

Article

The Rain-induced Urban Waterlogging Risk and its Evaluation: A Case Study in the Central City of Shanghai

Lanjun Zou^{1,2,*}, Zhi Wang¹, Qinjing Lu³, Shenglan Wu^{1,*}, Lei Chen¹ and Zhengkun Qin²

¹ Shanghai Central Meteorological Observatory, Shanghai 200030, China; lanjunzou@126.com(L.Z.); shwangzhi@126.com(Z. W.); wusl_nju@outlook.com(S.W.); qqydss@163.com(L. C.)

² Nanjing University of Information Science and Technology, Nanjing 210044, China; qzk_0@nuist.edu.cn(Z.Q.)

³ Wuxi New District Development Group Co. Ltd, Wuxi 214028, China; luqinjing83@126.com(Q.L.)

* Correspondence: lanjunzou@126.com(L.Z.); wusl_nju@outlook.com(S.W.)

Abstract: Waterlogging induced by rain in urban areas has a potential risk impact on property and safety. This paper focuses on the impact of rain on waterlogging and evaluates the waterlogging risk in the central city of Shanghai. A simplified waterlogging depth model is developed in different areas with different drainage capacity and rainfall in consumption of simplifying the effect of complex terrain characteristics and hydrological situation. Based on urban waterlogging depth and its classification collection, a Rain-induced Urban Waterlogging Risk Model(RUWRM) is further established to evaluate waterlogging risk in the central city. The results show that waterlogging depth is closely linked with rainfall and drainage, with a linear relationship between them. More rainfall leads to higher waterlogging risk, especially in the central city with imperfect drainage facilities. Rain-induced urban waterlogging risk model can rapidly gives the waterlogging rank caused by rainfall with a clear classification collection. The results of waterlogging risk prediction indicate that it is confident to get the urban waterlogging risk rank well and truly in advance with more accurate rainfall prediction. This general study is a contribution that allows the public, policy makers and relevant departments of urban operation to assess the appropriate management to reduce traffic intensity and personal safety or strategy to lead to less waterlogging risk.

Keywords: urban waterlogging risk; extreme rain; drainage capacity; Shanghai

1. Introduction

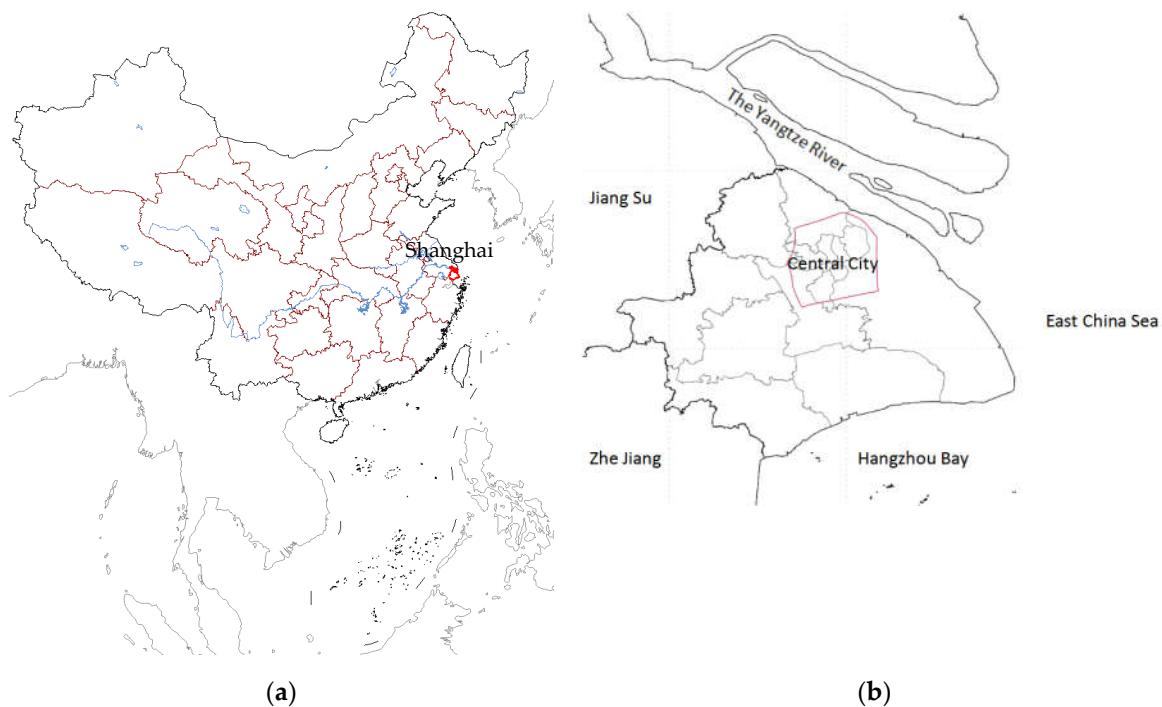
With the extreme weather and rapid urbanization in recent years, cities in China were suffered by urban waterlogging because of short-time heavy rain [1-3]. In urban areas, waterlogging is one of the most serious natural disasters, which usually causes traffic break, building damage and even life death, resulting in loss of property and safety [4,5]. Many studies explore the causes of urban waterlogging from the perspective of attribution analysis and through the statistics of waterlogging events. The analysis shows that urban waterlogging is caused by many factors [6]. Urban waterlogging is closely related to rainfall. Urban climate and environmental changes lead to changes in water cycle, and the artificial emission of particulate matter, air pollution and urban heat island effect cause the change of urban microclimate, thus the precipitation mode changes [7,8]. Some studies conclude that heavy rain will become more often and more serious during the background of global warming and rapid urbanization procedure, thus urban waterlogging will be more serious [9,10]. From the meteorological point of view, it is generally believed that short-term heavy precipitation is more likely to lead to urban waterlogging. Due to its short duration, high intensity and strong locality, the urban drainage system exceeds the design standard and causes water accumulation [11]. The urban surface and river network conditions, as well as hydrological process are of great importance for whether the city will cause waterlogging or not [12]. The rainwater is not easy to permeate through the hard ground, resulting in reduced natural rainwater storage capacity. Poor river network,

construction waste or household garbage blocking pipelines, deficiencies or breakdown of drainage facilities will also lead to waterlogging [13,14]. Many studies start from waterlogging models through hydrodynamic numerical simulation or statistical methods for better simulation of ground water variation [15-18], so as to predict the occurrence and degree of waterlogging and provide favorable tools for risk management. Accordingly, the occurrence of urban waterlogging will bring a series of social and economic impacts [19,20], usually causing road and street block flooding, traffic interruption, housing property damage and other effects, so the risk of waterlogging is valued. Urban rainstorm waterlogging risk assessment can be conducted using remote sensing or GIS technology [21,22], combining with land use and DEM etc.

