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Abstract: Nasal cavity is a primary checkpoint for the invasion of several respiratory pathogens. 
Numerous pathogens including SARS-CoV-2, S. pneumonia, S. aureus, etc., adhere to the nasal epi-
thelium or mucus to invade and trigger an infection. IgA serves as the first line of defense against 
foreign antigens and pathogens. They exhibit cross-reactivity against a diverse variety of antigens 
through immune exclusion, which intercepts the invasion of pathogens through the mucosal lining. 
Advances in intranasal immunization technology underscore the elevated neutralizing IgA levels 
at local and distal mucosa in contrast to the parenteral vaccines. This review highlights the adjuvants 
that induce IgA class switching and the challenges of maintaining nominal IgA levels at the mucosal 
surface. Finally, the review features the paradigm-shifting of conventional immunization tech-
niques to IgA-inducing vaccines to enhance protection against homologous and heterologous path-
ogens.  
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1. Introduction 
Nasal cavity plays a protective role in trapping air-bone particles and pathogens owing to 
the intricate anatomy and adhesive property of mucus. The foreign body captured in nasal 
mucosa is cleared via the mucociliary clearance mechanism. Respiratory pathogens have 
entry checkpoints in the nasal cavity[1,2]. The apical surface of the ciliated and goblet cells 
in the nasal lining promotes the binding of SARS-CoV-2 through the interaction between 
spike protein and surface receptors, ACE2, of the epithelial cells. Host cell proteases such 
as TMPRSS2 trigger the activation and pathogenesis of SARS-CoV-2[3]. Other viruses, in-
cluding RSV, adenovirus, parainfluenza, and influenza virus, aggravate inflammation and 
compromise host cell functions, facilitating the invasion of the mucosal epithelial cells and 
destruction of their ciliary activity [4]. Along similar lines, bacteria like S. pneumonia and 
S. aureus colonize the nasal cavity and cause a wide range of respiratory infections. S aureus 
adheres and invades epithelial cells through the surface protein SasG [5,6]. Immunoglobu-
lin A (IgA) plays a pivotal role in the forefront defense to intercept the binding of respira-
tory pathogens, including viruses and bacteria, to nasal and lung epithelium [7,8]. Class 
switching of IgA-secreting B cells occurs in the lymphoid organs, specifically in the MALT 
(Mucosal Associated Lymphoid Tissue)[9]. However, deficiency of IgA secretion can lead 
to an increased risk of allergies and respiratory infections, including SARS-CoV-2, influ-
enza, Streptococcus pneumoniae, etc. [10–12]. The nominal level of IgA in humans ranges 
from 61 to 365mg/dL [13]. Studies have shown that impaired levels of IgA are caused by 
factors such as age, drug-induced, autoimmune diseases, immunodeficiency, etc. [14]. Air-
borne infections such as COVID-19 produce early neutralizing IgA antibodies, implying 
the protective role of IgA in reducing the severity or elimination of viral infections[15]. 
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Similar findings were associated with antigen-specific IgA antibodies against influenza, 
which had more profound protection in animals and humans than neutralizing IgG[16]. 
Likewise, the efficacy of influenza and COVID-19 vaccines showed a linear correlation 
with neutralizing IgA levels. However, a timely IgA production by de novo or immuniza-
tion is essential to protect the host from respiratory infections. In this review, we discuss 
the protective role of IgA in the nasal cavity and advances in IgA-inducing vaccine tech-
nologies. 
 
