimedean (resp. p-adic) Banach space version of non-Archimedean (resp.
p-adic) Welch bounds in Theorem (resp. Theorem [3.2]). We formulate non-Archimedean functional
Zauner conjecture (Conjecture and p-adic functional Zauner conjecture (Conjecture . We also
formulate non-Archimedean functional equiangular line problem (Question 2.5) and p-adic functional

equiangular line problem (Question 3.4).

2. NON-ARCHIMEDEAN FUNCTIONAL WELCH BOUNDS

In this section we derive non-Archimedean Banach space version of results derived in [54]. Let K be a

non-Archimedean (complete) valued field satisfying
2| _ 2 )
®) Zl&- = max [N%, VA eKl<j<nVneN
i=

For examples of such fields, we refer . Throughout this section, we assume that our non-Archimedean
field satisfies Equation . Letter X stands for a d-dimensional non-Archimedean Banach space over K.
Identity operator on X is denoted by Ix. The dual of X is denoted by X'*.

Theorem 2.1. (First Order Non-Archimedean Functional Welch Bound) Let X be a d-dimensional
non-Archimedean Banach space over K. If {r;}"_, is any collection in X and {f;}"_, is any collection
in X* such that the operator S¢, : X >z — Z;LZI fi(x)T; € X is diagonalizable, then

2
n n

Zfz(Tz)Q' ; fj(Tk)fk(Tj)|} > ﬁ > 1)

=1 j=1

max
1<j,k<n,j#k
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In particular, if fj(m;) =1 for all1 < j <mn, then

[n?

(First order non-Archimedean functional Welch bound) max k{|n|, |f5 () fue(T5) |} = T

1<g,k<

Proof. We first note that

j=1
n n

Tra(S3,) =D Y fi(m) fu(7).
j=1k=1

Let Ai,...,Aq be the diagonal entries in the diagonalization of Sy . Then using the diagonalizability of
St

3

and the non-Archimedean Cauchy-Schwarz inequality (Theorem 2.4.2 [63]), we get

d
<|dl YA
k=1

2 2

n d
D fi(m)| = | Tra(Sy,) Z = |d|| Tra(S7 . )|
j=1 k=1

n

=D > fim) )| =1dl Do A@E+ D fim) fa(r)
j=1k=1 I=1

Jk=1,37#k

T/c)fk(Tg)|}

<|d]  max {
1<), k<n,j#k
Whenever f;(7;) =1forall 1 <j <n,

2
< ] i)l
nf? < Jdl _ max  {Inl,15(m) ()]}

O

Next we obtain higher order non-Archimedean functional Welch bounds. We use the following vector

space result.

Theorem 2.2. If V is a vector space of dimension d and Sym™ (V) denotes the vector space of
symmetric m-tensors, then
d+m—1

dim(Sym™(V)) =

(s ) = (7
Theorem 2.3. (Higher Order Nomn-Archimedean Functional Welch Bounds) Let X be a d-
dimensional non-Archimedean Banach space over K. Let m € N. If {’TJ 1 15 any collection in X and
{fi}j=1 is any collection in X* such that the operator Sg, : Sym™(X ) Sxoe Y fj®m( x)T ]®m €
Sym™(X) is diagonalizable, then

>, ¥Ym € N.

n

> film)P™,

=1

n

’(Tk)fk(Tj)lm} > DL

- !(‘“2‘1) i=1

max
1<j,k<n,j#k

In particular, if fj(m;) =1 for all1 < j <mn, then

(Higher order non-Archimedean functional Welch bounds)

nf?

