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Abstract
Different variants of thinning for discrete random variables are

studied. The thinning procedure allows to introduce an analog of scale
parameter for positive integer-valued random variables. Sufficient and
necessary conditions for the existence of such a scale are given.
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1 Introduction
In the preprint different variants of thinning for discrete random variables
are studied. For some cases, the thinning procedure allows to introduce
an analog of scale parameter for positive integer-valued random variables.
Sufficient and necessary conditions for the existence of such scale are given.
These conditions lead to different variants and modifications of the classical
problem of moments.

2 Random normalization for objects connected
to positive integer-valued random variables

Let X1, X2, . . . be a sequence of independent identically distributed (i.i.d.)
non-negative integer-valued random variables. In many branches of Prob-
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ability and Statistics it is important to know a limit n → ∞ behavior
of max1≤j≤nXj, min1≤j≤nXj or

∑n
j=1Xj, see e.g. [10]. To obtain non-

degenerate limit distribution of such objects one needs to make a normaliza-
tion of them. Most popular (but not unique) type of normalization in the
classical limit theory is a multiplication by a (non-random) variable depend-
ing on n only. However, this type of normalization destroys integer structure
of the objects under consideration. Therefore, one needs another type of the
normalization. One of alternative ways to make a normalization of the sums
of i.i.d. random variables is to use the multiplication of the corresponding
variable Xj by non-negative integer random variable εj (j = 1, . . . , n). In
this Section we will consider this approach in more details. However, there
are also different methods of normalization. Some of them we consider in
other Sections.

2.1 Random normalization of sums of random variables

For the case of normalization of sums of random variables
∑n

j=1Xj by multi-
plication by independent random variable εj there are two simple possibilities.

1. Let {εj(n), j = 1, . . . , n} be a sequence of i.i.d. random variables
having Bernoulli distribution with the probability of success IP{εj(n)=
1} = λ/n. We suppose that εj(n) are independent of the sequence
{Xj, j = 1, . . . , n}. In terms of f(t), the characteristic function of
the random variable Xj, and 1 − λ/n(1 − exp(it)), the characteristic
function of the random variable εj(n), the characteristic function of
normalized variable X̃j = εj(n) ·Xj is

1− λ(1− f(t))/n.

The characteristic function of the normalized sum
∑n

j=1 X̃j equals(
1− λ(1− f(t))/n

)n −−−→
n→∞

exp{−λ(1− f(t))}.

2. Let {εj(n), j = 1, . . . , n} be a sequence of i.i.d. random variables
with geometric distribution IP{εj(n) = k} = (1 − λ/n)(λ/n)k, k =
0, 1, . . .. We suppose that εj(n) is independent of the sequence {Xj}.
Characteristic function of X̃j = εj(n) ·Xj is

f̃n(t) = (1− λ/n)
∞∑
k=0

f(kt)λk/nk,

2

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 August 2022                   doi:10.20944/preprints202208.0481.v1

https://doi.org/10.20944/preprints202208.0481.v1


where f(t) is characteristic function of Xj. It is not difficult to verify
that the characteristic function of the normalized sum

∑n
j=1 X̃j has the

same n→∞ limit as for the case of Bernoulli distribution

(f̃n(t))n −−−→
n→∞

exp{−λ(1− f(t))}.

Of course, it is possible to use some other distributions of the “normal-
izing" variables ε. However, it is more interesting to consider possible nor-
malization of extremums. The normalization by multiplying seems not to be
natural in that situation.

2.2 Random normalization for extrema of random vari-
ables

Consider now a possibility to make a normalization for the minimums of a
sequence of i.i.d. random variables. Let {Xj, j = 1, . . . , n} be a sequence of
i.i.d. random variables with probability distribution function F (x) = P(X <
x). Suppose that {εj(n)}, j = 1, . . . , n is a sequence of i.i.d. Bernoulli-
distributed random variables with IP{εj(n) = 1} = 1 − λ/n which is inde-
pendent on the sequence of {Xj}. The probability distribution function of
maximum-normalized random variable X̃j = max(εj(n), Xj) then reads

P(X̃j < x) = Gn(x) =


0, for x < 0;
λ
n
F (x), for 0 ≤ x < 1;

F (x), for x ≥ 1.

It is clear that the distribution function of min1≤j≤n X̃j is

1− (1−Gn(x))n −−−→
n→∞


0, for x < 0;

1− exp{−λF (x)}, for 0 ≤ x < 1;

1, for x ≥ 1.

Much more strange is the following method of normalization. Let {Xj, j =
1, . . . , n} be a sequence of i.i.d. random variables with probability distribu-
tion function F (x). Then the probability distribution function of the maxi-
mum or minimum of the above sequence is X̃(p) = IP{max1≤k≤nXk < x} =

(F (x))n and Ỹ (p) = IP{min1≤k≤nXk < x} = 1 − (1 − F (x))n, respectively.
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Suppose that {νγ, γ ∈ (0, 1)} is a family of integer-valued random variables
with Sibuya distribution having probability generating function (p.g.f.)

