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Abstract: Human pegivirus (HPgV) is best known for persistent, presumably non-pathogenic, in-

fection and a propensity to co-infect with human immunodeficiency virus or hepatitis C virus. How-

ever, unique attributes, such as the increased risk of malignancy or immune modulation, have been 

recently recognized for HPgV. We have identified a unique case of a woman with high levels HPgV 

infection in two pregnancies, which occurred 4 years apart, without evidence of human immuno-

deficiency virus or hepatitis C virus infection. The second pregnancy was complicated by congenital 

heart disease. A high level of HPgV infection was detected in maternal blood from different tri-

mesters by RT-PCR and identified as HPgV type 1 genotype 2 in both pregnancies. In the second 

pregnancy, the decidua and intervillous tissue of the placenta were positive for HPgV by PCR but 

not the chorion or cord blood (from both pregnancies), suggesting no vertical transmission despite 

high levels of viremia. The HPgV genome sequence was remarkably conserved over the 4 years. 

Using VirScan, sera antibodies for HPgV were detected in the first trimester of both pregnancies. 

We observed the same anti-HPgV antibodies against the non-structural NS5 protein in both preg-

nancies, suggesting a similar non-E2 protein humoral immune response over time. To the best of 

our knowledge, this is the first report of persistent HPgV infection involving placental tissues with 

no evidence of vertical transmission. Our results reveal a more elaborate viral-host interaction than 

previously reported, expand our knowledge about tropism, and opens avenues for exploring the 

replication sites of this virus. 

Keywords: prenatal infection; virome; viral antibody; VirScan; ViroCap; maternal viral infection; 
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1. Introduction 

Human pegivirus (HPgV) is a member of the Pegivirus genus within the Flaviviridae 

family (1). It is an enveloped virus, containing a positive-sense, single-stranded RNA ge-

nome of ~9,500 nucleotide, like that of hepatitis C virus (HCV), another member of the 

Flaviviridae family. HPgV has two structural proteins (E1 and E2), two predicted proteins 

of undetermined function (X and p* protein), and six non-structural (NS) proteins (1–4). 

To date, seven genotypes of HPgV-1 (species Pegivirus C, formerly GBV-C) have been clas-

sified, along with many variants (1,5,6), which vary in their distribution across the globe. 

Knowledge regarding the biology and behavior of this virus remains scarce. HPgV-

1 is a lymphotropic virus with a positive association between viremia with a risk of adult 

lymphomas (7,8). The prevalence of HPgV-1 infection in developed countries ranges from 
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0.5 to 5% (9,10). Transmission of HPgV-1 primarily occurs through exposure to infected 

blood or sexual contact, and has been documented among intravenous drug users (11), 

blood transfusions recipients (3), patients with parenteral exposure (12), and transplant 

recipients (12–14). After HPgV-1 infection, 20-30% of people develop chronic infections 

(15). Viremia is typically cleared within 2 years in the majority of immune competent in-

dividuals (16,17). Antibodies directed toward the envelope HPgV glycoprotein E2, which 

is thought to be the immunodominant antigenic site, are detected as viremia is cleared 

(18). While the pathogenicity of this virus remains unclear, HPgV-1 has a propensity to 

co-infect individuals with other viral infections, particularly human immunodeficiency 

virus (HIV) (19,20) and HCV (6,21). HPgV interferes with the pathogenicity of HIV (22) 

and slows disease progression (7,9,19,23,24). 

In pregnant women, the prevalence of HPgV infection is reported to be 1.1-6%, with 

a presumed rate of vertical transmission of up to ~65%, without HCV or HIV co-infection. 

These reports, however, were all from small cohorts and the route of transmission was 

not determined and only presumed to have been trans-placental based on detection of the 

virus in the newborn infant (8 positives out of 12 children, or 66.7%, born from HPgV 

positive mothers (25); and 13 positives out of 36 children, or 65%, born from HPgV posi-

tive mothers (26)). This presumed mother-to-infant transmission rate exceeds that of other 

viruses; for examples the rate of transmission for HIV is 23% (27), and the rate of trans-

mission for HCV in mothers co-infected with HIV is 36% (28). HPgV infection in infants 

can persists up to 12 months with no reported adverse health effects (29). To the best of 

our knowledge, no one has clearly demonstrated vertical transmission by testing maternal 

and fetal placental tissues, and umbilical cord blood. 