1<5, k<n 4k d+m 1 ‘

{Inls 1£5 () fr (7)™} = ‘

3
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Proof. Let A1, ..., Adim(sym™ (x)) be the diagonal entries in the diagonalization of Sy .. We note that

bdim(Sym™ (X)) = Tra(blsymm (x)) = Tra(Sy-) = Y f7™(79™),

j=1
b dim(Sym™ (X)) = Tra(b* Isymm (x)) = Tra(SF,) = > Y fF™ (™) f2" (r5™)
j=1k=1
Then
n 2 n 2 dim(Sym™ (X))
SR =D EE™| =1 Tra(Sy.)? = P
j=1 j=1 k=1
dim(Sym™ (X))
< |dim(Sym™ (X))] > AF| = [dim(Sym™(X))|| Tra(S3 )|
k=1
d+m—1 d+m—1 AL @M fRIm R
=| (Y imaszon=| (T[S X e

j=1k=1

j=1k=1

MA@+ D )™ fe(m)™
=1

Jik=1,j7#k

IN

)

RS 113 SFARAE
)
)

> hm)*m
=1

max
1<, k<n,j#k | |4

; |fj(Tk)mfk(Tj)m|}

> film)m
=1

max
1<j.k<n,j#k

Whenever f;(r;) =1forall 1 <j<mn,

NG

Motivated from [2.1] we formulate the following question.

,|fj(Tk)fk(Tj)|m}~

max  {|n|, |f;(m) fx ()|}

1<j,k<n,j#k

Question 2.4. Let K non-Archimedean field satisfying Equation (8) and X be a d-dimensional
non-Archimedean Banach space over K. For which n € N, there exist vectors 1,...,7, € X
and functionals fi,...,f, € X* satisfying the following.
(i) fi(r) =1 for all1 <j<n.
(ii) The operator Sy, : X >z — Z?:I fi(x)r; € X is diagonalizable.
(iii)
nf?
max _ {nl, |f5(7) fi(m)|} = T

1<, k<n,j#k |d]

@iv) |Ifjll=1forall1 <j<mn, ||l =1 for all 1 < j <n.

A particular case of Question [2.4]is the following non-Archimedean functional version of Zauner conjecture

which comes by taking n = d? (see 51, for Zauner conjecture in
4
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Hilbert spaces, [53] for Zauner conjecture in Hilbert C*-modules, [52] for Zauner conjecture in Banach
spaces, [54] for Zauner conjecture in non-Archimedean Hilbert spaces and [55] for Zauner conjecture in

p-adic Hilbert spaces).

Conjecture 2.5. (Non-Archimedean Functional Zauner Conjecture) Let K non-Archimedean
field satisfying Equation (3). For each d € N, there exist vectors 7y,...,7p2 € K¢ (w.r.t. any
non-Archimedean norm) and functionals fi,..., fi € (K9)* satisfying the following.

(i) fi(rj) =1 for all 1 <j < d>.

(ii) The operator Sy, :K? > x Zj’; fi(z)7; € K% is diagonalizable.

(iii)

i) Su(m)l =1dl, V1<j k <d* 5 #k.
(iv) [|fill=1 for all 1 <j < d?, ||| =1 for all 1 < j < d>.

There are four bounds which are companions of Welch bounds in Hilbert spaces. To recall them we need

the notion of Gerzon’s bound.
Definition 2.6. [{5] Given d € N, define Gerzon’s bound

& if K=C

Z(d,K) =
( ) { d(d2+1) if K=R.

Theorem 2.7. @ 45,@ 83] Define K =R or C and m := dimg(K) /2. If {7;}}_, is any

collection of unit vectors in K¢, then

(i) (Bukh-Cox bound)

Z(n - d,K)
max (7, 7k)| > =
1<), k<n,j#k n(l+m(n—d—-1)vm1t+n—-d)— Z(n-dK)

(ii) (Orthoplex/Rankin bound)

if n>d.

1
. > ; )
V<i kS itk (7,7l 2 Vd if n>Z(dK)

(iii) (Levenstein bound)

n(m+1) —d(md+1)
1 R (T3 T 2 \/ (n—d)(md + 1) if n>Z2(dK)

(iv) (Exponential bound)

—1
; >1—2n7r1,
1 B8 T T 2 = 2

Motivated from Theorem [2.7] and Theorem 2.1 we ask the following problem.
Question 2.8. Whether there is a non-Archimedean functional version of Theorem 2.7? In
particular, does there exists a version of

(i) non-Archimedean functional Bukh-Cox bound?

