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Abstract: Reliable quantification of pulmonary arterial pressure is essential in the diagnostic and 

prognostic assessment of a range of cardiovascular pathologies including rheumatic heart disease, 

yet an accurate and routinely available method for its quantification remains elusive. This work 

proposes an approach to infer pulmonary arterial pressure based on scientific machine learning 

techniques and non-invasive, clinically available measurements. A 0-D multicompartment model of 

the cardiovascular system was optimized using several optimization algorithms, subject to forward-

mode automatic differentiation. Measurement data were synthesized from known parameters to 

represent the healthy, mitral regurgitant, aortic stenosed and combined valvular disease situations 

with and without pulmonary hypertension. Eleven model parameters were selected for optimiza-

tion based on 95 % explained variation in mean pulmonary arterial pressure. A hybrid Adam and 

limited-memory Broyden-Fletcher-Goldfarb-Shanno optimizer yielded the best results with input 

data including valvular flow rates, heart chamber volume changes and systematic arterial pressure. 

Mean absolute percentage errors ranged from 1.8 % to 3.78 % over the simulated test cases. The 

model was able to capture pressure dynamics under hypertensive conditions with pulmonary arte-

rial systole, diastole, and mean pressure average percentage errors of 1.12 %, 2.49 % and 2.14 %, 

respectively. The relatively low errors highlight the potential of the proposed model to recover pul-

monary pressures for diseased heart valve and pulmonary hypertensive conditions. 

Keywords: cardiovascular 0-D model; pulmonary arterial pressure; gradient-based optimization; 

automatic differentiation 

 

1. Introduction 

In sub-Saharan African (SSA) cardiovascular diseases account for approximately 1 

million deaths per year [1]. Amongst these, rheumatic heart disease (RHD), ischemic heart 

disease and pulmonary hypertension (PH) are associated with high mortality rates [2]. 

RHD in SSA accounts for approximately 23% of worldwide deaths from this disease, 

where RHD typically results in aortic and mitral valve lesions which leads to valvular 

regurgitation and/or stenosis. Left untreated, these lesions result in cardiac decompensa-

tion through mechanisms of ventricular pressure and volume overload. In rheumatic 

heart disease, the presence of PH is an independent predictor of mortality [3], therefore, 

the accurate estimation of PH for RHD cases is crucial for clinical diagnosis and prognostic 

purposes. The current gold standard for the quantification of pulmonary arterial pressure 

(PAP) requires the use of invasive right heart catheterization [4] which in developing 

countries such as SSA, is not readily available, remains costly and is not without risk to 

the patient [5]. The clinical standard for the non-invasive estimation of PAP utilises trans-

thoracic Doppler echocardiography and associated correlations, but these approaches 

typically yield inaccurate results [6].  

In the present work, a non-invasive computational approach to estimate pulmonary 

arterial pressure and associated cardiovascular parameters such as pulmonary arterial im-

pedance, left ventricular elastance and systemic venous impedance, is proposed. The 
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approach utilizes non-invasive measurements including transvalvular flow rates, sys-

temic arterial pressures, and heart volume change over a single heart beat cycle along with 

scientific machine learning techniques [7]. This, in turn, combines a mechanistic model of 

the cardiovascular system along with gradient-based optimization and forward-mode au-

tomatic differentiation.  

Several researchers have recently investigated the efficacy of computational param-

eter estimation strategies to find unknown physiological parameters of a human cardio-

vascular system by using clinical measurements, 0-D cardiovascular dynamic models and 

optimization routines. Bjordalsbakke et al. [8] developed a 0-D computer model of a hu-

man systemic loop and used non-invasive measurements and the trust region reflective 

algorithm to estimate various parameters such as systemic compliances and left ventricle 

elastance. Synthetic data was generated using the 0-D cardiovascular model with known 

parameters to gauge the accuracy of the parameter estimation workflow. The mean abso-

lute percentage errors (MAPE) between the true parameters and estimated ones ranged 

between 1-10%. Kershavarz-Motamed [9] developed a workflow to estimate circulatory 

parameters using non-invasive measurements such as valvular flow rates measured using 

Doppler echography and systemic arterial pressures measured using an arm cuff device. 

The 0-D cardiovascular model was developed using MATLAB Simulink and the parame-

ters optimized using the built-in fmincon function. Similarly, Huang and Ying [10] devel-

oped an on-line estimation algorithm used to infer the parameters of a 5 component arte-

rial 0-D simulation model. The unknown parameters were estimated by minimizing the 

squared difference between the model predictions and corresponding measurements, 

which for this work was generated synthetically using the model and known parameters. 

The optimization was driven by the use of the fmincon function in MATLAB. Colunga et 

al. [11] used actual invasive and non-invasive patient data to estimate cardiovascular sys-

tem parameters of a 6 component 0-D model by minimizing the differences between the 

model predictions and measured data using the Levenberg-Marquardt optimization rou-

tine. The workflow was capable of accurately recreating the measured pressure wave-

forms, but no validation was performed. 