Here we present HPgV infection in a woman, spanning four years and two pregnan-

cies with no evidence of vertical transmission. We used two comprehensive technologies 

to characterize the infection: 1) ViroCap to detect and genotype the virus (30,31), and 2) 

VirScan, to profile anti-viral IgG responses at epitope resolution (32). We then tested for 

the presence of HPgV nucleic acids by end-point PCR in first-trimester maternal plasma 

and umbilical cord blood samples from both pregnancies as well as maternal and fetal 

placental specimens from the second pregnancy. 

2. Materials and Methods 

2.1. Study Samples 

We obtained samples from pregnant women who provided informed consent for the 

collection of biological samples and clinical data (Washington University in St. Louis; 

IRB#202002043; University of Iowa Maternal Fetal Tissue Biobank; IRB#200910784). 

2.2. Pegivirus Sequence Analysis 

Nucleic acid isolated from samples with Quick DNA/RNA Viral Kit (Zymo Research, 

# D7020) was used was used as input for the ViroCap assay [31]. Viral sequences were 

analyzed with the ViroMatch pipeline (33). After identifying HPgV sequences in the two 

maternal samples, HPgV genomes were assembled with IDBA-UD (34) and contigs were 

extended with PRICE software (35). The assemblies were manually reviewed with Tablet 

(36). Genomes were compared with NCBI BLAST (37) and MUSCLE (38) programs. For 

genotyping, phylogenetic trees were constructed using the NIAID Virus Pathogen Data-

base and Analysis Resource online through the web site at www.viprbrc.org (39). Phylog-

eny was estimated using the maximum likelihood method with RAXML with 100 boot-

straps and annotated with iTOL (40). 
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2.3. RT- PCR Validation 

The presence of HPgV was analyzed by nested-PCR (41) and one-step RT-qPCR (42) 

from the extracted nucleic acid. The HPgV RNA quantitation standard used was kindly 

provided by Dr. Jack Stapleton. For the nested-PCR reactions, primer sequences for PCR1 

were as follows: HGV1 forward 5'-AGGTGGTGGATGGGTGAT-3′; HGV2 reverse 5′-

TGCCACCCGCCCTCACCCGAA-3’. Primer sequences for PCR2 were as follows: HGV3 

forward 5′-TGGTAGGTCGTAAATCCCGGT-3′; HGV4 reverse 5′- 

GGAGCTGGGTGGCCCCATGCAT-3’. 

2.4. Viral Antibody Analysis 

VirScan assay was performed as previously described (43). Sequences were aligned 

to the Vir3 reference genome (obtained from Dr. Steve Elledge) using Bowtie2 (version 

2.2.6) with the option –very-sensitive-local. Samtools (version 1.6) was used to index and 

sort the BAM files and raw counts generated using the option -idxstats. All counts were 

normalized to 1 million reads prior to additional downstream analyses. The VirScan anal-

ysis pipeline was performed as previously described (44). To address cross-reactivity, a 

peptide is deemed specific, if against all other enriched peptides - 1) the calculated mean 

similarity score by Damerau-Levenshtein distance (R package stringdist, method='dl') is 

<0.125 and 2) shares < 7 contiguous amino acid sequence. Alignment of significantly en-

riched HPgV peptides was performed with UniProt Align tools (/www.uni-

prot.org/align/) to determine each peptide's starting and ending position. Then we man-

ually aligned the peptides with the polyprotein sequence. 

3. Results 

3.1. Maternal Medical History 

The first pregnancy of the individual resulted in a normal spontaneous vaginal de-

livery and the infant and postpartum course were normal. The second pregnancy 4 years 

later was complicated by congenital heart disease (CHD) (multiple muscular ventricular 

septal defects). The mother had a history of human papillomavirus (HPV) infection. Prior 

to her second pregnancy, the mother developed an eye melanoma. She also had 3 liver 

lesions (hemangioma/benign cysts) during her second pregnancy which was also compli-

cated by iron-deficiency anemia. The mother was negative for HIV and hepatitis B surface 

antigen by serology testing in the clinic (data not shown). There are no other covariates 

known to affect HPgV infection. 