2. Cross-reactivity and immune exclusion of IgA against respiratory pathogens 
A major challenge associated with the respiratory tract is the susceptibility to pathogen 
entry despite the epithelial and mucosal barrier. In this context, IgA plays a crucial role in 
modulating mucosal immunity and conserving homeostasis. Contrary to other immuno-
globulins, IgA mediates the clearance of toxins and pathogens from the mucosal tissue by 
immune exclusion, receptor blockade, and steric hindrance [17]. Secretion of IgA is orches-
trated in MALT through the crosstalk between innate and adaptive immune cells, mainly 
macrophages, dendritic cells (DCs), and B and T lymphocytes. MALT is essentially the 
primary site for IgA class switching and production of IgA-secreting B cell population. 
Pathogen entry to the nasal lining is detected by DCs residing underneath the nasal epi-
thelium and presents antigen and production of cytokines in MALT [18]. Upon specific 
immunomodulatory cues, IgA class switching occurs along with affinity maturation of B 
cells leading to the increased transportation of antigen-specific IgA-producing B and T 
cells to the effector site to mount an immune response against pathogens [19].  
IgA occurs in monomeric and dimeric isoforms. The dimeric IgA comprises two IgA cova-
lently linked by15 kDa polypeptide, known as the J chain, and a secretory component (SC), 
which are essential for immune exclusion. IgA produced in lamina propria undergoes 
transcytosis through the epithelial layer with the aid of polymeric Ig receptor (pIgR) and 
is secreted into the mucus layer as SIgA. It is important to note that pIgR is needed for 
antibody stabilization and facilitates efficient binding to pathogenic proteins. SIgA can rec-
ognize a diverse variety of epitopes of pathogens or toxins and impede their affinity or 
entry towards epithelium by a phenomenon called ‘immune exclusion’ (Figure 1a) [20]. 
Thus, the IgA-pIgR complex inhibits the virus proliferation in infected cells and eliminates 
the virus. Pathogens that breach the mucosal barrier are neutralized mainly by polymeric 
IgA in the lamina propria and are cleared into the luminal surface (Figure 1 b). Moreover, 
SC in both free and IgA-bound states neutralizes microbes to protect the epithelial layer 
[21]. SIgA also binds to antigenic domains of bacteria and viruses to induce agglutination. 
These processes have been shown to disrupt the microbial membranes, affect their motil-
ity, and cause detrimental alteration of their gene expression, thus interfering with their 
virulence (Figure 1c). In addition, pathogens are entrapped in the mucus layer and elimi-
nated by the natural mucociliary movements[22]. Although these processes have been re-
searched for decades, there is more to comprehend and warrants further research. Various 
experiments have been conducted to study the immunological functions of the mucus 
layer, SC, and the role of polysaccharide chains in SC. Studies carried out in the absence of 
SC showed poor adherence and retention of IgA molecules in the epithelia or mucus layer, 
significantly lowering neutralization efficiency. It was concluded that the mucus layer, 
along with SC glycosylation, is essential to augment and maintain the functions of SIgA. 
Murine models of lung infection with shigella flexneri revealed that the binding of SIgA 
with mucus is necessary for providing first-line defense against the invasion of bacteria. 
Likewise, the deletion of carbohydrate moieties of SC in the SIgA complex hindered the 
anchoring to mucin and led to the failure of its protective role [23]. In another instance, the 
intranasal challenge of respiratory syncytial virus (RSV) along with neutralizing IgA treat-
ment in mice showed a significant reduction in lung viral titer and, subsequently, miti-
gated pneumonia[24]. Similar findings on IgA protection were reported in animals 
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infected with influenza and reovirus. Interestingly, intravenous administration of antigen-
specific IgA against influenza, specifically in the polymeric isoform, protected the mice 
from RSV infection owing to the nasal secretion of IgA from serum[22]. However, the mon-
omeric IgA was not effective in preventing infection. 

  
Figure 1. Immune exclusion of SIgA to facilitate pathogen neutralization or antigen clearance. Protective role of SIgA at 
the mucosal surface a) Cross-protection of IgA against diverse pathogens and antigens b) intracellular virus neutralization 
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in infected epithelial cells c) Antigen clearance from lamina propria to mucosal lumen through the complex formation of 
antigen with IgA-pIgR complex. 

 
3. T-dependent and T-independent mechanisms of IgA induction 
B lymphocytes primarily induce IgA secretion in the MALT in response to endogenous 
antigens from commensal flora and exogenous invasion of pathogens or immunization. 
Foreign antigens induce T cell-dependent pathways to produce high-affinity IgA antibod-
ies. On the other hand, antigens from commensal flora generate low-affinity antibody mol-
ecules through T cell-independent pathway. Dendritic cells (DCs) underlying mucosal ep-
ithelia sample luminal antigens through its extended dendrites to capture and present an-
tigen to B cells in MALT (Figure 2)[25]. Consequently, T cells are activated, leading to the 
IgA class switching recombination (Ig CSR)[19]. The Ig CSR will result in IgA production 
in a T cell-dependent and independent manner. Activation of high-affinity IgA in T cell-
dependent pathway demands the interaction between CD 40 of B cell with CD 40L of T 
cell [26]. This interaction upregulates the activation of T follicular helper cells (Tfh cells), 
Th17 cells, and FOxp3+Treg cells. Subsequently, this will lead to the aggravated release of 
pro-inflammatory cytokines like IL4, IL5, IL6, IL10, IL13, IL17, IL21, and TGF β that trigger 
the Ig CSR and release of high-affinity IgA molecules [27–29]. However, studies have 
shown IgA production in CD40 deficient mice and some human cells, indicating the T cell-
independent mechanism. In T-cell independent pathway, the capture of commensal anti-
gen enhances the production of TNF family subtypes, BAFF (B cell activating factor) and 
APRIL (A proliferation-inducing ligand) that in turn activates ILC1, ILC2, RORϒt, pDCs 
and the production of IL5, IL6, IL10, IL17, and TGFβ. This results in the stimulation of Ig 
CSR and the production of low-affinity IgG and IgA molecules[20].  
 