It is necessary to constitute an organic urban waterlogging model system with high accuracy of precipitation simulation, fine and accurate urban surface and river network information, optimized hydrodynamic model system, as well as artificial drainage facilities and management. However, these methods need to take complex terrain characteristics and hydrological situation into consideration. Moreover, it will require lots of relevant data which could not be acquired easily [23], thus it is difficult to carry out studies on waterlogging risk in an area where the terrain characteristic and hydrological interaction are not obvious. But the potential impact of rain on waterlogging is very crucial. It is necessary to find out how rain impacts on waterlogging and optimize the schemes of infiltration, storage and drainage against waterlogging [24]. So, the urban waterlogging risk evaluation is needed.

Taking the central city of Shanghai as a case study, the present research attempts to discover the impact of rain on waterlogging and evaluate the waterlogging risk since the urban waterlogging problems often trouble the people's daily life in Shanghai. Also, a waterlogging depth model is developed in different areas with different drainage capacity and rainfall in the central city. Then, based on urban waterlogging depth and its classification collection, a simplified Rain-induced Urban Waterlogging Risk Model (RUWRM) is built. This will give great contribution that allows municipal administration who highly concerns about disaster reduction, taking action to assess the appropriateness of local traffic and drainage management strategies.

2. Materials and Methods


2.1. The case-study city and concerns

Shanghai, located on the east of China with a territory of 6340km² and 24.9 million population, is China's international economy, finance, trade, shipping and science and technology innovation centre. As shown in Figure 1, Shanghai lies in the tidal river network area of the Yangtze River Delta, bordering the East China Sea in the east, Hangzhou Bay in the south, Jiangsu and Zhejiang provinces in the west, and the mouth of the Yangtze River in the north. The river network of Shanghai is mainly composed by the main Channel Huangpu River, passing the urban area, and its tributaries Suzhou River, Chuan Yang River, Dian Pu River and so on. The annual rainfall is about 1200mm and average rainfall day is about 132 days. About 60% of total rainfall occurs in flooding season from May to September with notable spatial distribution [25]. Because of deltaic deposit, the terrain of Shanghai is low and flat, with an average elevation of about 4 meters, and the low-lying elevation is only 2-3 meters. Geology is mainly constituted of cohesive soil. The groundwater level is high, and the diving level buried depth is generally 0.5-1.5m [26].

Shanghai's total population continues to grow, and its resources, environment and infrastructure are under great pressure. Severe weather occurs from time to time every year, especially in the flood season. Disasters, such as typhoon, rainstorm, high tide and flood etc., frequently attack the city infrastructure, so it is worth focusing on the solution district, especially the central city, which has the most dense of population, buildings, traffic infrastructure and so on [27]. Whether the heavy rain causes waterlogging or not is also closely related to the local terrain, underlying surface, road density and even people's activities [28]. The areas, usually the central city, with a large proportion of old houses

and old underground rainwater systems will suffer more than newly-built areas with the same precipitation intensity [29]. Therefore, the performance evaluation of waterlogging risk prediction solutions in this study will focus on the central city of Shanghai, which is circled by pink polygon in the right picture of Figure 1.

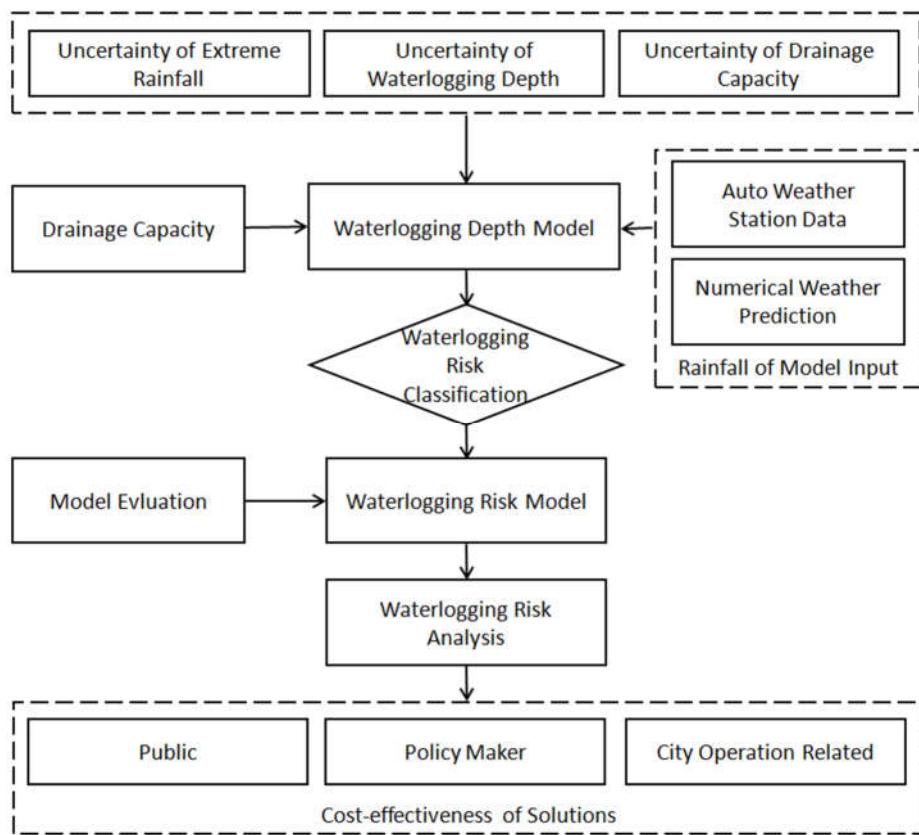

Also, urban waterlogging risk gives useful information to public, policy makers and relevant departments of urban operation, such as drivers, drainage operational or road management staffs, taking notice of the area or roads which will impact by extreme heavy rain and waterlogging to avoid traffic jam and personal safety [30].