To minimize the difference between the 0-D model predictions and the measure-

ments (actual or synthetic) using gradient-based optimization such as Levenberg-Mar-

quardt, a trust region reflective algorithm or MATLAB’s fmincon requires the calculation 

of the loss function-parameter gradients. In the discussed research works, the authors ap-

plied finite differences [12], [13] to calculate the required gradients. As shown in [14], the 

use of finite differences leads to computationally expensive and numerically unstable re-

sults due to the numerical approximation of the gradients as discussed in [15]. An alter-

native approach to estimate the gradients is to use automatic differentiation (AD) [15]. AD 

is able to calculate the analytical gradients using chain rule and computational graphs 

constructed from the mathematical operations in the computer model. The major limita-

tion of AD is that the 0-D cardiovascular model and differential algebraic equation (DAE) 

solver should be fully differentiable, meaning the mathematical operations should be 

tracked and stored to calculate the gradients.  

In the present work, a fully differentiable multicompartment cardiovascular 0-D 

DAE computer model is developed using the Julia 1.7.0 programming language. The pro-

posed parameter inference model solves the specified set of equations and minimizes the 

squared differences between the model predictions and non-invasive measurement data 

by adjusting important cardiovascular parameters. Various optimization algorithms are 

investigated such as conjugate gradient descent, Adam, and limited-memory Broyden-

Fletcher-Goldfarb-Shanno (L-BFGS). The loss function gradients used in the majority of 

these optimizers are determined using forward-mode automatic differentiation. 

The purpose of the present work is to infer the PAP waveforms for healthy cases, 

mitral regurgitation and aortic valve stenosis cases, using synthetic non-invasive data 

generated using known parameters and the 0-D model. In addition, to determine the re-

duced set of parameters which have a significant effect on the mean PAP, a local sensitiv-

ity analysis is performed. To the best of the authors’ knowledge, this is the first work that 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 August 2022                   doi:10.20944/preprints202208.0490.v1

https://doi.org/10.20944/preprints202208.0490.v1


 

 

directly investigates the ability of a scientific machine learning model to infer PAP values 

using non-invasive, clinically available measurements and a 0-D cardiovascular system 

model accounting for the dynamics of the heart valves. To lower costs of deploying the 

proposed algorithm and to enable reproducibility, the computer models are developed in 

free and opensource Julia libraries namely DifferentialEquations.jl [16], ForwardDiff.jl [17] 

(automatic differentiation), Optim.jl [18] (optimization framework) and Flux.jl [19] (first-

order gradient-descent optimizers). 

2. Materials and Methods 

Figure 1 below depicts the parameter inference model workflow. The model starts 

by initializing the unknown cardiovascular model parameters � such as left ventricle 

(LV) elastance, pulmonary arterial resistance and systemic venous impedance; it should 

be noted that only the model parameters that have a significant effect on the mean PAP 

will be optimized as will be discussed in Section 2.3. Once initialized, the important model 

parameters are used to simulate a single cardiac cycle using a fully differentiable 0-D car-

diovascular system model �(�) . Next the model predictions ��  corresponding to the 

available non-invasive measurements �� are extracted. The extracted model predictions 

along with the synthetic non-invasive measurements are then fed to a loss function 

����, ��� which calculates the sum-squared difference. If the loss function is above the pre-

scribed convergence criteria �, the model then calculates the loss function gradients using 

forward-mode automatic differentiation and then adjusts the parameters using this infor-

mation and the process is then repeated. In the subsections below more information relat-

ing to the 0-D model, datasets, optimization parameters and optimizers will be provided. 

 

Figure 1. Computer model flowchart. 

2.1. Mechanistic Model of Cardiovascular System 

Central to the pulmonary inference computer model (shown in Figure 1) is the 0-D 

DAE model of the human cardiovascular system. In the current work a multi-compart-

ment model including the four heart chambers, corresponding heart valves, pulmonary 

loop and systemic loop is developed. A layout of the cardiovascular network model is 

shown in Figure 2. The model is based on the work of Korakianitis and Shi [20].  
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Figure 2. 0-D cardiovascular network model layout. Aortic – AO, mitral – MI, pulmonary – PO, 

tricuspid – TI, aortic sinus – AS, systemic arteries – SAT, systemic veins – SVN, pulmonary sinus – 

PS, pulmonary arteries – PAT, pulmonary veins – PVN. 

To simulate the pressure and volume changes of the heart chambers the mathemati-

cal model of Suga et al. [21] was applied as seen in Equation (1), where ���(�) [����] is 

the LV pressure at time �, ���,� is the unstressed LV pressure (set to a value of 1 one for 

all heart chambers [22]), ���(�) [�] is the LV time-varying elastance function, ���(�)[��] 

is the instantaneous LV volume and ���,� is the unstressed LV volume. 