(ii) non-Archimedean functional Orthoplex/Rankin bound?

(iii) non-Archimedean functional Levenstein bound?

(iv) mon-Archimedean functional Exponential bound?

In the introduction we wrote that Welch bounds have applications in study of equiangular lines. There-

fore wish to formulate equiangular line problem for non-Archimedean Banach spaces. For the study of
5
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equiangular lines in Hilbert spaces we refer , quaternion

Hilbert space we refer 7 octonion Hilbert space we refer , finite dimensional vector spaces over finite
fields we refer [38,[39], for Banach spaces we refer [52], for non-Archimedean Hilbert spaces we refer [54]
and for p-adic Hilbert spaces we refer [55].

Question 2.9. (Non-Archimedean Functional Equiangular Line Problem) Let K be a non-
Archimedean field satisfying Equation (3). Given a € K, d € N and v > 0, what is the
mazimum n = n(K,a,d,7) € N such that there exist vectors 7i,...,7, € K¢ (w.r.t. any non-
Archimedean norm) and functionals fi,..., f, € (K%)* satisfying the following.

(1) fi(r))=a for all1 <j <n.

(i) [fj(me) fu(ry)| =~ for all 1 < j.k <mn,j # k.

(iii) [|fill=1 for all 1 <j<n, || =1 for all 1 < j <n.

In particular, whether there is a non-Archimedean functional Gerzon bound?

Question 2.9 can be easily generalized to formulate question of non-Archimedean functional regular s-

distance sets.

3. P-ADIC FUNCTIONAL WELCH BOUNDS

In this section we derive p-adic Banach space version of results done in [55]. Let p be a prime and Q, be

the filed of p-adic numbers. In this section, X is a d-dimensional p-adic Banach space over Q,.

Theorem 3.1. (First Order p-adic Functional Welch Bound) Let p be a prime and X be a d-
dimensional p-adic Banach space over Q. If {7;}}_, is any collection in X and {f;}7_, is any collection
in X* such that there exists b € Qp satisfying

ij(x)Tj =bxr, VredX,

then

2
n

Zfl(Tl) ' | f5(7) fi(75) } Id| Zfa (75)

=1

max {
1<j,k<n,j#k
In particular, if f;(7;) =1 for all 1 < j < n, then

2
(First order p-adic functional Welch bound) max  {|n|, |f;(me) fu(1)|} > M
1<j,k<n,j#k |d|

Proof. Define Sy, : X 5z Z?:l fj(z)r; € X. Then

bd = Tra(blx) = Tra(Sy.,) Z

n n

bPd = Tra(b*Ly) = Tra(S7 ) = > > fi(m) fulr)).

j=1k=1

Therefore


https://doi.org/10.20944/preprints202209.0005.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 September 2022 doi:10.20944/preprints202209.0005.v1

S ()| = Tra(Sy.)* = |bd|* = [d|[b*d] = |d] [> > fi(re) fr(7))
j=1

j=1k=1

=1dI Y A@EP+ D L) fe(m)
=1 Jk=1,j%k

n

> fim)?

=1

< |d]

1<, k<n3;£k{ ’|fj(7'k)fk(7j)|}-

Whenever f;(7;) =1 for all 1 < j <n,

n|* <d| _ max _ {In],|f;(7) fu(7;)[}-

1<j,k<n,j#k

We derive higher order version of Theorem

Theorem 3.2. (Higher Order p-adic Functional Welch Bounds) Let p be a prime and X be a d-
dimensional p-adic Banach space over Q. If {7;}}_, is any collection in X and {f;}}_, is any collection
in X* such that there exists b € Q, satisfying

Zf®m oM = br, V€ Sym™(X),

then

n

> flm)™|,

=1

1gj,r;?§‘£‘,#k{ () fe(7)| }_ e[ ng 7)"

In particular, if fj(m;) =1 for all1 < j <mn, then

(Higher order p-adic functional Welch bound) max  {|n|, |fj(m) fr(T)|"} >
1<) k<n ik ‘