Figure 1. Shanghai and the study area.

2.2. Methods

Figure 2 depicts our model process across the entire factors that drive waterlogging hazards and interact with the city infrastructures and drainage controls. To find out the relationship between rainfall and waterlogging depth at the different areas and locations, urban accumulated AWS rainfall, waterlogging depth and drainage capacity information of different areas in shanghai with a historical series of about ten years are analyzed to develop a Waterlogging Depth Model (WDM). Additionally, drainage facilities information is included. After model calibration, WDM is converted to Rain-induced Urban Waterlogging Risk Model(RUWRM) with the classification collection by thresholds. To further check accuracy of the RUWRM simulation in terms of waterlogging risk, the real-time AWS(Automatic Weather Station) rain gauge data and Numerical Weather Prediction(NWP) rainfall data are engaged in for model evaluation, thus waterlogging risk analysis is achieved. Consequently, the analysis will give cost-effective of solutions for the public, policy makers and relevant departments of urban operation.

Figure 2. Waterlogging Depth Model, Risk Model and evaluation in city concerns: flow chart.

2.2.1. Drainage area zoning and drainage capacity of the central city

According to the water conservancy section boundary, the city area is divided into 14 rain water drainage zones [31]. The distribution of drainage areas is as Figure 3 shows. The main feature of Shanghai is flat and low-lying, most areas have no good drainage conditions, water discharge mainly relies on pumping. There are over 1400 rain drainage facilities distributed over a considerable extent in Shanghai with different drainage mode in charge of a number of roads and street blocks. Also, the urban land in each zone is further divided into several strong drainage areas and self-drainage areas because of the different drainage modes. Among them, the central city mainly involves Jiabaobei, Yunnan, Dianbei, Diannan and Pudong (Table 1), which is mainly controlled by strong drainage mode, supplemented by self-drainage mode. In other rural areas, the self-drainage mode is mainly adopted, supplemented by the strong drainage mode.

The central city of Shanghai is the area within the outer ring, covering a territory of 660km², which is divided into 284 drainage units. These units are classified into four categories for different drainage capacities, those respectively follow the maximum drainage capability with precipitation intensity reaching 27mm/h, 30mm/h, 36mm/h and 50mm/h, which are called as I for the area of imperfect drainage facilities, II for the area of once-in-half-a-year waterlogging with strong drainage, III for the area of once-in-a-year waterlogging with strong drainage and IV for the area of once-in-three-year waterlogging with strong drainage.

Figure 3. Drainage area zoning and their drainage mode in Shanghai.

Table 1. Drainage information of different areas related with the central city of Shanghai.

Zoning name	Area(km ²)	River or lake area(km ²)	Water gate number	Peripheral pump station discharge(m ³ /s)
Jiabaobei	698.8	54.6	34	59.0
Yunnan	173.4	7.6	21	300.0
Dianbei	179.3	8.8	27	193.6
Diannan	186.8	14.3	14	28.0
Pudong	1976.6	151.1	40	90.0

2.2.2. Meteorological data and waterlogging depth data

The 11 years period (August, 2001–May, 2011) of the hourly rainfall data from about 200 AWS observations have been acquired from Shanghai Meteorological Services(SMS) of China Meteorological Administration(CMA). AWS is located all over Shanghai with about 5km spatial resolution. The historical hourly rainfall data of Shanghai combined with waterlogging depth data are employed for building a regression model of waterlogging.

In this study, the second generation of regional high-resolution numerical forecast service system, SMS WRF ADAS Real-time Modeling System (SWARMS V2.0) is chosen as the NWP model, which is widely used in the operational meteorological forecast departments in China. The main part of the system is based on ARPS(Advanced Regional Prediction System) Data Assimilation System and Weather Research and Forecasting (ADAS-WRF), with the National Centers for Environmental Prediction/Global Forecast System(NCEP/GFS) analysis field as the initial guess field[32]. The ADAS assimilation

system is used to achieve the assimilation application of various observation data, including conventional weather observation, ship observation, airport ground report, buoy, aircraft observation, air sounding observation, radar data, infrared and visible channel of FY-2G (FengYun-2G) data. In addition, the use of cloud initialization technology to obtain information about convection (such as cloud and precipitation), and by adjusting the empirical parameters in the cloud analysis scheme, constructs a reasonable cloud field of high impact weather and the corresponding water parameters, including cloud water, cloud ice and so on, eventually forms fine structure of high quality numerical pattern analysis field in small and medium scale weather system [33-35]. In view of the fact that Shanghai is located in the East Asian monsoon region, the precipitation process is mostly produced under strong scale forcing conditions, and the physical process of cloud and precipitation in the mode is selected and optimized to improve the effect of the model precipitation. The SWARMS Rapid Refresh (SWARMS-RR) is mainly designed for short-time forecast, which is established based on ADAS-WRF with a horizontal resolution of 3km after observation assimilation every hour for 24 hours. SWARMS-RR starts once a day at 18UTC with the 6 hour forecast field as the initial guess from SWARMS 2.0 at 12UTC, and the one hour forecast field of RR system after ADAS assimilation as the rest of the initial guess. SWARMS-RR rainfall data, from June to August of 2011 with the spatial resolution of 3km, are employed for real-time prediction of waterlogging risk.

In this study, waterlogging depth data with site and occurrence time information are gained from Shanghai Water Authority(SWA) with a period of August, 2001 to May, 2011 from 14 rain water drainage zones of Shanghai.

2.2.3. Pre-processing of the historical data

In terms of spatial distribution, the AWS rainfall data are pre-processed in our research for four parts in accordance to the distribution of waterlogging depth data to investigate their relationship in the same areas. The hourly waterlogging depth data are carefully examined according to rainfall event recorded in AWS in order to ensure the waterlogging event was caused by rain. In the other words, when waterlogging appears but there is no rain, the data are not applied for study. The drainage capacity information of different areas is determined to four levels, which follow the maximum drainage capability with precipitation intensity reaching 27mm/h, 30mm/h, 36mm/h and 50mm/h corresponding to the above four areas.