S(z) =
∞∑
n=1

znIP{νγ =n} = 1− (1− z)γ (2.2.1)

which is independent on the sequence of Xj. Define the following nor-
malizations X̃(γ) and Ỹ (γ) of the random variable X:

X̃(γ) = max
1≤k≤νγ

Xk , Ỹ (γ) = min
1≤k≤νγ

Xk

It is clear that

IP{X̃(γ) < x} =
∞∑
n=0

IP{ max
1≤k≤νγ

Xk < x}IP{νγ =n} = S(F (x)) = 1−
(
1−F (x)

)γ
and

IP{Ỹ (γ) < x} =
∞∑
n=0

IP{ min
1≤k≤νγ

Xk < x}IP{νγ =n} = 1−S(1−F (x)) = (F (x))γ

In this situation the role of normalized min1≤j≤nXj plays min1≤j≤n X̃j(γ).
Simple calculations show that the distribution function of this normalized
minimum equals to

1−
(
1− F (x)

)nγ
.

In the case of γ = 1/n the distribution of the normalized minimum coin-
cides with the initial distribution F (x).

The same is true for the normalized maximum with the normalization by
mean of random minima. Hence we have obtained new characterization of
the Sibuya distribution.

Theorem 2.2.1. Let X1, X2, . . . be a sequence of i.i.d. (continuous or dis-
crete) random variables with the probability distribution function F (x) and
X̃(p) = max1≤k≤N Xk ( Ỹ (p) = min1≤k≤N Xk ) be the corresponding max-
imum (minimum) taken over its first N terms. If N is Sibuya-distributed
random variable with parameter γ = 1/n then the distribution of normalized
minima min1≤j≤n X̃j(p) (maxima max1≤j≤n Ỹj(p)) coincides with F (x).

It would be nice to write it as unique characterization of Sibuya distribu-
tion e.g. as
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Theorem 2.2.2. Let X1, X2, . . . be a sequence of i.i.d. (continuous or dis-
crete) random variables with the probability distribution function F (x) and
X̃(p) = max1≤k≤N Xk ( Ỹ (p) = min1≤k≤N Xk ) be the corresponding max-
imum (minimum) taken over its first N terms. If N is a random vari-
able and the distribution of normalized minima min1≤j≤n X̃j(p) (maxima
max1≤j≤n Ỹj(p)) coincides with F (x) then P(N = n) is Sibuya distribution
with parameter γ = 1/n.

Now we see that each probability distribution function is min-stable (max-
stable) with corresponding random normalization. The normalization works
for arbitrary types of the random variables (including integer-valued).

Example 2.2.1. Consider particles with random velocity V and distribution
function F (v) = IP(V < v). In ensemble of n particles the fastest one
has the velocity distribution IP(Vmax < v) = (F (v))n and the slowest one
IP(Vmin < v) = 1 − (1 − F (v))n. Now let’s assume that the number of
particles is not fixed but fluctuates according to some distribution IP(N =n)
with the the p.g.f. P(z). In this case the velocity distribution of the fastest
particle is

IP(Vmax<v) =
∞∑
n=1

(F (v))nIP(N=n) = P(F (v))

Similarly IP(Vmin<v) = 1−P(1−F (v)) describes the velocity distribution of
the slowest particle. It is now obvious that for the p.g.f. of Sibuya distribution
(2.2.1) we obtain IP(Vmax<v) = 1− (1−F (v))γ and IP(Vmin<v) = (F (v))γ.

3 Bernoulli thinning and a scale for positive
integer random variables

3.1 General considerations

Returning back to the case of the sums of random variables let’s consider a
family of Bernoulli p.g.f.’s {Qa(z) = 1−a+az, a ∈ (0, 1)}. The superposition
P ◦ Qa, where P(z) is a p.g.f. corresponds to replacement of a random
variable X with p.g.f. P by another random variable X̃(a) =

∑X
k=1 εk as it

was mentioned in the Introduction. Dependence on the parameter a ∈ (0, 1)

of the X̃(a) distribution is similar to that of a continuous random variate

5

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 August 2022                   doi:10.20944/preprints202208.0481.v1

https://doi.org/10.20944/preprints202208.0481.v1


with scale parameter a. However, it is true for 0 < a < 1 only. In other
words, a positive integer random variable has an analogue of the scale for
small (less than 1) values.