4. IgA deficiencies and IgA1 proteases: threats to nasal vaccines?  
Normal serum IgA levels are inevitable for homeostasis between proinflammatory and 
anti-inflammatory factors to control infections, allergies, and auto-immune disorders. Se-
lective IgA deficiency is predominantly marked by low levels of IgA in serum, without 
altering other immunoglobulins[30]. Patients with IgA deficiency are reported to have a 
serum IgA less than 7mg/dL [31]. This condition increases the susceptibility to recurrent 
respiratory and gastrointestinal infections, autoimmune disorders, and allergies [32]. 
Many factors, including impaired B cell maturation, calcium modulator, and transmem-
brane activator, contribute to this condition. On the contrary, common variable immuno-
deficiency (CVID) impairs the immunological functions of IgA, IgG, and IgM [33]. There-
fore, it is important to monitor the levels of IgA antibodies and study the factors that could 
lead to the deleterious clinical manifestations caused by IgA deficiency. Significantly low 
levels of IgA production in respiratory and gut epithelium are observed in vitamin A de-
ficiency (VAD) models in response to viruses and vaccines [34,35]. However, the levels 
and function of other immunoglobulin remained unaffected by the retinol deficiency, lead-
ing to an increased IgG to IgA ratio. Hence, VAD makes it difficult to confer IgA-mediated 
protection via respiratory infections and vaccines.  Numerous studies have shown that 
single intranasal administration of vitamin A palmitate or retinyl palmitate, an ester of 
retinol and palmitate, helps in the improved protection from infections and viral anti-
gens/vaccines in VAD populations. This protection was further strengthened with the ad-
ministration of intranasal vitamin A supplements, which is an established IgA-class 
switching factor [36]. 
IgA1 proteases have been widely reported to interfere with IgA’s host defense mechanisms 
by cleaving IgA1 antibodies and hampering the structural integrity and function[37]. 
These proteolytic autotransporter proteins are produced by various pathogenic bacterial 
species such as Haemophilus influenzae, Neisseria meningitidis, Neisseria gonorrhoeae, and S. 
pneumoniae [38]. They specifically recognize and cleave certain proline-threonine and 
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proline-serine peptide bonds in the IgA1 hinge region sequence TPPTPSPSTPPTPSPS in 
the IgA1 molecule generating intact Fcα and Fabα fragments. As a result, the recognition 
of bacterial epitopes by the IgA1 is hindered [39].  
 

 
Figure 2. Mechanism of low and high-affinity IgA production. Induction of IgA occurs in a T-dependent and independent 
manner. Mucosal surface exposure to allergens, pathogens, or vaccines triggers epithelial cells and antigen-presenting 
cells (DCs and macrophages) to elicit the production of cytokines, nitric oxide (NO), and BAFF and APRIL to activate B 
lymphocytes. Class switching to high-affinity IgA occurs with the aid of Th cells through a T cell-dependent manner. On 
the contrary, plasmacytoid DCs and innate lymphoid cells (ILCs) favor the induction of low-affinity IgA. 

 
Since Fcα is required for the agglutination process and opsonophagocytic activity, the IgA1 
protease-mediated cleavage paves the way for bacterial survival and colonization. Few 
studies have shown that the Fabα fragment is known to retain its surface antigen binding 
capacity termed fabulation even after the cleavage [40]. Several studies revealed 
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circulating antibodies in serum and nasal secretions that can neutralize these proteolytic 
enzymes [41]. These antibodies regulate the proteases secreted by the commensal flora. 
Hence, nasal immunity depends on the balance between the level of these neutralizing 
antibodies and the secreted enzymes. This is the underlying reason why children with a 
history of atopic disease encounter recurring immunological dysfunctions that could be 
attributed to the cleavage of IgA molecules by the IgA1 proteases in the absence of prote-
ase-neutralizing antibodies [42]. 
 
5. Recent advances in IgA induction with intranasal vaccines 
Vaccines are aimed to elicit a long-lasting immune response against pathogens. Adjuvants 
are immunostimulants to trigger adequate innate and adaptive immunity. These compo-
nents alter the kinetics, longevity, and robustness of the host immune response [43]. The 
addition of adjuvants in vaccines is beneficial in decreasing the dose of antigens and fre-
quency of vaccine administration. They have proven to bolster immune activation in im-
munocompromised, elderly, and neonates[44–46].   