���(t) = ���,� + ���(�)����(�) − ���,��  (1) 

To simulate the changes in ventricle blood volume the mass conservation equation 

for an incompressible fluid can be applied to the ventricle control volume yielding a set 

of ODEs for each heart chamber. The change in ventricle blood volume for the LV is shown 

in Equation (2), where ���(�) and ���(�) are the mitral and aortic valve volume flow 

rates at time step �. 
����

��
= ���(�) − ���(�) 

(2) 

The time-dependent elastance function for the LV is calculated using Equation 3, 

where ���,� [
����

��� ] is the LV systolic elastance and ���,� is the diastolic ventricular 

elastance. A similar equation is used to predict the changes in right ventricle (RV) elas-

tance.  

���(�) = ���,� +
���,� − ���,�

2
�(�) 

(3) 

The ventricular activation function used to simulate the heart muscle contraction and 

relaxation was taken from the work of Bozkurt [23], and is shown in Equation (4). 

�(�) =

⎩
⎪
⎨

⎪
⎧ 1 − ��� �

�

��

π� �� 0 ≤ � < ��

1 + ��� �
� − ��

�� − ��

π� �� �� ≤ � < ��

0 �� �� ≤ � < �

   (4) 

In Equation (4), the end time of systole is set to �� = 0.3 � [�] and the end time of 

ventricular relaxation is set to �� = 0.45 � [23] where � is the heartbeat period which in 

the present work was fixed to a value of 1 [�]. The RV is simulated also using Equation 

(1)–(4) but with corresponding RV parameters (Table 1). 

To simulate the left and right atrium (LA and RA) pressure and blood volume 

changes, Equations (1)–(2) are used similarly to the ventricle calculations but with corre-

sponding atrium parameters as seen in Table 1. The time-dependent elastance of the left 

atrium is calculated as seen in Equation (5), where ���,��� and ���,��� are the minimal 

and maximal LA elastances, and ��(�) is the atrial contractility activation function.  
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���(�) = ���,��� +
���,��� − ���,���

2
��(� − �) 

(5) 

The atrial contractility activation function is in turn calculated using Equation (6), 

where � =  0.04 [�] is the time of atrial relaxation. 

��(�) = �

0 �� 0 ≤ � < ��

1 − ��� �2π
� − ��

� − ��

� �� �� ≤ � < �
 

(6) 

In Equation (6), �� = 0.8 � is the time at onset of atrial contraction. Table 1 below 

contains the cardiovascular parameters used in the heart chamber models. 

Table 1. Heart model nominal parameters (values in parenthesis indicate upper and lower bound-

aries for sensitivity analysis and normalization) [20]. 

Parameters Left Heart Right Heart 

Atriums 

���,���, ���,���  0.25 (0.0, 1.0) 0.25 (0.0, 1.0) 

���,���, ���,��� 0.15 (0.0, 0.5) 0.15 (0.0, 0.5) 

���,�, ���,� 4.0 (1.0, 20.0) 4.0 (1.0, 10.0) 

Ventricles 

���,�, ���,� 2.5 (0.5, 5.0) 1.15 (0.5, 5.0) 

���,�, ���,� 0.1 (0.0, 1.0) 0.1 (0.0, 0.5) 

���,�, ���,� 5.0 (1.0, 20.0) 10.0 (1.0, 50.0) 

To estimate the blood flow rate through each of the four heart valves pressure gradi-

ent across the heart valve and the valve opening area is used as seen in Equation (7), where 

� = ��, ��, ��, ��. In Equation (7), �� is the valvular flow coefficient which is set to 400 

�
��

� �����.�� for the atrioventricular valves and 350 �
��

� �����.�� for the semilunar valves 

[22]. 

�� = �� ⋅ ��(�)�Δ�(�) (7) 

In the previous equation, the pressure gradient across the valve Δ�(�) is calculated 

using Equation (8), where ���(�) is the valve upstream static pressure and ���(�) is the 

valve downstream pressure. For example, the aortic valve inlet pressure would be the LV 

pressure ���(�) and the exit pressure the aortic sinus pressure ���(�) as shown in Figure 

2. 

Δ�(�) = �
���(�) − ���(�) ����� ≥ ���

���(�) − ���(�) ����� > ���
 

(8) 

In Equation (7), ��(�) is the area opening ratio of the heart valve and is defined as 

the fraction of flow area at a given time step divided by the area of the valve when fully 

open. For the present work, the valve opening fraction is calculated as a function of the 

valve opening angle �� as shown in Equation (9), where ��,��� is the maximum opening 

angle of the valve cusps. 

