

Article

Modeling and Control of a Front-Axle Bicycle Robot

Masiala Mavungu

University of Johannesburg, Department of Mechanical Engineering Science, South Africa

msmvp7219@gmail.com or masialam@uj.ac.za

Abstract: This paper develops feasible control strategies and associated system responses to bring

an autonomous front-axle bicycle robot from specified initial conditions to final conditions such that

a specific performance index is minimized. To solve the problem, the following approach is used:

The feasible controls derived from the normal equations of optimality are substituted into the state

and the costate systems and form a combined control-free state-costate system which is vectorized

to enable and ease the application of a numerical method. A computer program written in Matlab

computer programming language, codes a fourth-order Runge-Kutta numerical method and then

solve the combined state-costate system of ordinary differential equations. The obtained results are

the feasible bicycle robot trajectory, the feasible state functions, the feasible costate functions and

the feasible control functions. Associated Computational Simulations are designed and provided to

persuade on the effectiveness and the reliability of the approach.

Keywords: autonomous vehicle, bicycle Robot, modelling, optimal control, path planning, differen-

tial equation, initial value problem, Runge-Kutta, scientific computing

1. Introduction

Nowaday, there exist a lot of innovations in the areas of telecommunication and net-

working, remote sensing, computer vision, robotics, etc. The technology of connected de-

vices and that of self-driving vehicles are continually impacting human lives. They cause

the Industrial Operators and Managers to dream as much as possible and then to create a

lot of business opportunities. They also cause the Academic Researchers to develop rele-

vant tools and methods for vehicle modelling and path planning for efficient and reliable

control and management and then create a lot of research questions and opportunities.

Path planning and control of an autonomous bicycle robot are highly connected to signal

processing, image processing, computer vision, control system, digital logic specially in

the component of obstacle avoidance and stability.

The prediction of the dynamics of bicycle robots and other vehicle robots in general

have become a current and important topic for the industrial operators and managers,

and then attract the attention of engineers, mathematicians, computer scientists, physi-

cists, etc. Such Researchers develop suitable strategies, tools and methods to solve all

associated problems. There exist a certain amount of works on autonomous bicycle robots

carried out since some years. For example papers [1]-[9] deal with bicycle robots and ve-

hicle robots in general. This paper uses optimal control theory to compute feasible control

strategies and feasible state trajectories of an autonomous bicycle such that the bicycle

running cost is minimized.

The main contributions of this paper are the derivation of two feasible control strat-

egies, the computation the system response defined by six feasible state functions, six

feasible costate (adjoint) functions. To solve the system combining the state and the costate

ordinary differential equations Matlab computer programs were developed and applied.

This paper is organized as follows: Section 2 develops different mathematical models

and defines the problem as an optimal control problem. Section3 derives the Hamiltonian

of the control system and solves the normal equations of optimality to obtain the expres-

sions of the control functions. Section 4 applies Pontryagin’s Minimum Principle to

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2022 doi:10.20944/preprints202208.0533.v1

© 2022 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202208.0533.v1
http://creativecommons.org/licenses/by/4.0/

determine all relevant equations yielding the solutions. Section 5 develops relevant com-

puter programs to determine the feasible control trajectories, the corresponding feasible

state trajectories and all the other outputs.

Figure 1. Vehicle Robot Geometric Model.

2. Mathematical Models

2.1. Objective functional

In this paper, the total running cost to be minimized is as follows:

�(�) = �(ξ�, ξ�) = ∫ �ξ�
� + ξ�

����
��

��
 (1)

where �� and �� are respectively the bicycle motion’s starting and final times, ξ� and ξ�

are the reference commands which control respectively the bicycle heading angular ve-

locity and the steering angular velocity. h(t) = ξ�
�

+ ξ�
� is the cost rate.