It is worth noting that for the negative binomial distribution (NBD) the
superposition P ◦Qa remains p.g.f. also for a > 1:

PNBD(z) =
[
1 +
〈n〉
k

(1− z)
]−k
→ PNBD ◦Qa =

[
1 +a

〈n〉
k

(1− z)
]−k

(3.1.1)

Using the fact that the NBD p.g.f. can be expressed as a Laplace integral of
the Gamma distribution probability density with parameters k and b = k/〈n〉[

1 +
1

b
(1− z)

]−k
=

∫ ∞
0

e−(1−z)xdA(x) , dA(x) =
bk

Γ(k)
xk−1e−bxdx (3.1.2)

we can express the superposition PNBD ◦Qa as:[
1 +

a

b
(1− z)

]−k
=

∫ ∞
0

e−a(1−z)xdA(x) =

∫ ∞
0

e−(1−z)ydA(y/a) . (3.1.3)

Starting from this insight we can ask ourselves: Is it possible to define
corresponding variant of scale for large values of the parameter a, namely,
for a > 1? The following result gives one of the possible answers.

Theorem 3.1.1. A p.g.f. P possess a Bernoulli analogue of scale parameter,
i.e. P ◦Qa is a p.g.f. for any a > 0 if and only if

P(z) = ϕ(1− z), (3.1.4)

where ϕ(s) is Laplace transform of a probability distribution function on pos-
itive semi-axis.

Proof. 1. Suppose that

ϕ(s) =

∫ ∞
0

e−sxdA(x)

is Laplace transform of a probability distribution function on positive semi-
axis. Let us define P using (3.1.4) and prove it is a p.g.f. Really,

P(z) = ϕ(1− z) =

∫ ∞
0

e−xezxdA(x) =
∞∑
k=0

∫ ∞
0

e−xxkdA(x) · z
k

k!
.
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It is clear the power series has positive coefficients and converges in the
unit circle on the complex plain. Because A(x) is a probability distribution
function the sum of coefficients equals to 1.

2. If P(z) = ϕ(1− z) then P(1− a+ az) is a p.g.f. for any a > 0. Really,
P(1− a+ az) = ϕ(a(1− z)) and we can apply 1. to ϕ(as).

3. Suppose that P(1− a + az) is a p.g.f. for any a > 0 and prove it has
representation (3.1.4). Define ϕ(s) = P(1− s). It is necessary to proof that
ϕ(s) is Laplace transform of a distribution function or, equivalently, that it
is absolutely monotone function. In other words we have to proof that

ϕ(k)(s) = (−1)kAk(s), k = 0, 1, . . . , (3.1.5)

where the functions Ak(s) are non-negative for s > 0. For any z ∈ (0, 1) and
any a > 0 we have ϕ(a(1− z)) = P(1− a+ az). Therefore,

dk

dzk
ϕ(a(1− z)) = (−1)kpkϕ(k)(a(1− z)) = (−1)kpkP(k)(1− a+ az). (3.1.6)

Because P(1 − a + az) is probability generating function for any a > 0 the
terms pkP(k)(1 − a + az) are non-negative for all 0 < z < 1 and all positive
a. It proves absolutely monotones of ϕ(s). The result follows from classical
S.N. Bernstein theorem (see, for example [7]).

4. Let us give another (more simpler) proof of the statement 3.Because
P(1 − a + az) is probability generating function for any a > 0 the func-
tion P(1 − n(1 − e−s/n)) is Laplace transform of a distribution. We have
limn→∞ n(1 − e−s/n) = s. Therefore P(1 − s) is also Laplace transform of a
distribution.

Denote by B the class p.g.f.s of non-negative discrete random variable
which possess Bernoulli analogue of scale parameter for any a > 0 and can
therefore be represented by Eq. (3.1.4). In the following we will sometimes
also call this class of p.g.f.s as the B-scalable

Remark 3.1.1. Let us note that for P ∈ B and a > 0 the one-parameter
transformations

TaP(z) = Taϕ(1− z) = ϕ(a(1− z)) = Pa(z) . (3.1.7)

are automorphisms ofB. With TaTbP(z) = Pab(z) = TbTaP(z) and T−1a P(z) =
T1/aP(z) it is obvious that transformations Ta form the Abelian multiplicative
group.
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Corollary 3.1.1. Consider the function R(b, z) = P(bz)/P(b) where P(z) ∈
B and b > 0. Obviously for 0 < b < 1 we have R(b, z) = ϕb(1− z) where

ϕb(s) =

∫ ∞
0

e−sxdAb(x) , dAb(x) = e−(1−b)x/b
dA(x/b)

P(b)
. (3.1.8)

For b > 1 the function R(b, z) is p.g.f. if and only if

P(b) = b

∫ ∞
0

e−(1−b)xdA(x) <∞ . (3.1.9)

Remark 3.1.2. It is worth mentioning that the p.g.f. R(b, z) = P(bz)/P(b)
has the form which is characteristic for a power series distribution [9]. It
can be shown that in this case the cummulants κr, r = 1, 2, . . . satisfy the
simple recurrence κr+1 = bdκr/db [14]. Thus knowing the function κ1(b) it is
possible to obtain all higher cumulants and moments.