��(�) =
(1 − ���[��(�)])�

�1 − ������,�����
� 

(9) 

To estimate the time-dependent valve opening angle for each heart valve, the angular 

momentum equation is solved as shown in Equation (10). 

����

���
= [���(�) − ���(�)] ∙ �����(��) 

(10) 

The valvular force coefficient �� �
����∙��

��
� was set to a constant value of 5500 for all 

valves as recommended by [20].  

The systemic and pulmonary vasculature are modelled using the electro-hydraulic 

analogue equations for fluid flow in a 0-D network. Each loop is modelled using 5 com-

ponents that consist of inductive, capacitive, and resistive components as seen in Figure 
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2. For the sake of brevity only the systemic loop equations will be provided; for more 

detail on the model equations, please see [24]. The flow rate through the aortic sinus and 

associated sinus inlet pressure are calculated using the following ODEs. 

���

����

��
= (��� − ����) − ������ 

(11) 

���

����

��
= ��� − ��� 

(12) 

In Equations (11) and (12), ��� �
����⋅��

��
� is the blood flow inertia through the sinus, 

��� is the volume flow rate of blood through the sinus, ��� is the inlet sinus static pres-

sure, ���� is the arterial inlet pressure, ��� �
����⋅�

��
� is the sinus flow resistance and ��� 

�
��

����
� is the sinus compliance. The arterial pressure and volume flow rate is simulated 

using Equations (13) and (14). 

����

�����

��
= (���� − ����) − �������� 

(13) 

����

�����

��
= ��� − ���� 

(14) 

The inlet venous pressure is calculated using Equation (15) and the venous flow rate 

using Equation (16). 

����

�����

��
= ���� − ����  

(15) 

�������� = ���� − ��� (16) 

The vasculature parameters such as resistance and capacitance for the systemic and 

pulmonary loops can be found in Table 2. 

Table 2. Systemic and pulmonary loop parameters (values in parenthesis is used for upper and 

lower boundaries). 

Compartment Resistance �
����⋅��

��
� Inductance �

����⋅�

��
� Capacitance �

��

����
� 

Systemic loop 

AS 0.003 (0.0003, 0.03) 0.000062 (1E-4, 1E-3) 0.08 (0.008, 0.8) 

SAT 0.05 (0.005, 1.0) 0.0017 (1.7E-3, 0.017) 1.6 (0.16, 3.2) 

SVN 0.075 (0.0075, 0.75) 0 20.5 (5.0, 50.0) 

Pulmonary loop 

PS 0.002 (2E-3, 2E-2) 0.000052 (1E-4, 1E-3) 0.18 (0.018, 2.0) 

PAT 0.05 (0.001, 0.1) 0.0017 (1.7E-3, 0.017) 3.8 (0.38, 6.0) 

PVN 0.006 (6E-4, 0.01) 0 20.5 (5.0, 50.0) 

To solve the above mentioned DAEs of the cardiovascular system the explicit Runge-

Kutta solver with the Bogacki-Shampine 3/2 method is applied. The solver’s relative and 

absolute tolerances are set to 1E-4 and 1E-6 respectively and the maximum allowable iter-

ations per time step was set to 1E6. To numerically integrate the DAEs, certain physical 

constraints must be enforced on the dynamic valve model. To incorporate the discontinu-

ities which results from the valve motion limits (fully open or closed) the following con-

ditions are included in the simulation procedure for each valve. 

�� =

⎩
⎪
⎨

⎪
⎧�� = ��,��� ,   

���

��
= 0 �� �� ≥ ��,���

�� = ��,��� ,   
���

��
= 0 �� �� ≤ ��,���

�� �� ��,��� < �� < ��,���

 (17) 
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2.2. Data and Measurements 

In the present work, synthetic data is generated using the 0-D cardiovascular model 

and used as pseudo clinical measurements. The benefit of this approach is that the true 

underlying parameters being optimized is known and the obvious disadvantage is that 

one assumes the model is capable of capturing the dynamics of an actual cardiovascular 

system. Nonetheless, other published authors have also followed this approach [8].  

In the current work, two datasets are used as synthetic measurements. The first da-

taset, namely D1, contains the transvalvular flow rates ���, ���, ���, ��� and the systemic 

arterial pressure ���� for a single cardiac cycle. The second dataset, D2, additionally con-

tains the heart chamber volume changes, ���, ���, ���, ���. The motivation for using two 

datasets is to investigate the effect of additional non-invasive data on the model parameter 

inference accuracy as will be discussed in Section 3.2.  

For each dataset generation run the ODE integrator solves for multitudes of time 

steps dictated by the numerical integrator accuracy control, but to replicate actual use of 

the model, only � = 200 samples are stored and used during the parameter optimization 

phase. Additionally, noise is added to the pseudo-measurement results. The standard de-

viation used for the normally distributed noise generation of the chamber volumes and 

flow rates were set to 3% of the respective mean values and for the arterial pressure the 

standard deviation was set to 1% of the mean simulated arterial pressure value. Figure 3 

below shows an example of the pseudo-measurements used for the healthy non-hyper-

tensive conditions. 