2.2. Control System, Kinematic Model

The motion of an autonomous bicycle is modelled as follows:
��

��
= ������(� + �) (2)

��

��
= ������(� + �) (3)

��

��
= ������(�) (4)

��

��
= ��� (5)

where �� = � and �� = �/� are constant of proportionality, � and � are respectively

the radius of each wheel and the distance between the centre of the rear and the front

wheels. (�, �) is the coordinates of the projection of the front wheel’s center on the hori-

zontal plane, � the heading angle, � is the steering angle, � is the steering angular ve-

locity.

The reference commands which regulate the bicycle angular velocity and the steering

angular velocity are modelled as solution to a closed-loop system defined by:
��

��
= −��� + ��ξ� (6)

��

��
= −��� + ��ξ� (7)

ξ� and ξ� are the unknown input control functions to be developed.

The whole robot kinematic control system is

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2022 doi:10.20944/preprints202208.0533.v1

https://doi.org/10.20944/preprints202208.0533.v1

��

��
= ������(� + �) (8)

��

��
= ������(� + �) (9)

��

��
= ������(�) (10)

��

��
= ��� (11)

��

��
= −��� + ��ξ� (12)

��

��
= −��� + ��ξ� (13)

Figure 2. Front-Axle Bicycle Robot Geometric Model.

2.3. Problem Formulation

This paper addresses the following problem:

Compute the feasible control strategies and the associated feasible state functions,

also called feasible robot system responses, for the autonomous bicycle to drive from a

given initial state to a final state such that the total running cost of the bicycle is mini-

mized.

3. Hamiltonian and Feasible Controls

The Hamiltonian of the system is given by

�(�, �(�), �(�), �(�), �(�)) = ℎ(�) + ∑ ��
�
��� (�)��(�(�), �(�), �(�)) (14)

Where we have

h(t) = ξ�
�

+ ξ�
� is energy cost rate,

��(�(�), �(�), �(�)) = ������(� + �) is the x component of the linear velocity of the

bicycle,

��(�(�), �(�), �(�)) = ������(� + �) is the y component of the linear velocity of the

bicycle,

��(�(�), �(�), �(�)) = ������(�) is the heading angular velocity of the bicycle,

��(�(�), �(�), �(�)) = ��� is the steering angular velocity of the bicycle,

��(�(�), �(�), �(�)) = −��� + ��ξ� is the rate of change of the bicycle heading an-

gular velocity,

��(�(�), �(�), �(�)) = −��� + ��ξ� is the rate of change of the bicycle steering angu-

lar velocity.

�(�) = (�(�), �(�), �(�), �(�), �(�), �(�)) is the unkown state vector function.

�(�) = (��(�), ��(�), ��(�), ��(�), ��(�), ��(�)) is the unkown costate (adjoint) vector

function.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2022 doi:10.20944/preprints202208.0533.v1

https://doi.org/10.20944/preprints202208.0533.v1

The feasible control normal equations for optimality are as follows
��

���
= 2ξ�

∗ + �1�� = 0 (15)
��

���
= 2ξ�

∗ + �2�� = 0 (16)

The feasible controls are given by

ξ�
∗ = −0.5���� (17)

ξ�
∗ = −0.5���� (18)

4. Pontryagin’s Minimum Principle

If �∗ = (ξ�
∗, ξ�

∗) is the feasible control of the above problem and �∗ =

(�∗, �∗, �∗, �∗, �∗, �∗) the corresponding feasible system response, then there exists a cos-

tate vector

�∗ = (��
∗, ��

∗, ��
∗, ��

∗, ��
∗, ��

∗) such that

�(�∗) ≤ �(�) (19)
��∗

��
= ���∗���(�∗ + �∗) (20)

��∗

��
= ���∗���(�∗ + �∗) (21)

��∗

��
= ���∗���(�∗) (22)

��∗

��
= ���∗ (23)

��∗

��
= −���∗ + ��ξ�

∗ (24)
��∗

��
= −���∗ + ��ξ�

∗ (25)
���

∗

��
= 0 (26)

���
∗

��
= 0 (27)

���
∗

��
= ���∗(��

∗sin(�∗ + �∗) − ��
∗cos(�∗ + �∗)) (28)

