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Abstract: This paper develops feasible control strategies and associated system responses to bring
an autonomous front-axle bicycle robot from specified initial conditions to final conditions such that
a specific performance index is minimized. To solve the problem, the following approach is used:
The feasible controls derived from the normal equations of optimality are substituted into the state
and the costate systems and form a combined control-free state-costate system which is vectorized
to enable and ease the application of a numerical method. A computer program written in Matlab
computer programming language, codes a fourth-order Runge-Kutta numerical method and then
solve the combined state-costate system of ordinary differential equations. The obtained results are
the feasible bicycle robot trajectory, the feasible state functions, the feasible costate functions and
the feasible control functions. Associated Computational Simulations are designed and provided to
persuade on the effectiveness and the reliability of the approach.

Keywords: autonomous vehicle, bicycle Robot, modelling, optimal control, path planning, differen-
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1. Introduction

Nowaday, there exist a lot of innovations in the areas of telecommunication and net-
working, remote sensing, computer vision, robotics, etc. The technology of connected de-
vices and that of self-driving vehicles are continually impacting human lives. They cause
the Industrial Operators and Managers to dream as much as possible and then to create a
lot of business opportunities. They also cause the Academic Researchers to develop rele-
vant tools and methods for vehicle modelling and path planning for efficient and reliable
control and management and then create a lot of research questions and opportunities.
Path planning and control of an autonomous bicycle robot are highly connected to signal
processing, image processing, computer vision, control system, digital logic specially in
the component of obstacle avoidance and stability.

The prediction of the dynamics of bicycle robots and other vehicle robots in general
have become a current and important topic for the industrial operators and managers,
and then attract the attention of engineers, mathematicians, computer scientists, physi-
cists, etc. Such Researchers develop suitable strategies, tools and methods to solve all
associated problems. There exist a certain amount of works on autonomous bicycle robots
carried out since some years. For example papers [1]-[9] deal with bicycle robots and ve-
hicle robots in general. This paper uses optimal control theory to compute feasible control
strategies and feasible state trajectories of an autonomous bicycle such that the bicycle
running cost is minimized.

The main contributions of this paper are the derivation of two feasible control strat-
egies, the computation the system response defined by six feasible state functions, six
feasible costate (adjoint) functions. To solve the system combining the state and the costate
ordinary differential equations Matlab computer programs were developed and applied.

This paper is organized as follows: Section 2 develops different mathematical models
and defines the problem as an optimal control problem. Section3 derives the Hamiltonian
of the control system and solves the normal equations of optimality to obtain the expres-
sions of the control functions. Section 4 applies Pontryagin’s Minimum Principle to
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determine all relevant equations yielding the solutions. Section 5 develops relevant com-
puter programs to determine the feasible control trajectories, the corresponding feasible
state trajectories and all the other outputs.

Velocity tangent to
the path

Figure 1. Vehicle Robot Geometric Model.

2. Mathematical Models
2.1. Objective functional
In this paper, the total running cost to be minimized is as follows:
J@) =) = [(&7 +8%)dt (1)
where t, and t; are respectively the bicycle motion’s starting and final times, § and &,

are the reference commands which control respectively the bicycle heading angular ve-
locity and the steering angular velocity. h(t) = &% +&,® is the cost rate.

2.2. Control System, Kinematic Model

The motion of an autonomous bicycle is modelled as follows:
dx

prl cuweos(6 + 9) )
Z—Jt/ = c,wsin(8 + 9) (3)
% = c,wtan(9d) 4)
L=t )

dt
where ¢; =R and ¢, = R/L are constant of proportionality, R and L are respectively

the radius of each wheel and the distance between the centre of the rear and the front
wheels. (x,y) is the coordinates of the projection of the front wheel’s center on the hori-
zontal plane, 6 the heading angle, § is the steering angle, ¢ is the steering angular ve-
locity.

The reference commands which regulate the bicycle angular velocity and the steering

angular velocity are modelled as solution to a closed-loop system defined by:
dw

PTG S +a,8; (6)
d
=m0+ a4k, (7)

& and §, are the unknown input control functions to be developed.
The whole robot kinematic control system is
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dx

== ciwcos (6 + 6) 8)
Z—Z = c;wsin( + 6) )
2 = cwtan(s) (10)
§=@¢ (11)
= Thotag; (12)
o= me + ak, (13)

Figure 2. Front-Axle Bicycle Robot Geometric Model.