 

Figure 3. Pseudo-measurements. 

To clinically measure the data shown in Figure 3, different equipment can be utilized. 

For the present work, the following clinical measurements are proposed for further retro-

spective clinical studies. The brachial arterial pressure can be measured continuously us-

ing a CNAP monitor and volume clamp method as discussed by [25]. The transvalvular 

flow rates should be measured using Doppler echocardiography and the heart chamber 

volumes using either 3D magnetic resonance imaging (MRI) or Doppler echocardiog-

raphy. 

To simulate the 0-D cardiovascular model and solve for the model dependent varia-

bles such as systemic arterial pressure (Equation (14)) and aortic sinus flow rate (Equation 

(11)) requires the initial conditions to be known. The initial conditions vector is shown in 

Equation (18). 

������

= ����
����, ���

����, ���
���� , ���

����, ����
����, ����

����, ����
����, ���

����, ���
����, ���

����, ���
����, ����

���� , ����
���� , ����

���� � 
(18) 

In a clinical application of the proposed parameter inference model, these initial con-

ditions should be extracted from the available non-invasive measurements. The initial 

transvalvular flow rates and heart chamber volumes can directly be taken as the initial 

entries in D1 and D2 for the respectively data streams. Similarly, the initial cycle systemic 

arterial pressure can be extracted from D1 and D2 and in the present work it is assumed 

that the initial aortic sinus pressure is equal to the initial systemic arterial pressure. The 

initial systemic and pulmonary arterial flow rates are approximated using Equations (19) 

and (20), where ���� and ���� are the left and right ventricular stroke volumes which 

can be non-invasively estimated using Doppler echography. 
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����
����  =

����

�
 

(19) 

����
����  =

����

�
 

(20) 

The remaining initial conditions, namely ����
����, ����

���� , ���
���� and ����

����, are difficult to 

accurately measure non-invasively and, therefore, these parameters are optimized in con-

junction with selected important model parameters (Tables 1 and 2) which significantly 

affect mean pulmonary arterial pressure, as will be discussed in Section 2.3. 

2.3. Local Sensitivity Analysis 

A local sensitivity analysis is performed using the 0-D cardiovascular model to iden-

tify model parameters (Tables 1 and 2) which has a significant effect on the mean PAP. 

These identified parameters are then used in the optimization phase of the present work 

to infer the PAP waveform and estimate the true cardiovascular parameters. 

To find these important parameters the sensitivity percentages of each parameter, 

(designated �����,� for the ��� parameter) are calculated as seen in Equation (21). The top 

parameters that make up 95% of the variations in mean PAP are then selected as the im-

portant parameters to be optimized. 

�����,� = 100% ⋅
�����,�

∑ �����,�
����
���

 
(21) 

In Equation (21), �����,�  is the ��� parameter sensitivity index which is calculated 

using Equation (22). To estimate the required gradients of the mean PAP, forward-mode 

AD is utilized. Forward-mode AD is capable of traversing any native Julia code, therefore, 

is able to differentiate through the ODE integrator solution, to calculate the required gra-

dients in a computationally efficient manner [17]. The gradients are calculated around the 

nominal values shown in Tables 1 and 2 but seeing as the model parameters vary in orders 

of magnitude and units, each mean PAP gradient is multiplied by the difference between 

the upper ��,�� and lower ��,�� parameter boundaries to normalize the calculated param-

eter gradients. 

�����,� = �
� �

1
��

∗ ∑ ����
���

∗

��� �

���

� ⋅ ���,�� − ��,��� 

(22) 

2.4 Parameter Optimization  

To estimate � which minimizes the difference between the 0-D model predictions 

and the synthetic (pseudo) measurements in the present work, the sum-squared error 

(SSE) loss function is minimized using selected optimizers. The SSE for the ��� measure-

ment (e.g., LV volume, systemic arterial pressure, or mitral valve flow rate) is calculated 

using Equation (23). 

�����, ���� = ������
�(�̅) − ���

��
�

�

���

�

�

 
(23) 

In Equation (23), ���
� is the ���  simulation output at time step � and ���

�  is the ��� 

synthetically measured value (e.g., arterial pressure or LV volume) at time step �. Further, 

�̅ is the parameter vector containing all the selected important parameters, ��� is the vec-

tor of model predictions for measurement � and ��� is the vector of synthetic measure-

ments for measurement �. The loss function minimized by the computer model is then 

simply the summation of the different measurement losses �����, ���� as seen in Equation 

(24), where � is the number of measurement streams (5 and 9 for D1 and D2 respectively, 

as mentioned in Section 2.2). 
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�(��(�̅), ��) = ���(���, ���)�

�

���

 
(23) 

To speed up optimization convergence the parameter and measurement datasets 

were normalized using min-max scaling. For the parameter vector the upper and lower 

boundaries listed in Tables 1 and 2 were used. The measurements and model predictions 

were scaled using the maximum and minimum measured values, e.g., for parameter �, 

max(���) and min(���). 