���
∗

��
= ���∗(��

∗sin(�∗ + �∗) − ��
∗cos(�∗ + �∗)) − ����

∗�∗���(�∗) (29)
���

∗

��
= −(����

∗���(�∗ + �∗) + ����
∗���(�∗ + �∗) + ����

∗�∗���(�∗) − ����
∗) (30)

���
∗

��
= −����

∗ + ����
∗ (31)

By letting �∗ = (ξ�
∗, ξ�

∗), with ξ�
∗ = −0.5����

∗ and ξ�
∗ = −0.5����

∗ for the con-

trol variables,

��
∗ = �∗ , ��

∗ = �∗ , ��
∗ = �∗ , ��

∗ = �∗ , ��
∗ = �∗ and ��

∗ = �∗ for the state varia-

bles,

��
∗ = ��

∗, ��
∗ = ��

∗, ��
∗ = ��

∗, ���
∗ = ��

∗, ���
∗ = ��

∗ and ���
∗ = ��

∗ for the cos-

tate variables

and by combining all the state and costate variables into a vector as � = [�, �], then

the combined state-costate system can be rewritten as follows:
���

∗

��
= ����

∗���(��
∗ + ��

∗) (32)
���

∗

��
= ����

∗���(��
∗ + ��

∗) (33)
���

∗

��
= ����

∗���(��
∗) (34)

���
∗

��
= ����

∗ (35)
���

∗

��
= −����

∗ + ��ξ�
∗ (36)

���
∗

��
= −����

∗ + ��ξ�
∗ (37)

���
∗

��
= 0 (38)

���
∗

��
= 0 (39)

���
∗

��
= ����

∗(��
∗sin(��

∗ + ��
∗) − ��

∗cos(��
∗ + ��

∗)) (40)
����

∗

��
= ����

∗(��
∗sin(��

∗ + ��
∗) − ��

∗cos(��
∗ + ��

∗)) − ����
∗��

∗���(��
∗) (41)

����
∗

��
= −(����

∗���(��
∗ + ��

∗) + ����
∗���(��

∗ + ��
∗) + ����

∗���(��
∗) − �����

∗) (42)
����

∗

��
= −�����

∗ + �����
∗ (43)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2022 doi:10.20944/preprints202208.0533.v1

https://doi.org/10.20944/preprints202208.0533.v1

The initial heading angles and the final time are the parameters on which is based

our performance analysis. For all the considered cases, the other state and costate varia-

bles, the initial conditions did not change. The aim is also to see how far and in which

direction the vehicle can drive. In order to solve the state-costate system, I have developed

an algorithm which can solve any system of ordinary differential equations. The program

is written in Matlab as a set of codes coding a fourth-order Runge-Kutta numerical

method. Below is the program

function [t,y] = runge_v2(fs,t0,tf,N,y0)

h=(tf-t0)./(N-1); % h is the step size for the discretization.

t=t0:h:tf; % t is the time vector. % N is the number of discrete points.

t=t'; t0 and tf are respectively the initial and final time.

% y0 is the initial vector solution.

y = zeros(N,length(y0)); % y is initialized to zero.

y(1,:) = y0.'; % The solution at the starting time.

for n = 2:N

k1 = feval(fs,t(n-1),y(n-1,:));

k2 = feval(fs,t(n-1)+(h/2),y(n-1,:)+(h/2)*k1');

k3 = feval(fs,t(n-1)+(h/2),y(n-1,:)+(h/2)*k2');

k4 = feval(fs,t(n-1)+h,y(n-1,:)+h*k3');

y(n,:) = y(n-1,:)+(h/6)*(k1'+2*k2'+2*k3'+k4');

end

The above algorithm can be translated judiciously into any programming language.