2.3. Problem Formulation

This paper addresses the following problem:

Compute the feasible control strategies and the associated feasible state functions,
also called feasible robot system responses, for the autonomous bicycle to drive from a
given initial state to a final state such that the total running cost of the bicycle is mini-
mized.

3. Hamiltonian and Feasible Controls

The Hamiltonian of the system is given by

HEY (), (D), (), 0()) = h(t) + 2o a (Of (Y (D), 0(8), 0(0)) (14)
Where we have

h(t) = &%+ 572 s energy cost rate,

HLX (), w(t), @(t)) = cwcos(8 + 6) is the x component of the linear velocity of the
bicycle,

LY (@), w(t), ¢(t)) = cywsin(6 + §) is the y component of the linear velocity of the
bicycle,

LY @), w(t), p(t)) = cowtan(S) is the heading angular velocity of the bicycle,

LY (@), w(t), o(t)) = c3¢ is the steering angular velocity of the bicycle,

Y @), w(),e®)) = —a,w + a;§ is the rate of change of the bicycle heading an-
gular velocity,

fo(Y (), w(t), o(t)) = —a,¢ + a,&, is the rate of change of the bicycle steering angu-
lar velocity.

Y(t) = (x(t),y(t),0(t),5(t), w(t), p(t)) is the unkown state vector function.

a(t) = (ay(t), ay(t), as(t), as(t), as(t), ag(t)) is the unkown costate (adjoint) vector
function.
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The feasible control normal equations for optimality are as follows

a «

% =28 +aas=0 (15)
F) .

% =28, + a,a5 = 0 (16)
The feasible controls are given by
El* - —0.5a1a’5 (17)
EZ* = —0.5a20!6 (18)

4. Pontryagin’s Minimum Principle
If w=("%)
(x*’y*,e*, 6*, w*’ (p*)
tate vector
a = (al*! a’z*; Of3*, Of4*, 0-'5*, 0-'6*) such that

is the feasible control of the above problem and Y* =
the corresponding feasible system response, then there exists a cos-

Jw) < J(w) (19)
=’ cos(6" + 87 (20)

= cw'sin(9" +67) (21)

'2—9; = c,wtan(6™) (22)

ddi* = c3¢° (23)

d;;* _ —al(l)* + alzl* (24)

d‘;i* _ _az(p* + azEz* (25)

=0 (26)

dgtz* =0 (27)

dg:* = c;w*(a;"sin(0" + 8*) — ay"cos(0" +67)) (28)

= o' (@'sin(@" +67) ~ a'cos(8" +6) ~ a5 w'cos(8)  (29)

L = —(ai@cos(0" + 67 + 1y "sin(8 + 87 + 5" w'sin(8") — aas”)  (30)

dgf* = —c3a," + ayag” 31)

By letting u" = (§,",&,"), with § = —0.5a,a5" and &, = —0.5a,a," for the con-

trol variables,

* * * * * * * * * *
Z7 =Qp, Zg =Qp, 29 =0QA3, Z1jg = Ay, Z11 = 0Ag

tate variables

0*, Z4* — 5*’ ZS* = w*

and z,* = ¢* for the state varia-

and z;," = ag” for the cos-

and by combining all the state and costate variables into a vector as z = [Y, a], then
the combined state-costate system can be rewritten as follows:

d;z = 125" cos(z3" + z,") (32)

d;i = 125" sin(z3" + z,") (33)
= yz5'tan(z,) (34)
dz,* "

d:‘* = C3Zg (35)
=zt ay (36)
ddz—i = —ay76" + a5, (37)
dzy” _

. 0 (38)
dzg' _
=0 (39)

2: = 125" (z;"sin(z3" + z,*) — zg"cos(z3" + z,")) (40)
dzlt" = 125*(2;sin(z5* + 7,*) — zg"cos(z5* + 2,)) — 2257 29" cos(2,*) 41)
% = _(Cle*COS(Z3* + Z4_*) + 6126*Sin(Z3* + Z4*) + C229*Sin(Z4*) - alzll*) (42)
dzqp”

_ * *
= " CZiw taxZy;

