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Abstract: Let K be a non-Archimedean (complete) valued field satisfying

>N = max NP, VA €K 1<j<nVneN
° 1<j<n
Jj=1
For d € N, let K¢ be the standard d-dimensional non-Archimedean Hilbert space. Let m € N and
Sym™(K?) be the non-Archimedean Hilbert space of symmetric m-tensors. We prove the following
result. If {7;}}_; is a collection in K? satisfying (r;,7;) = 1 for all 1 < j < n and the operator
Sym™(K9) 5 x E?:1<$a Tj®m>7']®m € Sym™(K?) is diagonalizable, then

2

. 2m > |TL| .

(1) 153‘?235,#1@{'"" (75, )|} > 7(d+m_1))
m

We call Inequality as the non-Archimedean version of Welch bounds obtained by Welch [IEEE Trans-
actions on Information Theory, 1974]. We formulate non-Archimedean Zauner conjecture.

Keywords: Non-Archimedean valued field, non-Archimedean Hilbert space, Welch bound, Zauner con-
jecture.
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1. INTRODUCTION

Forty-eight years ago, Prof. L. Welch proved the following result .

Theorem 1.1. [80] (Welch Bounds) Let n. > d. If {r;}I_, is any collection of unit vectors in C?,
then

n n 2
Z |<Tj,7—k>|2m:ZZ|<Tja7—k>|2mZﬁ, VYm € N.

1<j,k<n j=1k=1

In particular,

Further,

= d+m—1

1
(Higher order Welch bounds) 1§j7%127§j¢k (7, T)| 2™ > — l(:) - 1] , VYmeN.
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In particular,

n—d
First order Welch bound max T T2 > ————.
( ) 1<jk<n.j#k |< J k>| = d(TL — 1)
There are infinitely many applications of Theorem such as in the study of root-mean-square (RMS)
absolute cross relation of unit vectors , frame potential @., correlations 7 codebooks ,
numerical search algorithms [8 . quantum measurements , coding and communications ,
code division multiple access (CDMA) systems [49}/50], wireless systems [64], compressed/compressive

sensing @, ‘game of Sloanes’ , equiangular tight frames , equiangular lines
7 digital fingerprinting etc.

Different proofs/improvements of Theorem 1.1 have been done in 72,. In 2021
M. Krishna derived continuous version of Theorem 1.1 . In 2022 M. Krishna obtained Theorem 1.1

for Hilbert C*-modules and Banach spaces .
In this paper we derive non-Archimedean Welch bounds (Theorem. We formulate non-Archimedean
Zauner conjecture (Conjecture .

2. NON-ARCHIMEDEAN WELCH BOUNDS

Let K be a non-Archimedean (complete) valued field satisfying
n
(2) Z = max |/\| VA €K 1<j<nVnelN

Such non-Archimedean fields exist, see . Throughout the paper, we assume that our non-Archimedean
field satisfies Equation . For d € N, let K? be the standard non-Archimedean Hilbert space equipped

with the inner product

<(aj)d Zaj i, V(ag) j= 17(b )] 1 e K%

Theorem 2.1. (First Order Non-Archimedean Welch Bound) If {7;}_, is any collection in K
such that the operator S, : K% > x — Z;;l(a:, m;)7; € K¢ is diagonalizable, then

2
n

" 1
Z Tl,Tz T],Tk>|2} > m Z(Tj,7j>
j=1

=1

1<y, k<n J#k {

In particular, if (t;,7;) =1 for all 1 < j < n, then

Inl*
dI”

(First order non-Archimedean Welch bound) Lo nax k{|n|, (5, Te)|?} >

Proof. We first note that

Tra(S (15,7575
j=1
Tra 52 ZZ Tjs The) (They T5)-
j=1k=1
Let Aq,..., g be the diagonal entries in the diagonalization of S;. Then using the diagonalizability of
S, and the non-Archimedean Cauchy-Schwarz inequality (Theorem 2.4.2 [61]), we get
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CONJECTURE
n 2 d 2 d
> {mim)| =|Tra(s Z < |d| |y AR| = ldl| Tra(s?)]
j=1 k=1 k=1
=14 DD ()| = ldl Y mm)®+ Y () (7 T)
j=1 k=1 1=1 j.k=1,j#k

n
E TlaTl
n
E 7'l,Tl

=1

<|d| = max {

1<j,k<n,j#k

’Ua7k>@%vfﬁ|}

TJ,Tk>2}.

2 < ) 2 )
P < Jdl | max {lnl, (.m0}

= |d]

max
1<j.k<n,j#k

Whenever (7;,7;) =1forall 1 <j <mn,

O

We next obtain higher order non-Archimedean Welch bounds. We use the following vector space result.

Theorem 2.2. If V is a vector space of dimension d and Sym™ (V) denotes the vector space of
symmetric m-tensors, then

d+m-—1
m

dim(Sym™ (V) = < ) Vm € N.

