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Abstract: Let K be a non-Archimedean (complete) valued field satisfying∣∣∣∣∣∣
n∑
j=1

λ2j

∣∣∣∣∣∣ = max
1≤j≤n

|λj |2, ∀λj ∈ K, 1 ≤ j ≤ n, ∀n ∈ N.

For d ∈ N, let Kd be the standard d-dimensional non-Archimedean Hilbert space. Let m ∈ N and

Symm(Kd) be the non-Archimedean Hilbert space of symmetric m-tensors. We prove the following

result. If {τj}nj=1 is a collection in Kd satisfying 〈τj , τj〉 = 1 for all 1 ≤ j ≤ n and the operator

Symm(Kd) 3 x 7→
∑n
j=1〈x, τ

⊗m
j 〉τ⊗mj ∈ Symm(Kd) is diagonalizable, then

max
1≤j,k≤n,j 6=k

{|n|, |〈τj , τk〉|2m} ≥
|n|2∣∣∣(d+m−1m

)∣∣∣ .(1)

We call Inequality (1) as the non-Archimedean version of Welch bounds obtained by Welch [IEEE Trans-

actions on Information Theory, 1974 ]. We formulate non-Archimedean Zauner conjecture.

Keywords: Non-Archimedean valued field, non-Archimedean Hilbert space, Welch bound, Zauner con-

jecture.
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1. Introduction

Forty-eight years ago, Prof. L. Welch proved the following result [80].

Theorem 1.1. [80] (Welch Bounds) Let n > d. If {τj}nj=1 is any collection of unit vectors in Cd,

then ∑
1≤j,k≤n

|〈τj , τk〉|2m =

n∑
j=1

n∑
k=1

|〈τj , τk〉|2m ≥
n2(

d+m−1
m

) , ∀m ∈ N.

In particular, ∑
1≤j,k≤n

|〈τj , τk〉|2 =

n∑
j=1

n∑
k=1

|〈τj , τk〉|2 ≥
n2

d
.

Further,

(Higher order Welch bounds) max
1≤j,k≤n,j 6=k

|〈τj , τk〉|2m ≥
1

n− 1

[
n(

d+m−1
m

) − 1

]
, ∀m ∈ N.
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In particular,

(First order Welch bound) max
1≤j,k≤n,j 6=k

|〈τj , τk〉|2 ≥
n− d
d(n− 1)

.

There are infinitely many applications of Theorem 1.1 such as in the study of root-mean-square (RMS)

absolute cross relation of unit vectors [67], frame potential [9, 14, 18], correlations [66], codebooks [27],

numerical search algorithms [81, 82], quantum measurements [69], coding and communications [72, 76],

code division multiple access (CDMA) systems [49, 50], wireless systems [64], compressed/compressive

sensing [1, 6, 29, 32, 68, 74, 75, 77], ‘game of Sloanes’ [45], equiangular tight frames [73], equiangular lines

[23,31,44,57], digital fingerprinting [56] etc.

Different proofs/improvements of Theorem 1.1 have been done in [19,24,25,28,42,65,72,78,79]. In 2021

M. Krishna derived continuous version of Theorem 1.1 [51]. In 2022 M. Krishna obtained Theorem 1.1

for Hilbert C*-modules [53] and Banach spaces [52].

In this paper we derive non-Archimedean Welch bounds (Theorem 2.3). We formulate non-Archimedean

Zauner conjecture (Conjecture 3.2).

2. Non-Archimedean Welch bounds

Let K be a non-Archimedean (complete) valued field satisfying∣∣∣∣∣∣
n∑
j=1

λ2j

∣∣∣∣∣∣ = max
1≤j≤n

|λj |2, ∀λj ∈ K, 1 ≤ j ≤ n, ∀n ∈ N.(2)

Such non-Archimedean fields exist, see [61]. Throughout the paper, we assume that our non-Archimedean

field satisfies Equation (2). For d ∈ N, let Kd be the standard non-Archimedean Hilbert space equipped

with the inner product

〈(aj)dj=1, (bj)
d
j=1〉 :=

d∑
j=1

ajbj , ∀(aj)dj=1, (bj)
d
j=1 ∈ Kd.