3. Model setup and prediction

3.1. Waterlogging Depth Model concerned about rainfall and drainage

The study area is located in the central city with a high density of residential and commercial properties. We opted to focus on rain-induced waterlogging risk of four categories for different drainage capacities. In other words, we especially look at the four categories of waterlogging risk so as to examine the direct risk caused by heavy rain. Researches show that the simulation of the drainage pipe network system is crucial for urban waterlogging [36,37]. The water flow conditions of drainage pipes are complex, with circulation, reflux, pressure flow and so on under cement, asphalt surface, dense high buildings and large impervious area, so urban hydrological characteristics are not obvious [38]. But the simulation of these complex conditions require numerous input data, parameter calibration, and expansive computing cost [39,40]. In this paper, the hydrodynamic process is simplified and the drainage capacity is adopted to generalize the complex hydrodynamic action in the grid unit. We take the waterlogging depth based on the following.

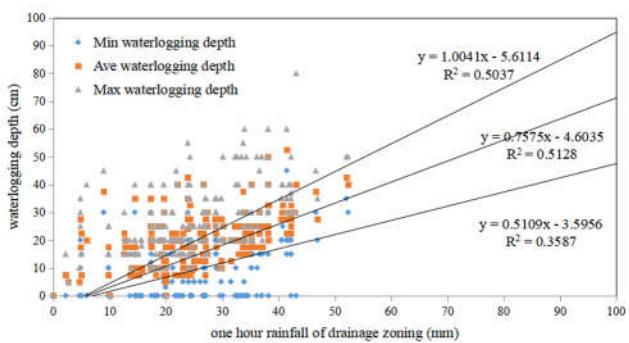
$$\text{waterlogging depth} = \text{rain induced waterlogging depth} - \text{depth in drainage capacity} \quad (1)$$

The rain-induced waterlogging depth presents the depth directly caused by rain. It is supposed to express as a linear relationship with rainfall. Depth in drainage capacity is equal to 27, 30, 36 and 50 for four area categories. Thus, waterlogging depth can be written as the following:

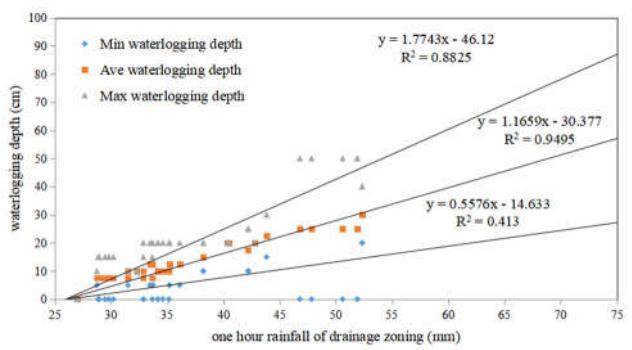
$$\text{depth} = a * \text{rain} + b \quad (2)$$

where rain is one hour rainfall (mm), depth is waterlogging depth (cm) and a, b are the coefficients.

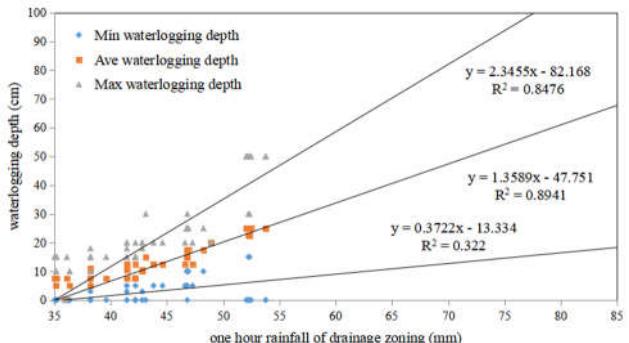
To find the relationship between rainfall and waterlogging depth, hourly precipitation data of AWS and historical waterlogging depth are applied. Therefore, statistics of the average, maximum and minimum waterlogging depth in areas of four categories with drainage capacity and hourly rainfall data shows their linear relationship can be expressed by some mathematical regression model. The average waterlogging depth is considered as the base line of the area when waterlogging occurs. By using the regression model in four categories of waterlogging risk area, area I, II, III and IV respectively have the following average waterlogging depth model (Figure 4).


$$\text{depth} = 0.7575 * \text{rain} - 4.6035 \quad (3)$$

$$\text{depth} = 1.1659 * \text{rain} - 30.377 \quad (4)$$


$$\text{depth} = 1.3589 * \text{rain} - 47.751 \quad (5)$$

$$\text{depth} = 0.2370 * \text{rain} - 11.327 \quad (6)$$


Also, the maximum and minimum waterlogging depth can be expressed as the above formula with different coefficients (Figure 4). If depth is negative while calculating with rainfall input, let it be zero.

(a)

(b)

(c)

(d)

Figure 4. Average waterlogging depth model for four categories of areas. (a) for area I; (b) for area II; (c) for area III; (d) for area IV.

3.2. Setup of Rain-induced Urban Waterlogging Risk Model

According to different drainage capability of each areas and rainfall, Rain-induced Urban Waterlogging Risk Model(RUWRM) is setup in different drainage area in the central city of Shanghai based on urban waterlogging depth information and its classification collection. Based on social survey results, waterlogging risk ranks in Shanghai are further established considering the drainage capacities and the impact of different depths of inundated water on roads, streets and buildings. Table 2 shows that the waterlogging risk in Shanghai is categorized to 5 ranks from 1 to 5 from SWA. The 5 ranks of urban waterlogging risk are named as “slight”, “low”, “moderate”, “high” and “severe” in accordance with the colour of “light blue”, “blue”, “yellow”, “orange” and “red”. For example, if the waterlogging depth is greater than 30cm and not greater than 45cm, the waterlogging risk is determined to rank 3 with the meaning of “moderate” impact and the colour of “yellow”.

Table 2. The waterlogging risk ranks in Shanghai.