3.2. Viral Sequence Analysis 

By viral sequence analysis of first trimester maternal plasma from both pregnancies, 

we identified the complete coding sequences of the HPgV genomes. The consensus se-

quences from both genomes were identical and without mutations. The sequence was 

~91% identical to the best match in the NCBI nucleotide database (Sequence ID 

MN551063.1), and the virus was determined to be most similar to HPgV-1 genotype 2 

based on comparison with representative 5’-untranslated region (UTR) sequences from 

known genotypes (Figure 1). 
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Figure 1. The human pegivirus sequenced in the first trimester maternal plasma samples shows 

high homology to HPgV-1 genotype 2. The 5’ UTR of the newly sequenced pegivirus genomes were 

compared to publicly available, curated genotyped 5’ UTR sequences (MN541120-MN541174) and 

supplemented with and additional sequences from GenBank to add genotype representation 

(MW032463.1, MW032454.1, MW032453.1, MK624961.1, MK624954.1, MK624949.1, MF398571.1, 

MF398570.1, and MH782477.1). Clades representing genotypes 1 (green), 2 (red), 3 (purple), and 5 

(blue) are shown. The sample from this study is in the genotype 2 clade and is labeled in red font. 

Bootstrap values are shown on each branch. 

3.3. VirScan Analysis 

Using VirScan, we observed evidence of antibody responses against several viral spe-

cies, including commonly observed group of viruses such as human herpesviruses, rhi-

noviruses, and adenoviruses, which corroborates findings from other groups (44,45). Rel-

evant to this study, VirScan detected the presence of antibodies to HPgV peptides in the 

two maternal samples. There were several reactive HPgV peptides significantly enriched 

in those samples, but one passed through all our filtering and was considered specific 

(entry Q9QPC6-118095, Figure 2). 
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Figure 2. Alignment of HPgV significantly enriched peptides. Alignment positions of the peptide 

that passed through all our filtering (red text) and the other peptides (black text) are denoted by 

grey boxes. The row labels indicate the identifier from the VirScan library and consist of a UniProt 

entry ID and a VirScan peptide ID. Each peptide is aligned to the different portion of the polyprotein 

represented at the top of the figure by red and blue boxes, and the amino acid position is denoted 

just below. 

3.4. Detection of HPgV by PCR 

From both pregnancies, the maternal plasma samples consistently tested positive for 

HPgV by end-point RT-PCR, but the cord blood samples were negative (Table 1). Taking 

into consideration the possibility of low copy number or cross-contamination, RT-PCR 

assays were repeated several times. The detection in the maternal peripheral blood leuko-

cytes was inconsistent (positive in 2 out of 8 independent RT-PCR reactions of the same 

sample preparation). In the second pregnancy, the decidua and intervillous tissue of the 

placenta were consistently positive for HPgV (positive in 8 out of 8 independent RT-PCR 

reactions of the same sample preparation); however, the chorion was negative. Results 

from the amnion was also inconsistent and showed a faint band in 2 out of 5 independent 

RT-PCR reactions of the same sample preparation. 

4. Discussion 

Prolonged persistence of the HPgV have been noted (7,13,46), including in infants 

born to mothers positive for HPgV (25,29). However, none have documented persistence 

of the virus over years and in multiple pregnancies. Our study, to our knowledge, is the 

first to show the presence of HPgV infection during two pregnancies from the same 

woman, 4 years apart. The patient had no prior molecular evidence for HIV or HCV in-

fection. The first pregnancy resulted in a normal baby, with no detectable HPgV in the 

cord blood. In contrast, the second pregnancy was complicated by CHD. The decidua and 

intervillous tissue of the placenta from this second pregnancy were strongly positive for 

HPgV, while the cord blood and chorion showed no evidence of this virus. Altogether, 

the findings suggest the absence of vertical transmission in both pregnancies. The incon-

sistent (2/5) faint PCR bands in the amnion most likely reflects maternal tissue or blood 

contamination as HPgV cDNA was found to be present in high abundance in the maternal 

blood and placental tissues. Surprisingly, detection in maternal peripheral blood leuko-

cytes was also inconsistent, given the reported lymphotropic nature of the virus. These 

data suggest low copy number of the virus in leukocytes and support the idea that we 

detected mostly free, circulating virus in the plasma. It is also conceivable that the endo-

thelial cells may be an alternative site for persistence of the virus. 

The second pregnancy was complicated by CHD; however, there was insufficient ev-

idence from our data to suggest a causative effect of the persistent maternal HPgV infec-

tion. The absence of evidence for vertical transmission of the virus suggests direct fetal 

HPgV infection is unlikely to be a contributing factor in this case of CHD. In addition, 

since the infection persisted in both pregnancies but only one was affected with CHD sug-

gests the virus is not the cause. We cannot, however, rule out the possibility of transient 

vertical transmission at an earlier point during pregnancy (e.g., 1st trimester) since we only 

examined the placenta at delivery. 