Theorem 2.1. (First Order Non-Archimedean Welch Bound) If {τj}nj=1 is any collection in Kd

such that the operator Sτ : Kd 3 x 7→
∑n
j=1〈x, τj〉τj ∈ Kd is diagonalizable, then

max
1≤j,k≤n,j 6=k

{∣∣∣∣∣
n∑
l=1

〈τl, τl〉2
∣∣∣∣∣ , |〈τj , τk〉|2

}
≥ 1

|d|

∣∣∣∣∣∣
n∑
j=1

〈τj , τj〉

∣∣∣∣∣∣
2

.

In particular, if 〈τj , τj〉 = 1 for all 1 ≤ j ≤ n, then

(First order non-Archimedean Welch bound) max
1≤j,k≤n,j 6=k

{|n|, |〈τj , τk〉|2} ≥
|n|2

|d|
.

Proof. We first note that

Tra(Sτ ) =

n∑
j=1

〈τj , τj〉,

Tra(S2
τ ) =

n∑
j=1

n∑
k=1

〈τj , τk〉〈τk, τj〉.

Let λ1, . . . , λd be the diagonal entries in the diagonalization of Sτ . Then using the diagonalizability of

Sτ and the non-Archimedean Cauchy-Schwarz inequality (Theorem 2.4.2 [61]), we get

2
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∣∣∣∣∣∣
n∑
j=1

〈τj , τj〉

∣∣∣∣∣∣
2

= |Tra(Sτ )|2 =

∣∣∣∣∣
d∑
k=1

λk

∣∣∣∣∣
2

≤ |d|

∣∣∣∣∣
d∑
k=1

λ2k

∣∣∣∣∣ = |d||Tra(S2
τ )|

= |d|

∣∣∣∣∣∣
n∑
j=1

n∑
k=1

〈τj , τk〉〈τk, τj〉

∣∣∣∣∣∣ = |d|

∣∣∣∣∣∣
n∑
l=1

〈τl, τl〉2 +

n∑
j,k=1,j 6=k

〈τj , τk〉〈τk, τj〉

∣∣∣∣∣∣
≤ |d| max

1≤j,k≤n,j 6=k

{∣∣∣∣∣
n∑
l=1

〈τl, τl〉2
∣∣∣∣∣ , |〈τj , τk〉〈τk, τj〉|

}

= |d| max
1≤j,k≤n,j 6=k

{∣∣∣∣∣
n∑
l=1

〈τl, τl〉2
∣∣∣∣∣ , |〈τj , τk〉|2

}
.

Whenever 〈τj , τj〉 = 1 for all 1 ≤ j ≤ n,

|n|2 ≤ |d| max
1≤j,k≤n,j 6=k

{|n|, |〈τj , τk〉|2}.

�

We next obtain higher order non-Archimedean Welch bounds. We use the following vector space result.

Theorem 2.2. [13, 21] If V is a vector space of dimension d and Symm(V) denotes the vector space of

symmetric m-tensors, then

dim(Symm(V)) =

(
d+m− 1

m

)
, ∀m ∈ N.

Theorem 2.3. (Higher Order Non-Archimedean Welch Bounds) Let m ∈ N. If {τj}nj=1 is any

collection in Kd such that the operator Sτ : Symm(Kd) 3 x 7→
∑n
j=1〈x, τ

⊗m
j 〉τ⊗mj ∈ Symm(Kd) is

diagonalizable, then

max
1≤j,k≤n,j 6=k

{∣∣∣∣∣
n∑
l=1

〈τl, τl〉2m
∣∣∣∣∣ , |〈τj , τk〉|2m

}
≥ 1∣∣∣(d+m−1m

)∣∣∣
∣∣∣∣∣∣
n∑
j=1

〈τj , τj〉m
∣∣∣∣∣∣
2

.