Ranks	Waterlogging Depth	Risk	Colour
1	0cm<depth≤15cm	slight	light blue
2	15cm<depth≤30cm	low	blue
3	30cm<depth≤45cm	moderate	yellow
4	45cm<depth≤60cm	high	orange
5	60cm<depth	severe	red

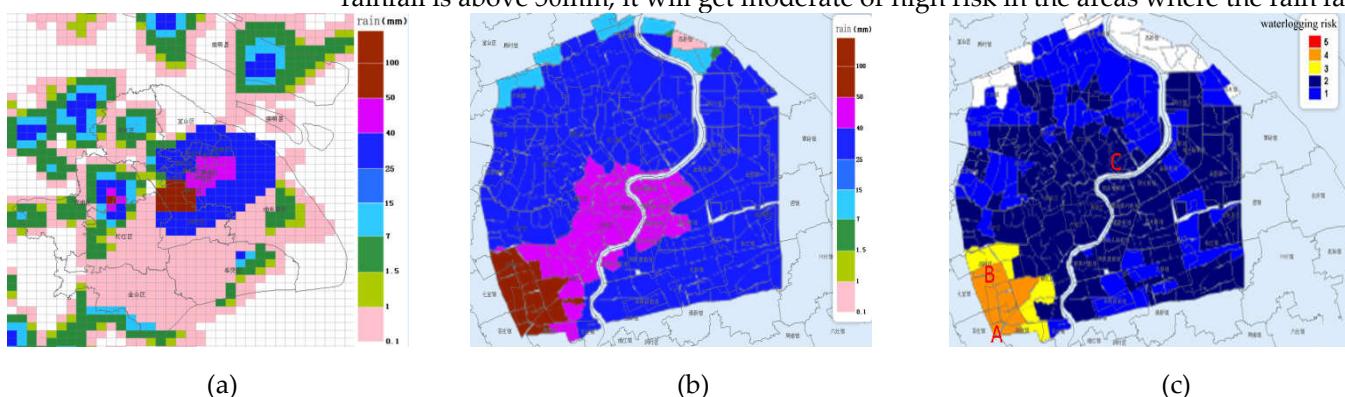
3.3. Waterlogging risk prediction

To evaluate the performance of RUWRM, waterlogging risk prediction is done with NWP forecast hourly rainfall data with horizontal resolution of 3km within 24 hours. Based on the forecast rainfall, urban precipitation of drainage area in the central city is provided. Then waterlogging depth can be obtained according to WDM. Afterwards, the 3km grid waterlogging depth is converted to waterlogging risk, which is meshed into the different drainage units, then different waterlogging risk of each area can be achieved.

4. Results

4.1. Prediction performance evaluation

As evaluation of prediction performance, the observed and predicted waterlogging risk are used during June to August of 2011 in Shanghai. Firstly, observed waterlogging depth is converted as “observed” by using the waterlogging risk classification collection. Secondly, real time prediction of NWP is used to calculate predicted waterlogging risk by the waterlogging risk model. At last, “observed” and predicted waterlogging risk are applied to evaluate the model performance. The heavy rainfall event on August 12 of 2011 is taken as an example. Affected by the slow-eastward-moving cold vortex in high altitude, the severe convective weather occurred, with the precipitation mainly occurred in the central urban area and the northern part of Shanghai. From 06 to 10 am, the maximum cumulative rainfall in the central city reached 92.9mm. Beixinjing of Changning district, Wujiaochang of Yangpu district and Huanghe Road of Huangpu district get the observed waterlogging risk rank for 3, 4, 4, either as the predicted. The model predicted values meet the observation well. Table 3 shows the waterlogging risk in some heavy rain events of flood season from June to August of 2011. After careful examining, it is concluded that the most predicted waterlogging risk is totally close with the observed, occasionally, few predicted ones have one rank level difference. Totally, the prediction accuracy is 80%.


Table 3. Comparison of predicted and observed waterlogging risk.

Date	Sites	Observed waterlogging risk	Predicted waterlogging risk
06/17/2011	Wuzhong Road, the Central city	3	3
	Outer Ring Road	3	2
	Yishan Road, Xuhui	1	1
07/31/2011	The Orient Sports Center, Pudong	1	0
08/03/2011	Puxi Road, Xuhui	3	2
	Wujiaochang, Yangpu	1	1
	Gaoqiao, Pudong	2	2
08/04/2011	Xinzhuang, Minhang	3	3
	Wuzhong Road	4	4
	Xianxia Road	4	4
	Middle Ring Road	2	2
08/12/2011	Beixinjing, Changning	3	3
	Wujiaochang, Yangpu	4	4
	Huanghe Road, Huangpu	4	4
08/13/2011	The whole central city	1	1

4.2. The performance of a heavy rain case evaluation

The heavy rainfall event on August 4th of 2011 is taken as a case to evaluate the model performance. On that day, due to the influence of trough in high altitude, severe precipitation occurred in Shanghai, while a rainstorm occurred in the central city. Rainfall values of six automatic stations exceeded 50 mm, and the maximum cumulative rainfall was 68 mm. Figure 5 depicts the NWP rainfall in Shanghai and in the central city, as well as corresponding waterlogging risk product by using waterlogging risk model. On the waterlogging event on August 4th of 2011, the waterlogging depth of Wuzhong Road and Xianxia Road (B) were 48cm, Xinzhuang (A) exceeded 30cm, and Middle Ring (C) was near 25cm. So according to the waterlogging risk model, the observed waterlogging risk rank of Wuzhong Road and Xianxia Road was 4, Xinzhuang was 3 and Middle Ring was 2. And from the prediction, the rank of waterlogging risk in Wuzhong Road and Xianxia Road was 4, Xinzhuang was 3 and Middle Ring was 2. The predicted results were close to the observed.