3.2 Bernoulli thinning of the B-scalable p.g.f.s

Theorem 3.2.1. [12] Let P(z) ∈ B. Then the probabilities pn = P(n)(0)/n!
satisfy the one-step recurrence

(n+ 1)pn+1 = png(n) . (3.2.10)

Proof. From Eq.(3.1.4) we obtain

g(n) =
(n+ 1)pn+1

pn
=
P(n+1)(0)

P(n)(0)
=

∫∞
0
e−xxn+1dA(x)∫∞

0
e−xxndA(x)

. (3.2.11)

For TaP(z) = Pa(z) Eq. (3.2.10) reads

ga(n) =
P(n+1)
a (0)

P(n)
a (0)

=

∫∞
0
e−xxn+1dA(x/a)∫∞

0
e−xxndA(x/a)

. (3.2.12)

Let us note that in general the functional dependence of ga(n) on variable n
need not be the same of g(n).
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Example 3.2.1. For the NBD Eqs.(3.1.2), (3.2.10 ) and (3.2.12) yield

g(n) =
〈n〉(k + n)

〈n〉+ k
, ga(n) =

a〈n〉(k + n)

a〈n〉+ k
= g(n) · a(〈n〉+ k)

a〈n〉+ k
.

In this case the functional dependence of g(n) and ga(n) on n is the same.

Our question is what are the conditions for factorization of ga(n) as a
product of functions dependent on n and a separately. From Eqs. 3.2.11 and
3.2.12 we obtain

ga(n)

g(n)
=

∫∞
0
e−xxn+1dA(x/a)∫∞

0
e−xxndA(x/a)

/∫∞
0
e−xxn+1dA(x)∫∞

0
e−xxndA(x)

. (3.2.13)

Obviously, it is equivalent to writing∫∞
0
e−xxn+1dA(x/a)∫∞

0
e−xxndA(x/a)

= hn · k(a) . (3.2.14)

With ψ(a) =
∫∞
0
e−xdA(x/a) =

∫∞
0
e−axdA(x) relation (3.2.14) can be writ-

ten as
ψ(n+1)(a)

ψ(n)(a)
= −hn ·

k(a)

a
. (3.2.15)

Integrating both sides of Eq.(3.2.15) with respect to a from zero to u we
obtain

log(ψ(n)(u)) = −hn ·K(u) + log(cn) , K(u) =

∫ u

0

k(a)

a
da

where cn = ψ(n)(0) does not depend on u. Therefore,

ψ(n)(u)) = cn exp{−hn ·K(u)} (3.2.16)

and from (3.2.15)

cn+1 exp{−hn+1 ·K(u)} = −hncn exp{−hn ·K(u)} ·K ′(u). (3.2.17)

For n = 1 the equation (3.2.17) reduces to

K ′(u) exp{(h2 − h1) ·K(u)} = −D1, (3.2.18)

9

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 August 2022                   doi:10.20944/preprints202208.0481.v1

https://doi.org/10.20944/preprints202208.0481.v1


where D1 = h1c1/c2 is a constant. After integration of this relation with
respect to u we obtain

K(u) =
1

h2 − h1
log
(
D2 −D1(h2 − h1)u

)
,

where D2 is a constant. This expression of K(u) allows us to find ψ′(u), and
consequently, ψn(u) for all n ≥ 1. Namely,

ψ′(u) = −
∫ ∞
0

xe−uxdA(x) = c1 · (D2 −D1(h2 − h1)u)−γ, (3.2.19)

where γ = h1/(h2 − h1). The function ψ′(u) is the first derivative of the
Laplace transform of a probability measure. Therefore, c1 < 0, D1 < 0, h2 >
h1 and γ > 0. It is easy to see that for this function the relation (3.2.15) holds.
Comparing equations (3.2.19) and (3.1.2) we find that P(z) = PNBD(z) with
parameters k = γ−1 and b = −D1(h2−h1)/D2. So, we proved the following
result.

Theorem 3.2.2. Let P(z) be a p.g.f. of the form

P(z) =

∫ ∞
0

exp{−(1− z)x}dA(x),

where A(x) is a non-degenerate probability distribution function on [0,∞).
The relation ga(n) = g(n) · k(a) holds if and only if P(z) is p.g.f. of negative
binomial distribution.

3.3 B-scalability and moments

Let us give now different condition for the existence of Bernoulli analogue of
scale parameter.

Theorem 3.3.1. Suppose that X is non-negative integer random variable
with the p.g.f. P(z) having the probabilities of its values as

pk = IP{X = k}.

Suppose that Stieltjes problem of moments

pk =
1

k!

∫ ∞
0

xke−xdA(x), k = 0, 1, . . . (3.3.20)

has a solution A. Then P ∈ B.
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Proof. Let A be a solution of the problem (3.3.20). Because
∑∞

k=0 pk equals
to 1 then A is a probability distribution function. Define

ϕ(s) =

∫ ∞
0

e−sxdA(x).

Now it is easy to calculate that P(z) = ϕ(1 − z) and the rest follows from
Theorem 3.1.1.