Table 1: Intranasal vaccine adjuvants of IgA production against respiratory pathogens 
Adjuvant Target Protection  

Type I IFN Interferon α receptor  Influenza A [50,51] 

Flagellin TLR 5  Influenza A [52] 

MV130 TLRs  SARS-CoV-2 [53] 

Lipoprotein TLR 2 SARS-CoV-2 [54] 

Poly I:C  TLR3 

RIG-I 

MDA5 

MERS-CoV, Influenza A [55,56] 

 

CpG TLR 9 SARS-CoV-2, Influenza A [56,57] 

 

Cholera toxin  Ganglioside SARS-CoV-2, Influenza A [56,58] 

Enterotoxin B subunit  Ganglioside Influenza A [59] 

Alum - Influenza A [60] 

Imidazoquinoline TLR7/8 Influenza A, SARS-CoV-2 [61,62] 

Cyclic-di-nucleotide STING Influenza A [63] 

BDX301 - SARS-CoV-2 [64] 

Adjuvants enhance the presentation of antigens and facilitate the maturation of antigen-
presenting cells such as macrophages, dendritic cells, etc. Growing evidence indicates a 
robust humoral response with intranasal vaccines compared to its parenteral route[44]. 
Intranasal administration of spike proteins elicited local and systemic mucosal IgA levels 
more than parenteral administration (Figure 3). Virus-like particles, liposomes, nanogels, 
etc., are being explored as inducers and delivery platforms[47]. For example, the intranasal 
COVID-19 vaccine (ChAd-SARS-CoV-2-S) delivered with an adenovirus vector improved 
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the levels of antigen-specific IgA in contrast to intramuscular injection. This approach also 
facilitates the dose reduction of antigens[48]. Live/attenuated viral and bacterial vectors, 
recombinants of the original pathogen, are reported to trigger SIgA through recognizing 
PAMPs. It is important to note that these recombinant vectors do not elicit an infection. 
More interestingly, the early response of neutralizing IgA was observed in blood, BAL, 
and saliva of patients infected with SARS-CoV-2, followed by IgG and IgM. IgA antibody 
titer spiked three weeks following the onset of the disease and lasted for months, which 
was not observed for IgG[15]. Numerous researchers in mice and humans validated early 
seroconversion. Similar findings on IgA were also validated with MERS vaccines[49]. 

         
Figure 3. Induction of neutralizing IgA in following intranasal administration of vaccines. An immune response is elicited 
in NALT, leading to the secretion of IgA on the mucosal surface. 

 
Targeting specific signaling pathways, subsets of immune cells, receptors, and cytokines 
can shape IgA class switching, hence protecting against antigens. For instance, IL5 and 
TGF-β1 are associated with the expansion of IgA-secreting B lymphocytes in the murine 
model[65]. Similarly, intranasal administration of retinyl palmitate resulted in elevated 
production of IgA in the nasal mucosa and heightened protection against influenza A vi-
rus. This unequivocally highlights the role of retinoic acid derivative in correcting IgA lev-
els. Numerous nasal adjuvants have also been identified to induce IgA production (Table 
1). Novel delivery systems are currently being explored to facilitate transient permeabili-
zation of the nasal epithelial barrier to transport antigen/adjuvant to MALT[66]. Despite 
these strong indications, only a single intranasal vaccine technology exists against respir-
atory infection. The slow advancement in mucosal immunization is due to a lack of safe 
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vaccine adjuvants and difficulties associated with quantifying the metrics of neutralizing 
IgA in nasal secretion. The rapid mucociliary clearance, entrapment of antigens in mucus, 
enzymatic degradation, and physical barrier of nasal epithelial further worsen the chal-
lenges[67]. Next-generation nasal vaccines should target the inductive site of mucosal im-
mune cells to trigger an acute innate and adaptive response rather than tolerance. Addi-
tionally, the needless approach provides a safe, cheap, patient-compliant, and efficient al-
ternative for large-scale immunization, especially in the case of a global pandemic.  
 
6. Conclusion 
The COVID-19 pandemic underscored the necessity of an effective prophylactic strategy 
against homologous and heterologous viruses. Numerous reports support the enhanced 
local and systemic levels of IgA via intranasal vaccines. Current research is advancing to 
identify novel adjuvants and delivery platforms to overcome the mucosal barrier and pro-
long vaccine exposure in the nasal cavity. A comprehensive understanding of the mecha-
nism of antigen processing and subsequent orchestrating events of IgA secretion is war-
ranted to improve the efficacy and hasten the regulatory burden on intranasal vaccine ap-
proval. 
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