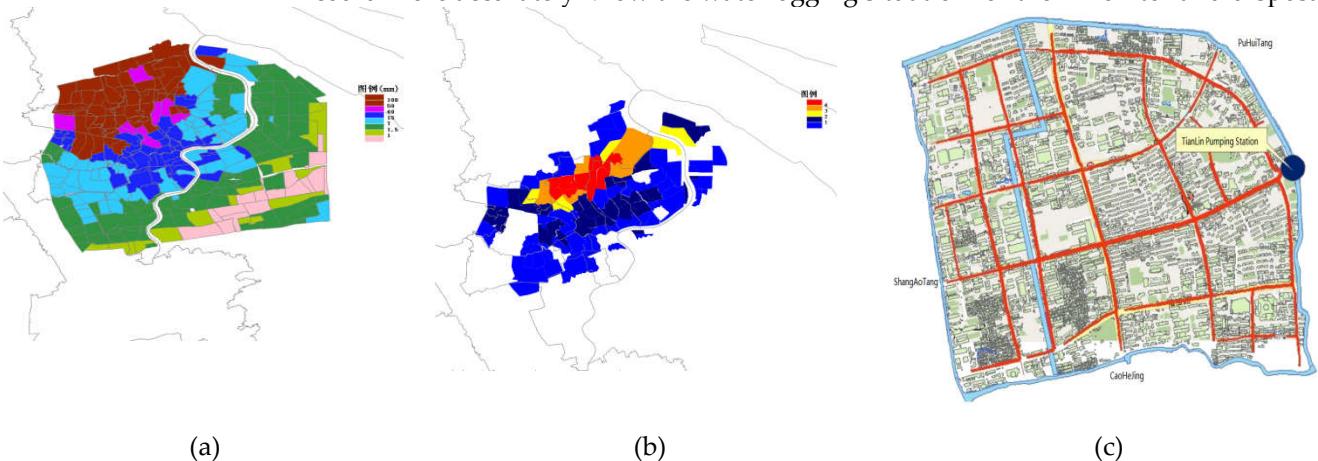

The results show that the distribution and rank of urban waterlogging risk is different because of different rainfall conditions. The greater the rainfall intensity is, the higher the waterlogging risk rank will be. When the hourly rainfall is higher than 25mm, there is slight risk in some urban areas of imperfect drainage facilities. When the hourly rainfall is higher than 40mm, there is low risk in most areas of the central city. When the hourly rainfall is above 50mm, it will get moderate or high risk in the areas where the rain falls.

Figure 5. Rain and waterlogging risk evaluation on August 4th of 2011. (a) for NWP rainfall in Shanghai; (b) for rainfall in the central city; (c) for predicted waterlogging risk.

4.3. Practice on drainage decision support by waterlogging risk prediction

On the practice, a rainstorm event in Shanghai on July 14 of 2011 is chosen. During this event, the precipitation in the northwest of central city of Shanghai exceeded 100 mm within 24 hours. Based on the NWP heavy precipitation forecast, the waterlogging risk prediction is given by using RUWRM. Clearly, severe waterlogging is expected in the northwest of the central city, while moderate or slow waterlogging in the southwest. The real-time operational dispatching control system of Shanghai urban rainwater pipe network in this area is mainly controlled by rainwater pumping stations, which is responsible for the pipeline drainage in one area (Figure 6). For practice, TianLin pumping station and its pipeline control blocks are concerned. According to the arrangement of the dispatching system, the rainfall alarm is conducted, and combined with the waterlogging risk prediction, the pumping station load alarm was considered, as well as the drainage arrangement and online personnel dispatching were managed through the system. Benefit from the waterlogging risk prediction, the drainage management personnel conducted the pre-drainage of the drainage pipe network and unblocked the pipeline in this area, increasing the capacity of rainwater absorption, and enhancing the discharge capacity of waterlogging water. At the same time, the rainfall station and water monitoring instrument were used to monitor the rainfall and waterlogging depth, while the alarm messages were sent to the drainage and flood control staff through the decision support system, so that they could more accurately know the waterlogging situation for their monitor and disposal.

Figure 6. Rain, waterlogging risk prediction and drainage practice area on July 11th of 2011. (a) for rainfall in the central city; (b) for predicted waterlogging risk; (c) for TianLin pumping station and its pipeline control blocks.

4.4. Discussion and Suggestion

This study presents a quick and less expensive method by using rainfall to induce waterlogging risk given the drainage capacity in different areas with less attention to complex surface condition and hydrological process, so that social impact of waterlogging risk can be well concerned. Therefore, property loss threat caused by waterlogging on roads, buildings and street blocks, as well as live or health threat on residents can be recognized by waterlogging risk ranks easily.

In preparation, with speedy dissemination of waterlogging risk prediction to relevant official departments and organizations by emergency department during flood season, it can be arranged notice and action at the public level to increase awareness. People, such as drivers are generally advised about how to increase their preparedness, including knowing how and when they will go away from the waterlogging areas, how and where they will park their cars, what types of emergency action and help they may need. Various departments of city government can also make preparations and appropriate emergency items to help citizens respond to waterlogging.

In order to minimize loss, damage, and health risks during waterlogging, the relevant departments can rapidly operate their emergency facilities at different parts of the city. Relief and rehabilitation works are monitored, and emergency instructions are provided to other organizations and service departments, such as the electric supply authority, water supply and sewerage authority, traffic management department, fire service, and so on.

Immediately after a waterlogging strikes, a report outlining the estimated work can be send to the relevant departments, along with commentary. It also prepares restoration lists of buildings, houses, and all types of structures, as well as lists of roads and streets that are to be raised above the floodwater level.

5. Conclusion

The present study focused on the setup of the relationship between the urban waterlogging risk, rainfall and drainage capacity in the central city of Shanghai. In this paper, the drainage capacity is adopted to generalize the complex hydrodynamic action and artificial drainage in the urban grid unit. The waterlogging depth model is built between rainfall and drainage capacity by regression method with pre-processed historical data. Waterlogging depth model was created for the calculation of the rainfall associated with the drainage for building relationship based on a period of about 11 years data. What is more, a simplified rainfall-induced urban waterlogging risk model is introduced to expand the use range of waterlogging depth model. Also, predicted waterlogging risk is carried out by NWP forecast rainfall data from some heavy rain events from June to August of 2011, and analysis shows that predicted waterlogging risk is close to observation. On the basis of the previous section of results and discussion, some suggestion is offered to the public, policy makers and relevant departments of urban operation.

The results show that waterlogging is closely linked with rain and drainage, and waterlogging depth has the linear relationship with rainfall and drainage capacity. That is to say, more rainfall leads to higher waterlogging risk, especially in the central city with imperfect drainage facilities. Rain-induced urban waterlogging risk model can rapidly gives the waterlogging rank caused by rainfall with a clear classification collection. The results of waterlogging risk prediction indicate that it is confident to get the urban waterlogging risk rank well and truly in advance with more accurate rainfall prediction. Information with urban waterlogging risk gives the public, policy makers and relevant departments of urban operation timely adjust their routine and emergent management who are hoping to diminish traffic intensity and personal safety. In urban construction and development processes, more attention to the improvement of drainage capacity will lead to less waterlogging risk.