Corollary 3.3.1. The relations (3.3.20) show that for non-trivial p.g.f. P ∈
B the following statements are true:

1. pk > 0 for all k = 0, 1, . . .. Particularly, p.g.f. of a random variable
taking finite set of values is not an element of B;

2.

∆n = det


po p1 . . . n! · pn
p1 2 · p2 . . . (n+ 1)! · pn+1

. . . . . . . . . . . .
n! · pn (n+ 1)! · pn+1 . . . (2n)! · p2n

 ≥ 0

(3.3.21)
for all n = 0, 1, . . .. It follows from considering Hamburger problem
of moments for the function e−sdA(x) (see [4]). It is necessary con-
dition for the solution of corresponding Stieltjes problem of moments.
For example, if 2pop2 < p21 then P /∈ B. This relation holds for Bino-
mial distribution with the parameter 0 < p < 1. Really, for Binomial
distribution

2pop2 − p21 = −np2(1− p)2n−2 < 0.

3. It is clear that xke−x/k! ≤ 1/e for all x > 0 and all positive integers
k. Therefore, pk ≤ 1/e for k = 0, 1, 2 . . .. Therefore, if we have a ran-
dom sample from the population with probability distribution function
A(x) we can easily estimate probabilities pk of corresponding discrete
distribution.

It is clear that a random variable with Poisson distribution possesses
Bernoulli analogue of scale parameter.

Theorem 3.3.2. Let P(z) be a p.g.f. from B possessing finite second deriva-
tive λ at z = 1. Then

P(z) ≥ exp{λ(z − 1)}. (3.3.22)
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If the equality in (3.3.22) is attend at one zo < 1 then the equality holds for
all |z| ≤ 1.

Proof. Because P ∈ B then P(z) = ϕ(1−z) where ϕ(s) =
∫∞
0

exp{−sx}dA(x)
for some probability distribution function A.

Let us show that
ϕ(s)ϕ′′(s)−

(
ϕ′(s)

)2 ≥ 0. (3.3.23)

Really,

ϕ(s)ϕ′′(s)−
(
ϕ′(s)

)2
=

∫ ∞
0

e−sudA(u)

∫ ∞
0

u2·e−sudA(u)−
(∫ ∞

0

u·e−sudA(u)
)2
.

But the Cauchy-Bunyakovski inequality gives∫ ∞
0

u · e−sudA(u) ≤
(∫ ∞

0

e−sudA(u) ·
∫ ∞
0

u2 · e−sudA(u)
)1/2

.

Therefore (3.3.23) is true.
Inequality (3.3.23) is equivalent to

d2 log(ϕ(s))

ds2
≥ 0,

which means log(ϕ(s)) is a convex function. Therefore log
(
ϕ(s)

)
≥ −λs so

that we have (3.3.22).
Moreover, if for any zo < 1 there is equality in (3.3.22) then, in view of

convexity, there must be equality on the interval [zo, 1]. From the analytic
character of P the equality holds for all |z| ≤ 1.

Let us note that the Theorem 3.3.2 can be obtained from one result by
S.N. Bernstein [8].

Corollary 3.3.2. Suppose that X is a random variable with p.g.f. P(z) ∈ B
and second factorial moment λ = IE(X(X − 1)). Then for 0 < λ < ∞ and
1/2 < r < 1

IEXr ≤ 1

−Γ(−r)

∫ 1

0

1− exp(λ(z − 1))

z(− log(z))1/r
dz (3.3.24)

with equality if and only if X has Poisson distribution with the parameter λ.

Proof. The result follows from Theorem 3.3.2 and the expression for frac-
tional moments from [12]. Note that IE(X) > 1 implies λ > 0.
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It is clear that the p.g.f. from B cannot have zeros for z ≥ 0 because
ϕ(s) is Laplace transform of a probability distribution function. Therefore,
any p.g.f. taking zero value at point z = 0 is not an element of B.

Let us give some conditions for a p.g.f. to be an element of the class
B. Suppose that P(z) is a p.g.f. with finite moments of all orders. Its
factorial moments may be calculated as P(n)(1), n = 0, 1, 2, . . .. If P ∈ B
then P(z) = ϕ(1− z), where ϕ(s) =

∫∞
0

exp{−sx}dA(x). From here we see
that

P(n)(1) =

∫ ∞
0

xndA(x), n = 0, 1, . . . . (3.3.25)

Hence the necessary condition for P ∈ B is that the sequence {Pn(1), n =
0, 1, . . .} represents a solution of Stieltjes problem of moments. To have
corresponding solution of this problem it is necessary and sufficient that the
forms

n∑
i,k=0

P(i+k)(1)xixk,
n∑

i,k=0

P(i+k+1)(1)xixk (3.3.26)

are positive for all n ∈ N (see, for example [4]). Of course, if the condition
(3.3.26) is true and the function reconstructs by the moments in the unique
way then the (3.3.25) holds, and we see that P ∈ B. It means the following
result holds.