 

1 2,9102,6002,4002,2002K1,8001,6001,4001,2001K800600400200

Q9QPC6-118095  
Q9WBT6-110978  
O37172-114926  
O41921-115077  
O41921-115075  
O36169-114838  
O36169-114851  
Q9Z030-118126

UniProt - VirScan

NS5BNS5ANS4BNS4ANS3NS2Y XE2E1
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Detection of antibodies targeting the HPgV E2 protein is associated with viral clear-

ance. There have been no reported antibody responses to the NS proteins in HPgV-1 in-

fections (1). We were able to detect the presence of anti-HPgV-1 antibody responses sim-

ultaneously with evidence of viremia during both pregnancies. The notable peptide iden-

tified, from our VirScan analysis, in the mother as part of this immune response is a 56 aa 

fragment of the non-structural protein NS5, encoded by the NS5 gene of HPgV-1. This 56-

aa peptide sequence maps to amino acid positions 2142-2197 of the HPgV-1 genotype 2 

polyprotein (E-value: 1.1e-38; score = 324, UniProtKB: A0A895ZPP4_9FLAV). The molec-

ular function of the NS5 protein includes RNA binding, and RNA-directed 5’-3’ RNA pol-

ymerase activity and is involved in viral RNA genome replication (47). Interestingly, the 

peptide fragments of this NS5 protein have been proposed as serological markers for 

HPgV-2 infection, a new HPgV species recently discovered (48). Perhaps the antibody 

profile we are seeing is a marker for those with persistent pegivirus viremia, which occurs 

in about 25% of those infected. Of note, a study found that amino acid polymorphisms in 

NS5A sequence (but not in E2 sequence) affected the sensitivity to interferon therapy and 

proposed this mechanism as a evasion method used by HPgV (49). Further studies are 

warranted to further delineate these immune responses. Importantly, our results show the 

potential utility of VirScan technology where no commercial antibodies are available, as 

in the case with HPgV. 

Several genotypes of HPgV-1 have been identified world-wide by genome sequenc-

ing (3,6,12,50,51). HPgV-1 genotyping in our subject showed high homology to HPgV-1 

genotype 2 and remained remarkably unchanged over the 4-year interval between the 

collections of samples. Thus, the VirScan, ViroCap and PCR results appear to be concord-

ant with a maintained pattern of infection by our HPgV-1 isolate. We are not aware of 

other studies that have evaluated HPgV genotypes or antibody response over time in the 

same patient, so whether this lack of change is unusual for HPgV-1 is an interesting ques-

tion for future studies. 

In summary, we have identified a unique case of persistent HPgV-1 in a woman with 

two pregnancies in 4 years. Although the mother had HPV infections, the etiology of the 

HPgV-1 infection in our patient is not known and did not coincide with common co-in-

fections (HIV and HCV). To the best of our knowledge, we are the first group to directly 

assess vertical transmission by testing fetal and placental tissues, and umbilical cord blood 

for the presence of HPgV. We saw no evidence of vertical transmission of the virus in two 

consecutive pregnancies. Our observation of this long-term persistent HPgV-1 infection 

and humoral response to NS5 epitopes during pregnancies highlights a complex interplay 

between virus and host and suggests putative effects on maternal health and fetal devel-

opment to be explored in future studies. 

Table 1. Detection of Pegivirus (HPgV) nucleic acid by end-point PCR in maternal (first trimester 

plasma, peripheral blood leukocytes (PBL), decidual and intervillous tissue of the placenta (IVTP), 

and fetal (cord blood, amnion, and chorion) samples. 

Pregnancy 
Maternal 

Plasma 
PBL Decidua IVTP 

Cord 

Blood 
Amnion Chorion 

1st  + ?     -     

2nd + ? + + - ? - 

“+” indicates detected, “-“ indicates not detected, and “?” indicates inconsistent detection. RT-PCR 

assay was repeated at least 5 times from the same sample preparation for all tissues. 

List of abbreviations 

CHD: congenital heart disease 

HCV: hepatitis C virus 

HIV: human immunodeficiency virus 

HPgV: human pegivirus 

HPV: human papillomavirus 
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IVTP: intervillous tissue of the placenta 

PBL: peripheral blood leukocytes 

UTR: untranslated region 
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