It can be called to solve any initial value problem. Let’s use it to solve the above combined

state-costate system of ordinary differential equations (32)-(43). The Matlab function cod-

ing such a system is as follows:

function dzdt= front_wheel_robot(t,z)

dzdt = zeros(12,1);

c1=2; c2=1; c3=0.75; a1=0.25; a2=0.25; % These are Constants of proportionality c1=R; c2=R/L;

dzdt (1)=c1*z(5)*cos(z(3)+z(4)); % Equation 32

dzdt (2)=c1*z(5)*sin(z(3)+z(4)); % Equation 33

dzdt (3)=c2*z(5)*tan(z(4))*cos((z(5))); % Equation 34

dzdt (4)= c3*z(6); % Equation 35

dzdt (5)=-a1*z(5) + a1*(-0.5*a1*z(11)); % Equation 36

dzdt (6)=-a2*z(6) + a2*(-0.5*a2*z(12)); % Equation 37

dzdt (7)=0; % Equation 38

dzdt (8)=0; % Equation 39

dzdt (9)= c1*z(5)*(z(7)*sin(z(3)+z(4))- z(8)*cos(z(3)+z(4))); % Equation 40

dzdt (10)= c1*z(5)*(z(7)*sin(z(3)+z(4))- z(8)*cos(z(3)+z(4)))-c2*z(5)*z(9)*cos(z(4)); % Equation 41

dzdt (11)=-(c1*z(5)*cos(z(3)+z(4))+c1*z(6)*sin(z(3)+z(4)))+ c2*z(9)*sin(z(4))-a1*z(11); % Equation 42

dzdt (12)= -c3*z(10)+a2*z(12); % Equation 43

Such a function can also be written in a compact vector form as follows:

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2022 doi:10.20944/preprints202208.0533.v1

https://doi.org/10.20944/preprints202208.0533.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2022 doi:10.20944/preprints202208.0533.v1

https://doi.org/10.20944/preprints202208.0533.v1

function dzdt= front_wheel_robot(t,z)

dzdt = zeros(12,1);

c1=2; c2=1; c3=0.75; a1=0.25; a2=0.25; % These are Constants of proportionality c1=R; c2=R/L;

dzdt =[c1*z(5)*cos(z(3)+z(4));

 c1*z(5)*sin(z(3)+z(4));

 c2*z(5)*tan(z(4))*cos((z(5)));

 c3*z(6);

 -a1*z(5) + a1*(-0.5*a1*z(11));

 -a2*z(6) + a2*(-0.5*a2*z(12));

 0;

 0;

 c1*z(5)*(z(7)*sin(z(3)+z(4))- z(8)*cos(z(3)+z(4)));

 c1*z(5)*(z(7)*sin(z(3)+z(4))- z(8)*cos(z(3)+z(4)))-c2*z(5)*z(9)*cos(z(4));

 -(c1*z(5)*cos(z(3)+z(4))+c1*z(6)*sin(z(3)+z(4)))+ c2*z(9)*sin(z(4))-a1*z(11);

 -c3*z(10)+a2*z(12);

The main function is given by:

function main_front_wheel

clear all

clc

format short

c1=2; c2=1; c3=0.75; a1=0.25; a2=0.25;

t0=0; tf=5; N=501; h=(tf-t0)/(N-1);

t=t0:h:tf;

z=zeros(N,12); % Initialization of z

angle=[-pi/2;0;pi/2;pi];

% loop for the heading angle

for s=1:length(angle)

z0=[0;0;angle(s);0;0;0;ones(6,1)];

t=t';

[t,z]=runge_v2('front_wheel_robot',t0,tf,N,z0);

control1=-0.5*a1*z(:,11); control2=-0.5*a2*z(:,12); control=[control1, control2];

dx= c1*z(:,5).*cos(z(:,3)+ z(:,4));

dy= c1*z(:,5).*sin(z(:,3) + z(:,4));

dtheta=c2*z(:,5).*sin(z(:,4));

dDelta= c3*z(:,6);

dOmega = a1*(-0.5*a1*z(:,11)-z(:,5));

dPhi= a2*(-0.5*a2*z(:,12)-z(:,6));