Theorem 3.3.3. Let {µn, n = 0, 1, . . .}, (µ0 = 1) be a sequence of positive
numbers. Suppose that the forms

n∑
i,k=0

µi+kxixk,
n∑

i,k=0

µi+k+1xixk (3.3.27)

are positive for all n ∈ N. Then there exists a p.g.f. P(z) such that: 1)
P ∈ B; 2) µn is the n-th factorial moment of P(z) for all n ∈ N.

Let us note the following facts. Let {sk, k = 0, 1, . . .} be a sequence of
real numbers. This sequence is positive if and only if all determinants

Dn = det


s0 s1 . . . sn
s1 s2 . . . sn+1

. . . . . . . . . . . .
sn sn+1 . . . s2n

 (n = 0, 1, . . .) (3.3.28)

are non-negative.
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Suppose that P(z) is a p.g.f. determining by the sequence {P(n)(1)}, n ∈
N in unique way (for example, analytic in a neighborhood of the point z = 1).
Connected to the forms (3.3.3) are the determinants

D(1)
n = det


1 P ′(1) . . . P(n)(1)
P ′(1) P ′′(1) . . . P(n+1)(1)
. . . . . . . . . . . .
P(n)(1) P(n+1)(1) . . . P(2n)(1)

 (3.3.29)

and

D(2)
n = det


P ′(1) P ′′(1) . . . P(n+1)(1)
P ′′(1) P(3)(1) . . . P(n+2)(1)
. . . . . . . . . . . .

P(n+1)(1) P(n+2)(1) . . . P(2n+1)(1)

 . (3.3.30)

If all determinants (3.3.29) and (3.3.29) are non-negative then the p.g.f. P(z)
belongs to the class B. Additionally, if for some no at least one of the
determinants is zero then P(z) is a mixture of no more than no Poisson
distributions. Let us mention that the results on positive sequences are taken
from [4] and [5].

Now we can give a characteristic property of Poisson distribution.

Theorem 3.3.4. Let P(z) ∈ B be a p.g.f. with finite second moment. De-
note µj (j = 1, 2) its factorial moments. P(z) is Poisson p.g.f. if and only
if µ2/µ

2
1 = 1.

Proof. Because P ∈ B then

P(z) =

∫ ∞
0

e−(1−z)xdA(x) and P(n)(1) =

∫ ∞
0

xndA(x). (3.3.31)

The condition µ2/µ
2
1 = 1 is equivalent to D(1)

1 = 0. Therefore the distribution
functionA has only one point of growth. The statement follows from (3.3.31).

What can one say if the condition D(1)
1 = 0 change by D(1)

1 ≤ ε2, where
ε > 0 is small enough? The answer is given by the following result.
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Theorem 3.3.5. Let P(z) ∈ B be a p.g.f. with finite second moment. De-
note µj (j = 1, 2) its factorial moments. Suppose that 0 ≤ µ2 − µ2

1 ≤ ε2 for
a fixed ε ≥ 0. Then

sup
|z|≤1

∣∣∣P(z)− exp{µ1(z − 1)}
∣∣∣ ≤ ε2. (3.3.32)

The relation (3.3.32) means that P(z) is close to Poisson p.g.f. for real
z ∈ [−1, 1].

Proof. Because P ∈ B we have

P(z) =

∫ ∞
0

exp{(z − 1)x}dA(x). (3.3.33)

As it was shown before, the factorial moments of P are the usual moments
of A. Therefore, µ2 − µ2

1 = σ2 is the variance of A and we know that σ ≤ ε.
It is enough to estimate the difference

P(z)− exp{µ1(z − 1)} =

∫ ∞
0

(
exp{(z − 1)x} − exp{µ1(z − 1)}

)
dA(x).

However, according to Taylor formula

exp{(z − 1)x} − exp{µ1(z − 1)} = (z − 1)(x− µ1) exp{µ1(z − 1)}+

+
(z − 1)2

2
(x− µ1)

2 exp{x̃(z − 1)},

where x̃ is a point, depending on x ≥ 0 and z and lying between x and µ1.
For −1 ≤ z ≤ 1 we have∣∣∣(z − 1)2

2
(x− µ1)

2 exp{x̃(z − 1)}
∣∣∣ ≤ (x− µ1)

2.

Therefore,∣∣∣P(z)− exp{µ1(z − 1)}
∣∣∣ =

∣∣∣∫ ∞
0

(
exp{(z − 1)x} − exp{µ1(z − 1)}

)
dA(x)

∣∣∣ ≤
≤
∣∣∣∫ ∞

0

(
(z−1)(x−µ1) exp{µ1(z−1)}+(z − 1)2

2
(x−µ1)

2 exp{x̃(z−1)}
)
dA(x)

∣∣∣
≤
∫ ∞
0

(x− µ1)
2dA(x) = µ2 − µ2

1 ≤ ε2.
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Let us note that the condition P ∈ B in Theorem 3.3.4 is essential.
Really, the mixture distribution with equal probabilities of Geometric dis-
tribution with parameter p1 and Bernoulli distribution with parameter p2 =
1/(1 + p1) gives µ2 − µ2

1 = 0 for factorial moments µ1 and µ2. It is obvious
that Theorem 3.3.5 is not true for this case as well.