Author Contributions: Conceptualization, L.Z. and S.W.; Data curation, L.Z. and Q.L.; Formal analysis, L.Z. and Q.L.; Funding acquisition, L.Z. and L. C.; Investigation, L.Z. and Q.L.; Methodology, L.Z. and S.W.; Project administration, L.Z.; Resources, L.Z., Q.L., S.W. and Z.W.; Software, L.Z. and S.W.; Supervision, L.Z., Z.Q. and Z.W.; Validation, L.Z. and S.W.; Visualization, L.Z. and S.W.; Writing—original draft, L.Z. and Q.L.; Writing—review and editing, L.Z., Q.L., S.W., Z.Q. and Z.W.. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Yangtze River Delta Science and Technology Innovation Community Field Project of Shanghai Science and Technology Innovation Action Plan (Grant No. 21002410200) and the National Natural Science Fund of China (Grant No. 42105001).

Acknowledgments: We acknowledge Shanghai Central Meteorological Observatory and Shanghai Water Authority for providing the data.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Liang, P.; Ding, Y. The Long-Term Variation of Extreme Heavy Precipitation and Its Link to Urbanization Effects in Shanghai during 1916–2014. *Adv. Atmos. Sci.* 2017, 34, 321–334, doi:10.1007/s00376-016-6120-0.

2. Wang, X.; Yin, Z.; Wang, X.; Tian, P.; Huang, Y. A Study on Flooding Scenario Simulation of Future Extreme Precipitation in Shanghai. *Front. Earth Sci.* 2018, 12, 834–845, doi:10.1007/s11707-018-0730-z.
3. Zhang, H.; Yang, Z.; Cai, Y.; Qiu, J.; Huang, B. Impacts of Climate Change on Urban Drainage Systems by Future Short-Duration Design Rainstorms. *Water* 2021, 13, 2718, doi:10.3390/w13192718.
4. Quan, R.; Liu, M.; Lu, M.; Zhang, L.; Wang, J.; Xu, S. Waterlogging Risk Assessment Based on Land Use/Cover Change: A Case Study in Pudong New Area, Shanghai. *Environ Earth Sci* 2010, 61, 1113–1121, doi:10.1007/s12665-009-0431-8.
5. Billot, R.; Faouzi, N.; Sau, J.; De Vuyst, F. Integrating the Impact of Rain into Traffic Management: Online Traffic State Estimation Using Sequential Monte Carlo Techniques. *Transportation Research Record* 2010, 2169, 141–149, doi:10.3141/2169-15.
6. Zhang, Q.; Wu, Z.; Zhang, H.; Dalla Fontana, G.; Tarolli, P. Identifying Dominant Factors of Waterlogging Events in Metropolitan Coastal Cities: The Case Study of Guangzhou, China. *Journal of Environmental Management* 2020, 271, 110951, doi:10.1016/j.jenvman.2020.110951.
7. Han, J.; Baik, J.; Lee, H. Urban Impacts on Precipitation. *Asia-Pacific J Atmos Sci* 2014, 50, 17–30, doi:10.1007/s13143-014-0016-7.
8. Lau, W.; Kim, K.; Ruby Leung, L. Changing Circulation Structure and Precipitation Characteristics in Asian Monsoon Regions: Greenhouse Warming vs. Aerosol Effects. *Geosci. Lett.* 2017, 4, 28, doi:10.1186/s40562-017-0094-3.
9. Xu, S.; Wang, J.; Shi, C.; Yan, J. Research of The Natural Disaster Risk on Coastal Cities. *Acta Geographica Sinica*, 2016, 61, 127–138, doi:10.11821/xb200602002.
10. Hu, H. Spatiotemporal Characteristics of Rainstorm-Induced Hazards Modified by Urbanization in Beijing. *Journal of Applied Meteorology and Climatology* 2015, 54, 1496–1509, doi:10.1175/JAMC-D-14-0267.1.
11. Shi, J.; Cui, L. Characteristics of High Impact Weather and Meteorological Disaster in Shanghai, China. *Nat Hazards* 2012, 60, 951–969, doi:10.1007/s11069-011-9877-6.
12. Wu, X.; Yu, D.; Chen, Z.; Wilby, R.L. An Evaluation of the Impacts of Land Surface Modification, Storm Sewer Development, and Rainfall Variation on Waterlogging Risk in Shanghai. *Nat Hazards* 2012, 63, 305–323, doi:10.1007/s11069-012-0153-1.
13. Liu, F.; Liu, X.; Xu, T.; Yang, G.; Zhao, Y. Driving Factors and Risk Assessment of Rainstorm Waterlogging in Urban Agglomeration Areas: A Case Study of the Guangdong-Hong Kong-Macao Greater Bay Area, China. *Water* 2021, 13, 770, doi:10.3390/w13060770.
14. Yang, Y.; Pan, C.; Fan, G.; Tian, M.; Wang, J. A New Urban Waterlogging Simulation Method Based on Multi-Factor Correlation. *Water* 2022, 14, 1421, doi:10.3390/w14091421.
15. Chen, Z.; Li, K.; Du, J.; Chen, Y.; Liu, R.; Wang, Y. Three-Dimensional Simulation of Regional Urban Waterlogging Based on High-Precision DEM Model. *Nat Hazards* 2021, 108, 2653–2677, doi:10.1007/s11069-021-04793-8.
16. Liu, J.; Shao, W.; Xiang, C.; Mei, C.; Li, Z. Uncertainties of Urban Flood Modeling: Influence of Parameters for Different Underlying Surfaces. *Environmental Research* 2020, 182, 108929, doi:10.1016/j.envres.2019.108929.
17. Jiang, W.; Yu, J. Impact of Rainstorm Patterns on the Urban Flood Process Superimposed by Flash Floods and Urban Waterlogging Based on a Coupled Hydrologic-Hydraulic Model: A Case Study in a Coastal Mountainous River Basin within Southeastern China. *Nat Hazards* 2022, doi:10.1007/s11069-021-05182-x.
18. Wu, J.; Sha, W.; Zhang, P.; Wang, Z. The Spatial Non-Stationary Effect of Urban Landscape Pattern on Urban Waterlogging: A Case Study of Shenzhen City. *Sci Rep* 2020, 10, 7369, doi:10.1038/s41598-020-64113-1.
19. Fletcher, T.; Andrieu, H.; Hamel, P. Understanding, Management and Modelling of Urban Hydrology and Its Consequences for Receiving Waters: A State of the Art. *Advances in Water Resources* 2013, 51, 261–279, doi:10.1016/j.advwatres.2012.09.001.
20. Su, B.; Huang, H.; Li, Y. Integrated Simulation Method for Waterlogging and Traffic Congestion under Urban Rainstorms. *Nat Hazards* 2016, 81, 23–40, doi:10.1007/s11069-015-2064-4.
21. Gu, L.; Zhao, K.; Zhang, S.; Zheng, X. An AMSR-E Data Unmixing Method for Monitoring Flood and Waterlogging Disaster. *Chin. Geogr. Sci.* 2011, 21, 666–675, doi:10.1007/s11769-011-0463-3.
22. Zhang, S.; Pan, B. An Urban Storm-Inundation Simulation Method Based on GIS. *Journal of Hydrology* 2014, 517, 260–268, doi:10.1016/j.jhydrol.2014.05.044.
23. Cheng, S.; Wang, R. An Approach for Evaluating the Hydrological Effects of Urbanization and Its Application. *Hydrol. Process.* 2002, 16, 1403–1418, doi:10.1002/hyp.350.
24. Liu, P.; Wei, Q.; Lin, Z.; Lv, W. Optimized Schemes of “Infiltration”, “Storage”, and “Drainage” Measures against Urban Waterlogging in Plain River Network Regions. *Water* 2022, 14, 1381, doi:10.3390/w14091381.
25. Yin, J.; Zhang, Q. A Comparison of Statistical Methods for Benchmarking the Threshold of Daily Precipitation Extremes in the Shanghai Metropolitan Area during 1981–2010. *Theor Appl Climatol* 2015, 120, 601–607, doi:10.1007/s00704-014-1199-7.
26. Shen, S.; Xu, Y. Numerical Evaluation of Land Subsidence Induced by Groundwater Pumping in Shanghai. *Can. Geotech. J.* 2011, 48, 1378–1392, doi:10.1139/t11-049.
27. Wu, M.; Wu, Z.; Ge, W.; Wang, H.; Shen, Y.; Jiang, M. Identification of Sensitivity Indicators of Urban Rainstorm Flood Disasters: A Case Study in China. *Journal of Hydrology* 2021, 599, 126393, doi:10.1016/j.jhydrol.2021.126393.
28. Singh, S.K.; Pandey, A.C.; Rathore, V.S.; Nathawat, M.S. Evaluating Factors Responsible for Contrasting Signature of Wasteland Development in Northern and Southern Ganga Plains (Bihar State, India) with Focus on Waterlogging. *Arab J Geosci* 2014, 7, 4175–4190, doi:10.1007/s12517-013-1094-z.