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2022 doi:10.20944/preprints202208.0533.v1

https://doi.org/10.20944/preprints202208.0533.v1

% Feasible trajectory

subplot(2,2,s); plot(z(:,1),z(:,2),'r'); xlabel('x');ylabel('y=f(x)');

print C:\Users\Guest\Documents\20avril2022avcontrol\bicycletrajectory.png

% Control strategies

subplot(4,2,2*s - 1);plot(t,control1,'r');xlabel('Time t in seconds ');ylabel('Control1');

subplot(4,2,2*s);plot(t,control2,'r');xlabel('Time t in seconds ');ylabel('Control2');

print C:\Users\Guest\Documents\20avril2022avcontrol\bicycleControls.png

% Velocities

subplot(4,3,3*s-2);plot(t,dx,'r'); xlabel('Time t in seconds ');ylabel('x velocity');

subplot(4,3, 3*s-1);plot(t,dy,'r'); xlabel('Time t in seconds ');ylabel(' y velocity ');

subplot(4,3,3*s);plot(t, c1*abs(z(:,5)),'r'); xlabel('Time t in seconds ');ylabel('speed');

print C:\Users\Guest\Documents\20avril2022avcontrol\bicycle_velocity.png

end

5. Computational Simulations

From the above programs, main_front_wheel is the main function calling function

runge_v2(fs,t0,tf,N,y0) to solve the system combining the state and the costate ordinary

differential equations coded by function front_wheel_robot(t,z). After running the above

main function, the following graphs are obtained:

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2022 doi:10.20944/preprints202208.0533.v1

https://doi.org/10.20944/preprints202208.0533.v1

Figure 3. Feasible Control Strategies (tf=5 seconds).

Each initial angle corresponds to a pair (control1, control2) of feasible control strate-

gies. Since we have 4 initial angles −
�

�
, 0,

�

�
 and �, then we have also 8 feasible control

strategies. From the controls of figure 3 we have the feasible trajectories given by:

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2022 doi:10.20944/preprints202208.0533.v1

https://doi.org/10.20944/preprints202208.0533.v1

Figure 4. Feasible Robot Trajectories (tf=5 seconds).

In figure 4 each initial angle corresponds to a feasible trajectory. Since we have 4

initial angles (−
�

�
, 0,

�

�
 and �), then we have also 4 feasible trajectories on the (�, �) hor-

izontal plane. The graph of the feasible trajectory was deduced from the feasible state

functions by selecting only the � state function and the � state function.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2022 doi:10.20944/preprints202208.0533.v1

https://doi.org/10.20944/preprints202208.0533.v1

Figure 5. Feasible Velocities (tf=5 seconds).

Each initial angle corresponds to a set of three (x component, y component, speed)

feasible velocities. Since we have 4 initial angles −
�

�
, 0,

�

�
 and �, then we have also 12

feasible velocities.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2022 doi:10.20944/preprints202208.0533.v1

https://doi.org/10.20944/preprints202208.0533.v1

Figure 6. Feasible Control Strategies (tf=10 seconds).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2022 doi:10.20944/preprints202208.0533.v1

https://doi.org/10.20944/preprints202208.0533.v1

Figure 7. Feasible Robot Trajectories (tf=10 seconds).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2022 doi:10.20944/preprints202208.0533.v1

https://doi.org/10.20944/preprints202208.0533.v1

Figure 8. Feasible Velocities (tf=10 seconds).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2022 doi:10.20944/preprints202208.0533.v1

https://doi.org/10.20944/preprints202208.0533.v1

Figure 9. Feasible Control Strategies (tf=15 seconds).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2022 doi:10.20944/preprints202208.0533.v1

https://doi.org/10.20944/preprints202208.0533.v1

Figure 10. Feasible Robot Trajectories (tf=15 seconds).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2022 doi:10.20944/preprints202208.0533.v1

https://doi.org/10.20944/preprints202208.0533.v1

Figure 11. Feasible Velocities (tf=15 seconds).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2022 doi:10.20944/preprints202208.0533.v1

https://doi.org/10.20944/preprints202208.0533.v1

Figure 12. Feasible Control Strategies (tf=20 seconds).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2022 doi:10.20944/preprints202208.0533.v1

https://doi.org/10.20944/preprints202208.0533.v1

Figure 13. Feasible Robot Trajectories (tf=20 seconds).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2022 doi:10.20944/preprints202208.0533.v1

https://doi.org/10.20944/preprints202208.0533.v1

Figure 14. Feasible Velocities (tf=20 seconds).