In particular, if 〈τj , τj〉 = 1 for all 1 ≤ j ≤ n, then

(Higher order non-Archimedean Welch bound) max
1≤j,k≤n,j 6=k

{|n|, |〈τj , τk〉|2m} ≥
|n|2∣∣∣(d+m−1m

)∣∣∣ .
Proof. Let λ1, . . . , λdim(Symm(Kd)) be the diagonal entries in the diagonalization of Sτ . Then

3
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∣∣∣∣∣∣
n∑
j=1

〈τj , τj〉m
∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
n∑
j=1

〈τ⊗mj , τ⊗mj 〉

∣∣∣∣∣∣
2

= |Tra(Sτ )|2 =

∣∣∣∣∣∣
dim(Symm(Kd))∑

k=1

λk

∣∣∣∣∣∣
2

≤ |dim(Symm(Kd))|

∣∣∣∣∣∣
dim(Symm(Kd))∑

k=1

λ2k

∣∣∣∣∣∣ = |dim(Symm(Kd))||Tra(S2
τ )|

=

∣∣∣∣(d+m− 1

m

)∣∣∣∣ |Tra(S2
τ )| =

∣∣∣∣(d+m− 1

m

)∣∣∣∣
∣∣∣∣∣∣
n∑
j=1

n∑
k=1

〈τ⊗mj , τ⊗mk 〉〈τ⊗mk , τ⊗mj 〉

∣∣∣∣∣∣
=

∣∣∣∣(d+m− 1

m

)∣∣∣∣
∣∣∣∣∣∣
n∑
j=1

n∑
k=1

〈τj , τk〉m〈τk, τj〉m
∣∣∣∣∣∣

=

∣∣∣∣(d+m− 1

m

)∣∣∣∣
∣∣∣∣∣∣
n∑
l=1

〈τl, τl〉2m +

n∑
j,k=1,j 6=k

〈τj , τk〉m〈τk, τj〉m
∣∣∣∣∣∣

≤
∣∣∣∣(d+m− 1

m

)∣∣∣∣ max
1≤j,k≤n,j 6=k

{∣∣∣∣∣
n∑
l=1

〈τl, τl〉2m
∣∣∣∣∣ , |〈τj , τk〉m〈τk, τj〉m|

}

=

∣∣∣∣(d+m− 1

m

)∣∣∣∣ max
1≤j,k≤n,j 6=k

{∣∣∣∣∣
n∑
l=1

〈τl, τl〉2m
∣∣∣∣∣ , |〈τj , τk〉|2m

}
.

Whenever 〈τj , τj〉 = 1 for all 1 ≤ j ≤ n,

|n|2 ≤
∣∣∣∣(d+m− 1

m

)∣∣∣∣ max
1≤j,k≤n,j 6=k

{|n|, |〈τj , τk〉|2m}.

�

Remark 2.4. Theorems 2.1 and 2.3 hold by replacing Kd by a d-dimensional non-Archimedean Hilbert

space over K.

3. Non-Archimedean Zauner Conjecture and open problems

Theorem 2.1 straight away brings the following question.

Question 3.1. Given non-Archimedean field K satisfying Equation (2), for which (d, n) ∈
N× N, there exist vectors τ1, . . . , τn ∈ Kd satisfying the following.

(i) 〈τj , τj〉 = 1 for all 1 ≤ j ≤ n.

(ii) The operator Sτ : Kd 3 x 7→
∑n
j=1〈x, τj〉τj ∈ Kd is diagonalizable.

(iii)

max
1≤j,k≤n,j 6=k

{|n|, |〈τj , τk〉|2} =
|n|2

|d|
.