In the present work, three optimization strategies are employed. The first uses the 

adaptive moment estimation (Adam) first-order optimizer. The Adam algorithm is shown 

in Equation (24) below. 

�� ← ���� + (1 − ��)���(�̅) 

�̅ ← ���̅ + (1 − ��)���(�̅) ⊗ ���(�̅) 

�� ←
��

1 − ��
� 

�̅ ←
�̅

1 − ��
� 

�̅��� ← �̅ − ��� ⊗ �(�̅ + �)��  

 

(24) 

The scaling �̅  and momentum ��  matrices are initialized to 0 at the start of the 

Adam training algorithm, � is the iteration counter, ϵ = 1 ⋅ 10�� is the smoothing term, 

β� is the momentum decay hyperparameter and is set to 0.9 and β� is the scaling hy-

perparameter and is set to 0.999. In Equation (24), ∇��(θ�) are the gradients of the cost 

function with respect to the optimization parameters. For the optimization runs, the learn-

ing rate parameter η is fixed to a value of 0.005.  

The second strategy uses the conjugate gradient descent [26] optimizer to minimize 

the loss function. The conjugate gradient optimizer update algorithm for the parameters 

is shown in Equation (25). 

�̅��� ← �̅ − ��̅��� 
�̅��� ⟵ ���(�̅)  −  �����̅���  

(25) 

For the first iteration, �̅ = ∇��(θ�). In the present work, the learning rate parameter 

� is estimated per iteration using the line search proposed by Hager and Zhang [27]. The 

scalar variable ���� is also calculated using the method proposed by Hager and Zhang. 

The third strategy applies a combination of Adam and L-BFGS [28] optimizers to 

minimize the loss function. For this strategy, the first 50 iterations of the optimization 

phase were completed using Adam, after which the model switches over to the L-BFGS. 

The interested reader can see [26] for more information about the L-BFGS optimization 

algorithm. 

3. Results 

To find the best optimization strategy and to demonstrate the ability of the proposed 

method to infer the PAP waveforms for diseased heart valve cases, two investigations 

were performed. The first looks at the effect of selected optimizers and dataset contents 

on the parameter estimation accuracy and pulmonary pressures for healthy heart valves. 

Using the best-performing optimizer of this study, the work then investigates the capabil-

ity of the model to capture the PAP waveforms for synthetic data generated with induced 

mitral regurgitation and aortic stenosis with and without increased pulmonary arterial 

impedance. 

3.1. Local Sensitivity Analysis 

Before the two above sets of results are discussed, the important model parameters 

selected using the local sensitivity analysis will be provided. Figure 4 shows a histogram 
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of all the model parameters and their respective sensitivity percentages as calculated us-

ing Equation (21). 

 

Figure 4. Model parameter sensitivity percentages. 

From the results it is seen that the parameter with the largest effect on the mean PAP 

is the pulmonary arterial resistance (28.8%), followed by the left ventricular diastolic elas-

tance (28.1%), systemic venous resistance (12%) and the right ventricular diastolic elas-

tance (8.3%). In total, 11 parameters were selected to be optimized in subsequent sections 

along with the mentioned initial conditions (Section 2.2). Equation (26) below shows the 

important parameter vector. 

�̅ = [ ���� ���,� ���� ���,� ���,��� ���,��� ���� ���,��� ���,�  

 

���,��� ���,� ����
����  ����

���� ���
����  ����

���� ] 

(26) 

The local sensitivity analysis was also performed for both diseased heart valve con-

ditions and the analysis identified the same parameters as shown in Equation (26), but 

with differences in the sensitivity percentages allocated to each parameter. 

3.2. Healthy Cardiovascular System Results 

Using the nominal model parameters shown in Tables 1 and 2 synthetic datasets (D1 

and D2) are generated and used as pseudo measurements. The proposed inference model 

is tasked to recover the important model parameters (Equation (26)) while the remaining 

parameters are fixed to their respective nominal values. The goal of this investigation is 

to quantify the effect of the addition of heart chamber volume data and optimizer selection 

on parameter inference and pulmonary waveform prediction accuracy.  

To estimate the parameter inference errors the absolute percentage error (APE) met-

ric is used. The equation used to calculate the APE for the ��� important parameter is 

shown in Equation (27). 