The above graphs enable to study the performance of the bicycle Robot. Concerning

the robot’s trajectories, we have considered six different cases (−
�

�
, 0,

�

�
, �) for the initial

heading angle while the initial values for the other state variables remain unchanged. For

each case of the final time, the feasible bicycle’s trajectories (from top left to the bottom

right) correspond respectively to the heading angles(−
�

�
, 0,

�

�
, �). The same order is for

the feasible control strategies.

6. Conclusion

The aim of this paper was to model and to control the kinematics of an autonomous

is a bicycle robot whose reference point is the center of gravity. The model was developed

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2022 doi:10.20944/preprints202208.0533.v1

https://doi.org/10.20944/preprints202208.0533.v1

in terms of a nonlinear system of six ordinary differential equations. Pontryagin’s Mini-

mum Principle was used to derive the feasible control and the costate system of ordinary

differential equations. A fourth-order Runge-Kutta numerical method was used to solve

the combined state-costate system of ordinary differential equations. The results were pre-

sented in terms of graphs for better illustration and understanding. They enable to predict

the performance of the autonomous bicycle robot so that it can be controlled accurately

and efficiently. The computer programs are useful to any reader or any researcher who is

familiar with programming to learn moreFurther work will consist of developing path

following feedback control strategies.

Funding: This work was supported by the University of Johannesburg, Faculty of Engineering and

Built Environment.

Acknowledgments: The author of this paper thanks the university of Johannesburg for financial

support.

Conflicts of Interest: This research paper does not involve a conflict of interest.

References
1. Sangduck Lee, Woonchul Ham (2002), Self Stability Strategy in Tracking Control of Unmanned electric bicycle with mass bal-

ance, IEEE / RSJ International Conference on Intelligent Robots Systems 3, 2200-2205
2. Yonghua Huang, Qizheng Liao, Shimin Wei, Lei Guo (2010), Dynamic Modeling of a bicycle Robot with front-wheel drive based

on Kane’s method, The 2010 IEEE International Conference on Information and Automation, 758-764
3. Javier Alonso-Mora, Andreas Breitenmosee, Paul Beadsley, Roland Siegwart (2012), Reciprocal Collision AvoidanceMultiple

car-like Robots, IEEE International Conference on Robotics and Automation, 360-366.
4. Anan Suebsomran, Balancing Control of bicycle robot (2012), 2012 IEEE International Conference on Cyber Technology Systems

(CYBER), 69-73.
5. Philip Polack, Florent Altche, Brigitte dAndrea-Novel, Arnaud de la Fotelle (2017), 2017 IEEE Intelligent Vehicles Symposium

(IV) 812-818.
6. Xiangjun Meng, Lei Guo, Qizheng Liao (2012), Analysis of Nonholonomic Constraints about a variable structure bicycle robot,

2012 IEEE International Conference on Automation and Logistics, 628-633.
7. Yanbin Liu, Chenhui Jia, Jianhai Han (2009), Dynamics Modelling of an Unmanned bicycle with parallel mechanism adjusting

stability, 2009 International Conference on Mechatronics and Automation, 1601-1605.
8. Yonghua Huang, Qizheng Liao (2010), Shimin Wei, Lei Guo, Stable balancing Motion Analysis of a Bicycle Robot with Front-

wheel drive based on Moment balance (2010), 2010 International Conference on Intelligent Computation technology and Auto-

mation3, 367-371.
9. Peter I Corke, Peter Ridley(2001), Steering kinematics for a center-articulated mobile robot, IEEE Transactions on Robotics and

Automation 17(2), 215-218.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2022 doi:10.20944/preprints202208.0533.v1

https://doi.org/10.20944/preprints202208.0533.v1