A particular case of Question 3.1 is the following non-Archimedean version of Zauner conjecture (see

[2–5,10–12,33,36,43,48,51,55,63,70,84] for Zauner conjecture in Hilbert spaces, [53] for Zauner conjecture

in Hilbert C*-modules and [52] for Zauner conjecture in Banach spaces).

Conjecture 3.2. (Non-Archimedean Zauner Conjecture) Let K non-Archimedean field sat-

isfying Equation (2). For each d ∈ N, there exist vectors τ1, . . . , τd2 ∈ Kd satisfying the

following.

4
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(i) 〈τj , τj〉 = 1 for all 1 ≤ j ≤ n.

(ii) The operator Sτ : Kd 3 x 7→
∑d2

j=1〈x, τj〉τj ∈ Kd is diagonalizable.

(iii)

|〈τj , τk〉|2 = |n|, ∀1 ≤ j, k ≤ d2, j 6= k.

We remember the definition of Gerzon’s bound which allows us to recall the bounds which are in the

same way to Welch bounds in Hilbert spaces.

Definition 3.3. [45] Given d ∈ N, define Gerzon’s bound

Z(d,K) :=

{
d2 if K = C

d(d+1)
2 if K = R.

Theorem 3.4. [16,22,41,45,58,62,71,81] Define K = R or C and m := dimR(K)/2. If {τj}nj=1 is any

collection of unit vectors in Kd, then

(i) (Bukh-Cox bound)

max
1≤j,k≤n,j 6=k

|〈τj , τk〉| ≥
Z(n− d,K)

n(1 +m(n− d− 1)
√
m−1 + n− d)−Z(n− d,K)

if n > d.

(ii) (Orthoplex/Rankin bound)

max
1≤j,k≤n,j 6=k

|〈τj , τk〉| ≥
1√
d

if n > Z(d,K).

(iii) (Levenstein bound)

max
1≤j,k≤n,j 6=k

|〈τj , τk〉| ≥

√
n(m+ 1)− d(md+ 1)

(n− d)(md+ 1)
if n > Z(d,K).

(iv) (Exponential bound)

max
1≤j,k≤n,j 6=k

|〈τj , τk〉| ≥ 1− 2n
−1
d−1 .

Theorem 3.4 and Theorem 2.1 give the following problem.

Question 3.5. Whether there is a non-Archimedean version of Theorem 3.4? In particular,

does there exists a version of

(i) non-Archimedean Bukh-Cox bound?

(ii) non-Archimedean Orthoplex/Rankin bound?

(iii) non-Archimedean Levenstein bound?

(iv) non-Archimedean Exponential bound?

As written already, Welch bounds have applications in study of equiangular lines. Therefore we wish to

formulate equiangular line problem for non-Archimedean Hilbert spaces. For the study of equiangular

lines in Hilbert spaces we refer [7, 8, 15, 17, 26, 34, 35, 37, 40, 46, 47, 54, 59, 60, 83], quaternion Hilbert space

we refer [30], octonion Hilbert space we refer [20], finite dimensional vector spaces over finite fields we

refer [38,39] and for Banach spaces we refer [52] (there equiangular line problem for Banach spaces is not

mentioned explicitly but Zauner conjecture for Banach spaces is formulated. One can easily formulate

equiangular line problem using that).

Question 3.6. (Non-Archimedean Equiangular Line Problem) Let K be a non-Archimedean

field. Given a ∈ K, d ∈ N and γ > 0, what is the maximum n = n(K, a, d, γ) ∈ N such that

there exist vectors τ1, . . . , τn ∈ Kd satisfying the following.
5
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(i) 〈τj , τj〉 = a for all 1 ≤ j ≤ n.

(ii) |〈τj , τk〉|2 = γ for all 1 ≤ j, k ≤ n, j 6= k.

In particular, whether there is a non-Archimedean Gerzon bound?

Question 3.6 can be easily modified to formulate question of non-Archimedean regular s-distance sets.
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