4 Other thinning operators
The following definition had been given in [6].

Definition 4.0.1. Let X be a random variable with p.g.f. ξ(z), and let
Q = {Qa(z), a ∈ (0, 1)} be a family of p.g.f.s. We say the family Q is
thinning with respect to ξ(z) if

ξ(Qa(z)) = (1− a) + aξ(z) (4.0.1)

for all |z| ≤ 1 and a ∈ [0, 1].

Remark 4.0.1. Consider group G of all non-negative strictly monotone
functions g(z) equipped with the binary operation g1 ◦ g2 = g1(g2(z)) and
unit element g−1 ◦ g = z. Obviously, if ξ(z) is the p.g.f. then ξ(z) ∈ G as
well as its inverse function ξ−1(z) ∈ G. Moreover, since ξ−1(1) = ξ(1) = 1
the group elements with g(1) = 1 form the subgroup G1 ⊂ G. Consequently,
Eq. (4.0.1) is equivalent to the similarity transformation

Qa(z) = ξ−1 ◦ Ba ◦ ξ , Ba(z) = 1− a+ az . (4.0.2)

between two conjugate elements of the group G1 – Bernoulli p.g.f. Ba(z)
and function Qa(z). Let us recall that Qa(z) =

∑
n anz

n it is the p.g.f. if
∀n , an ≥ 0.

Following [6] note that if the family Q is thinning with respect to ξ then

R(z) = exp{λ
(
ξ(z)− 1

)
}, (λ > 0) (4.0.3)

is discrete stable distribution with the thinning operator Q (see the defini-
tions in [3] and [2]). So, each example of the thinning family gives at the
same moment an example of the corresponding discrete stable distribution.

One of essential properties of the thinning families is their commutativity
under superposition.
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Proposition 4.0.1. [6] Let Q = {Qa(z) a ∈ (0, 1)} be a family of the
thinning operators with respect to p.g.f. ξ(z). Then

Qa ◦Qb = Qb ◦Qa (4.0.4)

for all a, b ∈ (0, 1), where ◦ is the superposition sign.

It is also clear that Qa ◦Qb = Qab for all a, b ∈ [0, 1].
Many examples of commuting families of p.g.f.s are given in [1, 6]. Below

we give some additional examples of such type in connection to the thinning
families.

Example 4.0.1. Starting from the p.g.f. of Sibuya distribution ξ(z) = 1 −
(1− z)γ where 0 ≤ γ < 1. With ξ−1(u) = 1− (1− u)1/γ Eq.(4.0.2) yields the
family

Qa(z) = 1− a1/γ(1− z) ,

which is the thinning with respect to ξ(z). The p.g.f.

R(z) = eλ(1−z)
γ

corresponds to ordinary discrete stable distribution satisfying

Rn(Q1/n(z)) = R(z)

for all n ∈ N.

Example 4.0.2. Suppose that a p.g.f. is defined as ξ(z) = pz/(1− (1− p)z)
for a fixed 0 < p < 1. Then ξ−1(u) = u/(p + (1 − p)u). Define a family of
p.g.f.s

Qa(z) =
1− a− (1− a− p)z

1− a(1− p)− (1− p)(1− a)z
, 0 < a ≤ 1− p.

It is clear that

ξ(Qa(z)) = 1− a+ aξ(z), and 1− ξ(Qa(z)) = a(1− ξ(z)).

Now we see the family {Qa(z), a ∈ (0, 1− p)} is the thinning with respect to
ξ(z). The p.g.f.

R(z) = exp
{ λ(z − 1)

1− (1− p)z

}
17

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 August 2022                   doi:10.20944/preprints202208.0481.v1

https://doi.org/10.20944/preprints202208.0481.v1


is an analogue of discrete stable distribution in the sense

Rn(Q1/n(z)) = R(z)

for all n ∈ N.

Consider the p.g.f. ξ(z) = (1−q)z/(1−qz) of random variable Y = X+1
where X has the geometric distribution. From ξ(z) and its inverse function
ξ−1(u) = u/(1− q + qu) we obtain the family of p.g.f.s

Qa(z) = ξ−1 ◦ Ba ◦ ξ =
1− a− (q − a)z

1− aq − q(1− a)z
, 0 < a ≤ q

The p.g.f.

R(z) = exp
{λ(z − 1)

1− qz

}
is an analogue of discrete stable distribution in the sense

Rn(Q1/n(z)) = R(z)

for all n ∈ N.