(43)
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The initial heading angles and the final time are the parameters on which is based
our performance analysis. For all the considered cases, the other state and costate varia-
bles, the initial conditions did not change. The aim is also to see how far and in which
direction the vehicle can drive. In order to solve the state-costate system, I have developed
an algorithm which can solve any system of ordinary differential equations. The program
is written in Matlab as a set of codes coding a fourth-order Runge-Kutta numerical
method. Below is the program

function [t,y] = runge_v2(fs,t0,tf,N,y0)

h=(tf-t0)./(N-1); % h is the step size for the discretization.
t=t0:h:tf; % t is the time vector. % N is the number of discrete points.
t=t’; t0 and tf are respectively the initial and final time.
% 0 is the initial vector solution.

y = zeros(N,length(y0)); % y is initialized to zero.

y(1,:) =y0.'; % The solution at the starting time.
forn=2:N

k1 = feval(fs, t(n-1),y(n-1,2));

k2 = feval(fs, t(n-1)+(h/2),y(n-1,:)+(h/2)*k1");

k3 = feval(fs, t(n-1)+(h/2),y(n-1,:)+(h/2)*k2");

k4 = feval(fs,t(n-1)+h,y(n-1,:)+h*k3");

y(n,:) = y(n-1,:)+(h/6)*(k1'+2*k2'+2*k3'+k4");

end

The above algorithm can be translated judiciously into any programming language.
It can be called to solve any initial value problem. Let’s use it to solve the above combined
state-costate system of ordinary differential equations (32)-(43). The Matlab function cod-
ing such a system is as follows:

function dzdt= front_wheel_robot(t,z)

dzdt = zeros(12,1);

c1=2; c2=1; c3=0.75; a1=0.25; a2=0.25; % These are Constants of proportionality c1=R; c2=R/L;
dzdt (1)=c1*z(5)*cos(z(3)+z(4)); % Equation 32

dzdt (2)=c1*z(5)*sin(z(3)+z(4)); % Equation 33

dzdt (3)=c2*z(5)*tan(z(4))*cos((z(5))); % Equation 34
dzdt (4)= c3%z(6); % Equation 35

dzdt (5)=-al*z(5) + a1*(-0.5*al*z(11)); % Equation 36
dzdt (6)=-a2*z(6) + a2*(-0.5*a2*z(12)); % Equation 37
dzdt (7)=0; % Equation 38

dzdt (8)=0; % Equation 39

dzdt (9)= c1*z(5)*(z(7)*sin(z(3)+z(4))- z(8)*cos(z(3)+z(4))); % Equation 40

dzdt (10)= c1*z(5)*(z(7)*sin(z(3)+z(4))- z(8)*cos(z(3)+z(4)))-c2*z(5)*z(9)*cos(z(4)); % Equation 41
dzdt (11)=-(c1*z(5)*cos(z(3)+z(4))+c1*z(6)*sin(z(3)+z(4)))+ c2*z(9)*sin(z(4))-a1*z(11); % Equation 42
dzdt (12)= -c3*z(10)+a2*z(12); % Equation 43

Such a function can also be written in a compact vector form as follows:
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function dzdt= front_wheel_robot(t,z)
dzdt = zeros(12,1);
c1=2; c2=1; c3=0.75; a1=0.25; a2=0.25; % These are Constants of proportionality c1=R; c2=R/L;
dzdt =[c1*z(5)*cos(z(3)+z(4));
c1*z(5)*sin(z(3)+z(4));
c2*z(5)*tan(z(4))*cos((z(5)));
c3%*z(6);
-al*z(5) + al*(-0.5*al*z(11));
-a2*z(6) + a2*(-0.5%a2*z(12));
0;
0;
c1*z(5)*(z(7)*sin(z(3)+z(4))- z(8)*cos(z(3)+z(4)));
c1*z(5)*(z(7)*sin(z(3)+z(4))- z(8)*cos(z(3)+z(4)))-c2*z(5)*z(9)*cos(z(4));
-(c1*z(5)*cos(z(3)+z(4))+c1*z(6)*sin(z(3)+z(4)))+ c2*z(9)*sin(z(4))-al*z(11);
-c3*z(10)+a2*z(12);

The main function is given by:

function main_front_wheel

clear all

clc

format short

c1=2; c2=1; ¢3=0.75; a1=0.25; a2=0.25;

t0=0; tf=5; N=501; h=(tf-t0)/(N-1);

t=t0:h:tf;

z=zeros(N,12); % Initialization of z
angle=[-pi/2;0;pi/2;pil;