��� =  100% ∙
��� − ��,�����

��,����

 
(27) 

Table 3 below contains the APEs calculated for the different important parameters 

using the different datasets and optimizers. Additionally, the mean APE (MAPE), is also 

provided. The results indicate that the addition of the heart chamber volume data (D2) 

significantly improves the inference accuracy for all the applied optimizers. Studying 

Equation (2) and Figure 2 it becomes clear that the heart chamber volume trends indirectly 

contain information about the atria upstream flow rates (���� ��� ����), which is needed 

to integrate the mass continuity equation to find the time-dependent changes in chamber 

volume. The indirect addition of these flow rates seems to positively impact the ability of 

the inference model to accurately predict the unknown model parameters. 
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Table 3. Absolute percentage errors per parameter for datasets generated using nominal model pa-

rameters. 

Parameters SP D1 + ADAM D1 + CGD 

D1 + L-

BFGS (Hy-

brid) 

D2 + ADAM D2 + CGD 

D2 + L-

BFGS (Hy-

brid) 

���,� 1,42 7,1 3,2 8,8 0,4 1,7 2,1 

���,� 28,18 10,3 9,9 3,4 2,0 2,0 1,3 

���,��� 1,62 155,7 141,7 109,6 5,3 4,3 1,3 

���,��� 4,11 89,3 86,3 64,1 5,8 3,8 1,9 

���,� 2,04 1,9 1,4 0,2 1,0 2,0 0,8 

���,� 8,33 12,8 29,9 26,7 1,9 2,6 2,1 

���,��� 3,43 22,1 46,5 41,3 1,8 2,4 0,9 

���,��� 2,39 12,4 14,0 13,9 1,7 1,4 2,3 

���� 3,17 8,5 6,7 7,1 4,3 2,1 0,3 

���� 11,95 20,6 10,3 18,6 14,3 14,7 12,6 

���� 28,83 5,0 39,0 2,9 2,7 3,8 3,0 

����
����  - 3,8 23,8 17,4 4,4 6,3 8,0 

����
���� - 14,1 2,5 12,4 2,1 8,2 0,9 

���
����, ����

���� - 5,4 16,6 15,3 0,0 1,2 1,4 

MAPE - 26,4 30,8 24,4 3,4 4,0 2,8 

Of the three model configurations trained using D2, the Adam-L-BFGS hybrid opti-

mization approach resulted in the lowest overall MAPE, followed by the Adam optimiza-

tion approach. For the hybrid optimization approach all parameters had APEs between 0-

5% except the systemic venous resistance and the initial pulmonary venous pressure pa-

rameters. Although these two parameter inference errors are relatively high, they have a 

small effect on the ability of the model to accurately recover important PAP values, as 

seen in Table 4. It is interesting to note that the Adam optimization approach more accu-

rately predicts the pulmonary pressures but has a higher overall MAPE compared to the 

hybrid optimization approach. A possible explanation of this is that the estimated pulmo-

nary arterial resistance parameter has a lower APE for the Adam approach when com-

pared to the value predicted using the hybrid optimizer approach. Nonetheless, seeing as 

the hybrid optimizer produces the most accurate parameter estimates, it was selected for 

further studies involving diseased mitral and aortic heart valves. 

Table 4. Pulmonary pressure predictions for nominal model parameters. 

PAP True Values D2 + ADAM D2 + L-BFGS (Hybrid) 

Diastole 13,93 13,96 13,94 

Systole 25,11 25,05 24,96 

Mean 17,65 17,58 17,42 

3.3. Diseased Heart Valve Case Studies 

To investigate the ability of the proposed model to infer model parameters and PAP 

values for diseased heart valve cases, additional datasets were generated. These datasets 

consisted of data generated for induced aortic stenosis, mitral regurgitation, and a combi-

nation of these two valve diseases. To simulate aortic stenosis the maximal valve opening 

angle is limited to 49.4 which corresponds to a valvular flow area of 1 [cm2] for a valve 

diameter of 24.7 mm. Mitral regurgitation is induced by limiting the minimal mitral valve 

closing angle to 33, which corresponds to an open flow area fraction of 5%. For the com-

bined case, both the aortic stenosis and mitral regurgitation limits are induced simultane-

ously. 

For the three valvular disease cases, the nominal parameters listed in Tables 1 and 2 

were used to generate synthetic data. The APEs calculated for the five parameters with 

the highest �� values can be found in Table 5 along with MAPEs calculated using all the 

parameters and initial conditions. The MAPE results show that the selected approach 
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using D2, and the hybrid optimizer is capable of predicting the unknown model parame-

ters for the three diseased cases with the same relative accuracy compared to the MAPE 

value calculated for the healthy case (Table 3). The case with the highest MAPE and high-

est parameter APE (���� = 12.12%) is the mitral regurgitation case, whereas the results 

show that the inclusion of aortic stenosis decreases the predicted parameter errors. 

Table 5. Absolute percentage errors per parameter for datasets generated using nominal model pa-

rameters with aortic stenosis, mitral regurgitation and both valvular diseases present. 