29. Shi, Y.; Shi, C.; Xu, S.; Sun, A.; Wang, J. Exposure Assessment of Rainstorm Waterlogging on Old-Style Residences in Shanghai Based on Scenario Simulation. *Nat Hazards* 2010, 53, 259–272, doi:10.1007/s11069-009-9428-6.

30. Lin, T.; Liu, X.; Song, J.; Zhang, G.; Jia, Y.; Tu, Z.; Zheng, Z.; Liu, C. Urban Waterlogging Risk Assessment Based on Internet Open Data: A Case Study in China. *Habitat International* 2018, 71, 88–96, doi:10.1016/j.habitatint.2017.11.013.

31. Wang Mengjiang. *Shanghai Flood Control Work Manual*, Fudan University Press: Shanghai, China, 2018; pp.484-486.

32. Zhao, K.; Xue, M. Assimilation of Coastal Doppler Radar Data with the ARPS 3DVAR and Cloud Analysis for the Prediction of Hurricane Ike (2008). *Geophys. Res. Lett.* 2009, 36, L12803, doi:10.1029/2009GL038658.

33. Hong, S.; Dudhia, J.; Chen, S. A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation. *Mon. Wea. Rev.* 2004, 132, 103–120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

34. Li, J.; Chen, B.; Huang, W.; Zhang, X. Cloud Physics Initialization for Convection-Scale NWP: Scheme Improvements and A Case Study. *Acta Meteor Sinica* 2017, 75, 771-783, doi:10.11676/qxb2017.059.

35. Srivastava, K.; Bhardwaj, R. Assimilation of Doppler Weather Radar Data in WRF Model for Simulation of Tropical Cyclone Aila. *Pure Appl. Geophys.* 2014, 171, 2043–2072, doi:10.1007/s00024-013-0723-5.

36. Martínez, C.; Sanchez, A.; Toloh, B.; Vojinovic, Z. Multi-Objective Evaluation of Urban Drainage Networks Using a 1D/2D Flood Inundation Model. *Water Resour Manage* 2018, 32, 4329–4343, doi:10.1007/s11269-018-2054-x.

37. Seyedashraf, O.; Bottacin-Busolin, A.; Harou, J.J. Many-Objective Optimization of Sustainable Drainage Systems in Urban Areas with Different Surface Slopes. *Water Resour Manage* 2021, 35, 2449–2464, doi:10.1007/s11269-021-02840-4.

38. Liu, J.; Shao, W. Simulation of Rainfall Runoff in Urban Districts. *Journal of Hydraulic Engineering* 2006, 37, 184–188, doi:10.3321/j.issn:0559-9350.2006.02.009.

39. Sisay, E.; Halefom, A.; Khare, D.; Singh, L.; Worku, T. Hydrological Modelling of Ungauged Urban Watershed Using SWAT Model. *Model. Earth Syst. Environ.* 2017, 3, 693–702, doi:10.1007/s40808-017-0328-6.

40. Yan, X.; Xu, K.; Feng, W.; Chen, J. A Rapid Prediction Model of Urban Flood Inundation in a High-Risk Area Coupling Machine Learning and Numerical Simulation Approaches. *Int J Disaster Risk Sci* 2021, 12, 903–918, doi:10.1007/s13753-021-00384-0.