% loop for the heading angle

for s=1:length(angle)
z0=[0;0;angle(s);0;0;0;0ones(6,1)];

t=t';
[t,z]=runge_v2('front_wheel_robot't0,tf,N,z0);
control1=-0.5%a1*z(;,11); control2=-0.5*a2*z(:,12); control=[ controll, control2];
dx= c1*z(:,5).*cos(z(:,3)+ z(:,4));

dy= c1*z(:,5).*sin(z(:,3) + z(:,4));
dtheta=c2*z(:,5).*sin(z(:,4));

dDelta= c3*z(:,6);

dOmega = al*(-0.5*al*z(;,11)-z(:,5));

dPhi= a2*(-0.5%a2*z(:,12)-z(:,6));
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% Feasible trajectory

subplot(2,2,s); plot(z(:,1),z(:,2),'r"); xlabel('x');ylabel('y=f(x)");
print C:\ Users\ Guest\ Documents\ 20avril2022avcontrol \ bicycletrajectory.png

% Control strategies

subplot(4,2,2*s - 1);plot(t,controll, t');xlabel('Time t in seconds ');ylabel('Controll’);
subplot(4,2,2*s);plot(t,control2,'r');xlabel('Time t in seconds ');ylabel('Control2');
print C:\ Users\ Guest\ Documents\ 20avril2022avcontrol \ bicycleControls.png

% Velocities

subplot(4,3,3*s-2);plot(t,dx,'r"); xlabel('Time t in seconds ');ylabel('x velocity');
subplot(4,3, 3*s-1);plot(t,dy, r'); xlabel('Time t in seconds ");ylabel(' y velocity ');
subplot(4,3,3*s);plot(t, c1*abs(z(:,5)),'r'); xlabel('Time t in seconds ');ylabel('speed');
print C:\ Users\ Guest\ Documents\ 20avril2022avcontrol\ bicycle_velocity.png

end

5. Computational Simulations

From the above programs, main_front_wheel is the main function calling function
runge_v2(fs,t0,tf,N,y0) to solve the system combining the state and the costate ordinary
differential equations coded by function front_wheel_robot(t,z). After running the above
main function, the following graphs are obtained:
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Figure 3. Feasible Control Strategies (tf=5 seconds).

Each initial angle corresponds to a pair (controll, control2) of feasible control strate-
gies. Since we have 4 initial angles —g, 0,% and m, then we have also 8 feasible control

strategies. From the controls of figure 3 we have the feasible trajectories given by:
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Figure 4. Feasible Robot Trajectories (tf=5 seconds).

In figure 4 each initial angle corresponds to a feasible trajectory. Since we have 4
initial angles (— % 0,% and ), then we have also 4 feasible trajectories on the (x,y) hor-
izontal plane. The graph of the feasible trajectory was deduced from the feasible state
functions by selecting only the x state function and the y state function.
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Figure 5. Feasible Velocities (tf=5 seconds).

Each initial angle corresponds to a set of three (x component, y component, speed)
feasible velocities. Since we have 4 initial angles — %, O,% and 7, then we have also 12

feasible velocities.
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Figure 11. Feasible Velocities (tf=15 seconds).
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Figure 12. Feasible Control Strategies (tf=20 seconds).
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Figure 13. Feasible Robot Trajectories (tf=20 seconds).
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Figure 14. Feasible Velocities (tf=20 seconds).

The above graphs enable to study the performance of the bicycle Robot. Concerning
the robot’s trajectories, we have considered six different cases (— %, 0, g, ) for the initial

heading angle while the initial values for the other state variables remain unchanged. For
each case of the final time, the feasible bicycle’s trajectories (from top left to the bottom
right) correspond respectively to the heading angles(— g, 0, g, m). The same order is for

the feasible control strategies.

6. Conclusion

The aim of this paper was to model and to control the kinematics of an autonomous
is a bicycle robot whose reference point is the center of gravity. The model was developed
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in terms of a nonlinear system of six ordinary differential equations. Pontryagin’s Mini-
mum Principle was used to derive the feasible control and the costate system of ordinary
differential equations. A fourth-order Runge-Kutta numerical method was used to solve
the combined state-costate system of ordinary differential equations. The results were pre-
sented in terms of graphs for better illustration and understanding. They enable to predict
the performance of the autonomous bicycle robot so that it can be controlled accurately
and efficiently. The computer programs are useful to any reader or any researcher who is
familiar with programming to learn moreFurther work will consist of developing path
following feedback control strategies.
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