Parameters Aortic stenosis Mitral regurgitation Combined 

���,� 1,26 0,62 1,93 

���,��� 1,44 0,74 1,82 

���,� 0,05 1,87 2,03 

���� 0,39 12,12 7,14 

���� 2,80 7,74 6,62 

MAPE (all parameters) 1,70 3,78 3,33 

Figure 5 shows the right ventricle and pulmonary arterial pressure waveforms sim-

ulated using the predicted model parameters for the different diseased heart valve cases. 

Additionally, the systole, diastole and mean PAP predicted, and true values are also in-

cluded in Figure 5, where the true values are the pressure values with no noise present. 

The results show that using the inferred model parameters, the 0-D cardiovascular model 

can with relative accuracy capture the true waveforms generated with the nominal pa-

rameter set for both the unobserved ventricle and pulmonary artery pressures. For the 

combined diseased case, it is seen that the model using the inferred parameters slightly 

underpredicts the average pulmonary pressure prediction (average calculated using 

mean, systole and diastole values) by approximately 1.5%, whereas for the other cases the 

model can accurately capture the diastole, systole, and mean PAP values. 

  

Figure 5. Pulmonary arterial and right ventricle pressure waveforms predicted by model along with 

predicted important PAP values using nominal model parameters. Solid lines - predicted values; 

markers – actual waveforms + noise. 

As seen in the results in Figure 5, the mean PAP values for the different cases are 

below 25 mmHg [5], which is the typical upper limit for normal pulmonary pressures. To 

induce pulmonary hypertension the pulmonary resistance was increased from 0.05 to 0.25 

�
����⋅��

��
� and the synthetic data regenerated (transvalvular flow rates, heart chamber vol-

umes and systemic arterial pressures) for the mentioned diseased heart valve settings. 
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Using these new datasets, the inference model was again applied to recover the unknown 

model parameters, the goal being to investigate the model accuracy for hypertensive con-

ditions. Table 6 contains the top 5 important parameter APEs along with the MAPE using 

all the predicted parameters. The results again indicated that the inference model can, 

with relative accuracy, find the unknown important parameter values and the effect of 

increased pulmonary arterial resistance is not substantial on the overall MAPE values. 

That being said, it is interesting to notice that the pulmonary arterial resistance APEs from 

Table 6 are on average approximately 3.5% higher when compared to the values in Table 

5 where the nominal resistance value is used for pseudo-measurement generation.  

Table 6. Absolute percentage errors per parameter for datasets generated using increased pulmo-

nary arterial resistance with aortic stenosis, mitral regurgitation and both valvular diseases present. 

Parameters Aortic stenosis Mitral regurgitation Combined 

���,� 1,63 0,76 0,58 

���,��� 1,80 1,23 0,79 

���,� 4,29 0,52 0,80 

���� 0,07 2,58 5,06 

���� 6,72 4,95 10,39 

MAPE (all parameters) 3,13 2,51 3,42 

Figure 6 shows the pulmonary arterial and right ventricular pressure waveforms 

along with the predicted and actual PAP values. These results show that although the 

prediction APEs for ����  are higher for the increased resistance cases, the inference 

model is still capable of capturing the pulmonary pressure dynamics with relative accu-

racy. However, for the combined case, it is noted that the model slightly under predicts 

the systolic right ventricular pressure, due to the overprediction of the right ventricular 

systolic elastance parameter (1.21 mmHg/mL vs. 1.15 mmHg/mL) which lowers pressure 

generation in the ventricle.  

For the PAP systole, diastole and mean values, the inference model has average error 

percentages of 1.12%, 2.49% and 2.14% respectively. These relatively low errors highlight 

the possible ability of the proposed model to capture pulmonary pressures for diseased 

heart valve and hypertensive conditions. 

 

Figure 5. Pulmonary arterial and right ventricle pressure waveforms predicted by model along with 

predicted important PAP values using increased pulmonary arterial resistance. Solid lines - pre-

dicted values; markers – actual waveforms + noise. 
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5. Conclusions 

In the present work it was demonstrated that the proposed algorithm can success-

fully recover the pulmonary arterial pressure waveform and associated clinically im-

portant values (systolic, diastolic, and mean values) using non-invasive measurements 

and a 0-D cardiovascular dynamic network model. It was found that using transvalvular 

flow rates, heart chamber volumes and systemic arterial pressure waveform data along 

with a hybrid Adam-L-BFGS optimizer yielded the best results. It should be stated that a 

limitation of the proposed approach is that it is assumed that the 0-D model is complex 

enough to capture the dynamics of an actual human cardiovascular system, not only for 

synthetic data generation but also for inference purposes. Therefore, future work will en-

tail using retrospective clinical data to validate the proposed inference modelling ap-

proach. 
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