Suppose that ϕ(s) is Laplace transform of a probability distribution func-
tion, ξ and Qa are defined in Example 4.0.2. The function ϕ(1 − ξ(z)) is a
p.g.f. in view of Theorem 3.1.1. Using Eq. (4.0.1), we have ϕ(1−ξ(Qa(z))) =
ϕ(a(1−ξ(z))). Although, Qa is not p.g.f. for sufficiently large values of a > 0
the function ϕ(1−ξ(Qa(z))) remains to be p.g.f. for all positive a. Therefore,
we have special example of a random variable possessing an analogue of scale
parameter. It is not Bernoulli analogue, but a new type of scale parameter.

This example of the scale parameter definition is rather general one.

Definition 4.0.2. Let {Qa(z), a ∈ (0, ε)} for ε > 0 be a family of p.g.f.s
thinning for ξ(z). Suppose that ϕ(s) is a Laplace transform of a probability
distribution on IR+. Then P(z) = ϕ(1 − ξ(z)) possesses Qa-type of scale
parameter a > 0.

Example 4.0.3. Let ξ(z) = ξ(z, b, p,m) be a p.g.f. of the form

ξ(z) = 1− b
( 1− zm

1− κzm
)p
,
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where 0 < p ≤ 1, m ∈ N, 0 < b ≤ 1 and 0 ≤ κ < 1. For b = m = p = 1
we come to Example 4.0.2, for b = m = κ = 1 to Example 4.0.1. Therefore,
consider the case m > 1. With ξ−1(u) = ((1−u)1/p−b1/p)/((1−u)1/pκ−b1/p)
we obtain

Qa(z) = ξ−1 ◦ Ba ◦ ξ =
( 1− a1/p + (a1/p − κ)zm

1− κa1/p − κ(1− a1/p)zm
)1/m

,

where 0 < a < κp < 1. It is not difficult to verify that both ξ and Qa are
p.g.f.s. Simple calculations shows that

ξ(Qa(z)) = 1− ab
( 1− zm

1− κzm
)p

= 1− a+ aξ(z).

For ϕ(1−ξ(z)) we have Qa-type of scale parameter a > 0. The discrete stable
version is

R(z) = exp{λ(ξ(z)− 1)}

for which we have
Rn(Q1/n(z)) = R(z).

The next Example has essentially different form.

Example 4.0.4. Let

ξ(z) = 1− b log(1 +B −Bz)

log(1 +B)
,

where B > 0 and b ∈ (0, 1) are parameters. It is clear that

ξ(z) = 1− b+ b

∞∑
k=1

(1− 1/(1 +B))k

k log(1 +B)
zk

is p.g.f. Let

Qa(z) =
(B + 1)

B
− (B + 1)a

B

(
1− B

B + 1
z
)a
, a ∈ (0, 1).

It is easy to verify Qa(z) is a p.g.f. Also we have

ξ(Qa(z)) = 1− a+ aξ(z),

so that the family {Qa(z), a ∈ (0, 1)} is thinning with respect to ξ(z).
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Define
R(z) = exp{λ(ξ(z)− 1)}.

Clearly
Rn(Q1/n(z)) = R(z).

In other words, R(z) is a discrete stable distribution. It is not difficult to see
that R(z) is p.g.f. of negative binomial distribution.

Let us give a construction of p.g.f. allowing generalized scale parameter.
Suppose that

ϕ(s) =

∫ ∞
0

exp{−sx}dA(x)

and a family {Qa(z), a ∈ (0, 1)} is thinning with respect to ξ(z). Define the
following p.g.f

P(z) = ϕ(1− ξ(z)). (4.0.5)

For arbitrary a ∈ (0, 1) let us consider

P1/a(z) = ϕ((1− ξ(z))/a),

which is again a p.g.f. We have

P1/a(Qa(z)) = ϕ((1− ξ(Qa(z)))/a) = ϕ((1− (1− a)− aξ(z))/a)

= ϕ(1− ξ(z)) = P(z).

This relation allows us to introduce generalized scale parameter.

5 Moments of integer-valued heavy-tailed ran-
dom variables

Consider integer-valued non-negative random variableX with the p.g.f. Q(z).
If IEX <∞ then for ∀r such that 0 < r < a < 1 also IEXr <∞. In the oppo-
site case the random variable X is called heavy-tailed and its r-th moments
0 < r < a < 1 do exist provided [12]∫ 1

0

1−Q(z)

(− log z)1+rz
dz <∞ . (5.0.1)
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Consider now a special case of such heavy-tailed integer-valued random
variable whose the p.g.f. can be ∀n ∈ N expressed as Q = ξ1 ◦ ξ2 ◦ . . . ◦ ξn
where ξi(z) = ξ(z), i = 1, n are the p.g.f.s of independent equally distributed
non-negative integer-valued random variables Xi, i = 1, n. Obviously X d

=

X1·X2·. . .·Xn, where
d
= means equality in distribution, and for r = m/n,m <

n,m ∈ N, n ∈ N the r-th absolute moment IEXr = IE(X1 · X2 · . . . · Xn)r

can be interpret as the mean of the m-th power of the geometric average
n
√
X1 ·X2 · . . . ·Xn of random variables Xi, i = 1, n.
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