Proof. Define Sy, : Sym™(X) >z 377, [P (@)TP™ € Sym™(X). Then

n

bdim(Sym™ (X)) = Tra(blsymm (1)) = Tra(Sy-) = Y f&™(79™),
j=1

b? dim(Sym™ (X)) = Tra(b’ Isymm (1)) = Tra(S7 ) = YD fE™(r2™) f2™(72™).
j=1 k=1

Therefore
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2 2

S g = |30 e EEm)| = | Tra(Sy,,)) = [bdim(Sym™ (X))
j=1 j=1

= [dim(Sym™(X))| [v* dim(Sym™ (X))

= |dim(Sym™( z”: z”: (Tj®m)
j=1k=1

A

d+m-—1
m

||M:

S A

HM:

Z fk T]

J.k=1,j#k

IN

max
1<4,k<n,j#k

d+$ 1> Zfl7l2m+ Z Fi ()™ fio(7)™

(7)™ fkﬁm)ml}

(n)?

d+m—1> {
max
m 1<ih<ni#k | |

Whenever f;(r;) =1 forall 1 <j<mn,

sl

Difference between Theorem 2.3 and Theorem 3.2 should be clearly emphasized. Assumption in (at vector

,|E(MXﬁﬁﬁﬂm}~

max {|n\,\fj(7k)fk(7'j)|m}-

1<4,k<n.j#k

]

space level) Theorem 3.2 is more than the assumption in Theorem 2.3 (as any scalar times identity is
already diagonal) but the field in Theorem 2.3 is much more restrictive than the field in Theorem 3.2.
Theorem 3.2 works on any non-Archimedean field not just Q,. Using Theorem 3.1 we ask the following

question.

Question 3.3. Given a prime p, for which d-dimensional p-adic Banach space X over Q,
and n € N, there exist vectors 7y,...,7, € X and functionals f1,..., [, € X* satisfying the
following.

(i) fi(r) =1 for all1 <j<n.

(ii) There exists b € Q, satisfying

ij(z)'rj =bx, VxelX,

(iii)
(Il 15 () fu(r) [} = 2L
! ! |d]

@v) |Ifill=1forall1 <j<mn, ||l =1 for all 1 < j <n.
8

1<y, k<n Jj#k
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A particular case of Question [3.3]is the following p-adic functional Zauner conjecture.

Conjecture 3.4. (p-adic Functional Zauner Conjecture) Let p be a prime. For each d € N,
there exist vectors Ty,...,Tp2 € Qg (w.r.t. any non-Archimedean norm) and functionals
fioooo fn € (Q)) satisfying the following.

(i) fi(rj) =1 for all 1 <j < d>.

(ii) There exists b € Q, satisfying

d2
ij((E)Tj =bx, Vx€eX,
j=1

(iii)

i () f(rp)l = ldl, V1 <jk <d?j#k
(v) If5ll =1 for all 1 <j <d?, ||| =1 for all 1 < j <d°.
Theorem 2.7 and Theorem 3.1 give the following problem.

Question 3.5. Whether there is a p-adic functional version of Theorem 2.77 In particular,

does there exists a version of
(i) p-adic functional Bukh-Cox bound?
(ii) p-adic functional Orthoplex/Rankin bound?
(iii) p-adic functional Levenstein bound?
)

(iv) p-adic functional Exponential bound?
We end by formulating p-adic functional equiangular line problem.

Question 3.6. (p-adic Functional Equiangular Line Problem) Let p be a prime. Given
a € Q,, d € N and v > 0, what is the maxzimum n = n(p,a,d,y) € N such that there exist
vectors Ti,...,T, € Qz (w.r.t. any non-Archimedean norm) and functionals fi,..., f, € (QZ)*
satisfying the following.

(i) fi(rj) =a for all1 < j <n.

(1) [f; () fu(m)| =~ for all 1 < j.k <n,j#k.

(iii) ||fjll=1 for all 1 <j<n, || =1 for all 1< j <n.

In particular, whether there is a p-adic functional Gerzon bound?
Question [3.6|can be easily reformulated to formulate question of p-adic functional regular s-distance sets.
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