Theorem 2.3. (Higher Order Non-Archimedean Welch Bounds) Let m € N. If {7;}_; is any

collection in K? such that the operator S, : Sym™(K%) > z > (s ]®m> J@m € Sym™(K%) is

diagonalizable, then

n n
2m
max E m,m)° (75, Tk > g i, T
1< k<n.j#k | | ’ 52 7)| ’d+m,1‘ - 3 75)

In particular, if (1;,7;) =1 for all 1 < j < n, then

2
(Higher order non-Archimedean Welch bound) max  {|n|, [(r;, 7)|*"} > I
1<,k <n.j#k ‘(d+m/1”
Proof. Let A1,..., Adim(sym™ (k4)) be the diagonal entries in the diagonalization of S;. Then
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2 2 dim(Sym™ (K%))

zn: (15, m5)™ z”: @m ®m = | Tra(S,)|* = Z Ak

k=1
dim(Sym™ (K%))
< [dim(Sym™E )| Y AZ| = |dim(Sym™(K?))|| Tra(S2)|
k=1
() rmmesmn= () [ e
J=1k=1
o QAN 1) 3 SERATTENS
=1 k=1
d+m—1 "
=< >Z<Tl77'l>2m+ Z (755 )" (Tl 7)™
" =1 G k=1,j#k
d+m—1 n o . -
= ( m > 1<j,?gﬁj¢k{;<n’n> T )™ (TR, T |}
| {d+m—1 n o o
_< m )19,%13&5{,#1@{2@’70 ATy )™ o

1=1
Whenever (7;,7;) =1forall 1 <j <mn,

el (7).

Remark 2.4. Theorems and 2.3 hold by replacing K by a d-dimensional non-Archimedean Hilbert

space over K.

2m
Lo {nl (7.7 P,

(]

3. NON-ARCHIMEDEAN ZAUNER CONJECTURE AND OPEN PROBLEMS

Theorem 2.1 straight away brings the following question.

Question 3.1. Given non-Archimedean field K satisfying Equation (2), for which (d,n) €
N x N, there exist vectors 1y,...,7, € K¢ satisfying the following.
@) (m,m)=1 for all1 <j<n.
(ii) The operator S, :K?> x> Z?Zl(x, 7;)7; € K% is diagonalizable.
(iii)
n|?

{Inl, K m) "} =

1<j, k<n,];£k |d|

A particular case of Question is the following non-Archimedean version of Zauner conjecture (see

2 51,55//63/{70l[84] for Zauner conjecture in Hilbert spaces, [53] for Zauner conjecture

in Hilbert C*-modules and [52] for Zauner conjecture in Banach spaces).

Conjecture 3.2. (Non-Archimedean Zauner Conjecture) Let K non-Archimedean field sat-
isfying Equation (2). For each d € N, there exist vectors Ti,...,7p2 € K¢ satisfying the
following.
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(i) (m,m) =1 for all 1 <j<n.
(ii) The operator S, : K% >z — Z?;(gg, 7;)7; € K¢ is diagonalizable.
(iii)
(mjom)l? = Inl, V1< jk<d?j#k.
We remember the definition of Gerzon’s bound which allows us to recall the bounds which are in the

same way to Welch bounds in Hilbert spaces.
Definition 3.3. [45] Given d € N, define Gerzon’s bound

d? if K=C
Z(d,K) =
(d,K) { d(d2+1) if K=R.

Theorem 3.4. @, 45,@ 81] Define K =R or C and m := dimg(K)/2. If {7;}7_, is any

collection of unit vectors in K¢, then
(i) (Bukh-Cox bound)
Z(n —d,K)
n(l+mn—d—1)vm1+n—d)— Z(n—-dK)
(ii) (Orthoplex/Rankin bound)

. > ) .
Lomax | =2 if n>d

(75, )| 2 % if n> 2(d,K).

max
1<g,k<n,j#k

(ii) (Levenstein bound)

max |<Tj77'k>|2\/n<m+1)_d(md+1) i n> Z(d,K).

1<, k<n,j#k (n—d)(md+1)
(iv) (Exponential bound)
>1—2n71
. — —1
1<i S itk NERUE S

Theorem [3.4] and Theorem 2.1 give the following problem.

Question 3.5. Whether there is a non-Archimedean version of Theorem 3.4¢ In particular,

does there exists a version of

(i) non-Archimedean Bukh-Cox bound?
(ii) non-Archimedean Orthoplex/Rankin bound?
(iii) mon-Archimedean Levenstein bound?
iv)

(iv) mon-Archimedean Exponential bound?

As written already, Welch bounds have applications in study of equiangular lines. Therefore we wish to
formulate equiangular line problem for non-Archimedean Hilbert spaces. For the study of equiangular
lines in Hilbert spaces we refer , quaternion Hilbert space
we refer [30], octonion Hilbert space we refer [20], finite dimensional vector spaces over finite fields we
refer and for Banach spaces we refer [52] (there equiangular line problem for Banach spaces is not
mentioned explicitly but Zauner conjecture for Banach spaces is formulated. One can easily formulate

equiangular line problem using that).

Question 3.6. (Non-Archimedean Equiangular Line Problem) Let K be a non-Archimedean
field. Given a € K, d € N and v > 0, what is the mazimum n = n(K,a,d,v) € N such that

there exist vectors 11,...,7, € K¢ satisfying the following.
5
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(i) (rj,7j) =a for all 1 <j <n.
(i) (75, 7)[* = for all 1 < j,k <n,j # k.

In particular, whether there is a non-Archimedean Gerzon bound?

Question [3.6] can be easily modified to formulate question of non-Archimedean regular s-distance sets.
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